CEUR-WS.org/Vol-3620/ttc23_paper05.pdf

Incremental ATL solution to the TTC 2023 KMEHR to FHIR

case

Frédéric Jouault™?, Théo Le Calvar® and Matthew Coyle?

IUniversity of Angers, LERIA, 49000 Angers, France
2ESEO-TECH / ERIS, 49100 Angers, France
‘?IMTAtlantique, LS2N (UMR CNRS 6004), France

Abstract

This paper presents the ATOL solution to the TTC 2023 KMEHR to FHIR case study. The ATOL compiler is an alternative
ATL compiler that enables incremental execution of ATL transformations. In this paper, we explain how we used ATOL to
make the original KMEHR to FHIR ATL transformation incremental.

Keywords

Model Transformation, Incremental Model Transformation, ATL

1. Introduction

With incremental model transformation engines, such
as ATOL [1], NMF [2] or YAMTL [3], it is possible, af-
ter an initial application of the transformation, to de-
tect changes on the source model and propagate these
changes to affected parts of the target model without
re-executing the transformation on the whole source
model. This contrasts with traditional model transforma-
tion engines that recompute the whole target model from
scratch after each change on the source model. Incremen-
tal model transformation engines are particularly useful
when the source model is large, the transformation is
complex or the source model is frequently modified.

This case study [4] involves translating between two
medical data formats: from the Belgium KMEHR format,
to the international FHIR format. The reference trans-
formation is written in modern ATL with advanced fea-
tures leveraging all features of the EMFTVM engine, such
as multiple rule inheritance, mapsTo or the improved
matching plan.

The transformation consists of a relatively large trans-
formation and several helpers.

This paper is organized as follows. In Section 2 we
quickly present the ATOL compiler. In Section 3 we
present the process we developed to produce an ATL
transformation compatible with ATOL. In Section 4 we
present the results of our approach. In Section 5 we detail
differences between the reference ATL transformation

TTC’23: 15th Transformation Tool Contest, Part of the Software Tech-
nologies: Applications and Foundations (STAF) federated conferences,
Eds. A. Boronat, A. Garcia-Dominguez, and G. Hinkel, 20 July 2023,
Leicester, UK.

@) frederic.jouault@eseo.fr (F. Jouault);
theo.le-calvar@imt-atlantique.fr (T. Le Calvar);
matthew.coyle@imt-atlantique.fr (M. Coyle)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

and our ATOL-compatible ATL transformation. Finally,
in Section 6 we give some concluding remarks.

2. ATOL overview

ATOL [1] is an experimental ATL compiler that produces
Java code, which in turn uses the Active Operations
Framework to compute expressions incrementally. ATOL
has previously been showcased on TTC cases such as
the TTC 2018 Social Media Case [5] or the TTC 2021
Incremental Workflow Case [6].

Traditional ATL engines execute the whole transfor-
mation at once to produce a target model from a source
model. This is referred to as batch execution. With ATOL,
the transformation is first applied to a source model to
produce a target model, like with a batch transformation.
But, unlike with standard ATL engines, ATOL keeps a
propagation graph in memory. Using this graph, changes
applied on the source model can be propagated to the
target without recomputing the whole transformation.
This allows for faster updates to the target model at the
cost of an increased memory footprint.

ATOL supports a subset of standard ATL. For in-
stance, ATOL natively supports only unique lazy rules,
helpers, declarative ATL, and parts of OCL operations.
Whereas standard rules are implicitly matched and re-
solved, unique lazy rules must be explicitly called to be
applied, and resolved. It also differs from standard ATL
on specific points. For instance, ATOL requires target tu-
ple navigation for called lazy rules (see Listing 1), it also
supports implicit collect on property navigation on col-
lections. In the long run, we aim at aligning ATOL with
ATL, so that executing ATL transformations incremen-
tally is not significantly more complicated than executing
ATL transformations in the traditional non-incremental
batch mode.

mailto:frederic.jouault@eseo.fr
mailto:theo.le-calvar@imt-atlantique.fr
mailto:matthew.coyle@imt-atlantique.fr
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Manual update

HOT

ATOL Compiler

Reference S'ms‘ﬁlltﬁigfn‘ | ATOL Compatible
ATL Solution) i ATL Solution
+ small adapations
~— @@
) Xtend 0
Source & Target Generator Generated N Java dlass
Metamodels ” Java helpers 4

Figure 1: Compilation pipeline or the ATOL solution

rule SumEHRTransaction {
from
s : KMEHR!TransactionType
to
t : FHIR!Composition mapsTo s (

section <- Sequence{
thisModule.MedicationSection(s).t,
thisModule.AllergyIntoleranceSection(s).t,
thisModule.ActiveProblemSection(s).t,
thisModule.ImmunizationSection(s).t,
thisModule.HistorySection(s).t

Listing 1: Part of a rule with target tuple navigation

3. Solution overview

The proposed ATOL solution is similar to the reference
ATL solution. However some changes were made to
make it compatible with ATOL. A detailed list is given in
Section 5.1. Figure 1 illustrates the compilation pipeline
of our ATOL solution.

The reference ATL transformation uses many ad-
vanced features of EMFTVM and was not compatible
with ATOL. For ATOL to be able to process it, we up-
dated the reference transformation to use simpler ATL
constructs supported by ATOL. These changes are done
in two steps.

The first step is a manual rewriting of parts of the
transformation to make it compatible with ATOL (ei-
ther by simplifying the transformation or adapting it to
ATOL-specific syntaxes). These rewritings are either too
small and local to be worth automating (such as adding
typing hints where ATOL fails to properly compile) or
require understanding of the transformation semantics
(such as rewriting rules with multiple inputs to rules
with single inputs). Some helpers that cannot be com-
piled with ATOL are also rewritten with native Xtend

Manually written
Xtend helpers

~— @@

code, such as the ATL helpers that used the #native
syntax or the lazy rules FhirString, FhirBoolean,
FhirPositivelInt and FhirDecimal.

The second step is performed by a Higher Order Trans-
formation (HOT) written in ATL, and applied using a stan-
dard ATL engine. This HOT transforms standard matched
rules to unique lazy rules without guards, and produces
a RESOLVE helper that emulates standard rule resolution
using explicit lazy rule calls. Listing 2 shows part of the
generated helper. The HOT also adds after each OCL ex-
pression an @etype comment annotation specifying the
expression’s type. This is useful for debugging purposes,
and could be disabled to improve readability. However,
the HOT’s output is not intended for user consumption.

helper context OclAny def: RESOLVE : OclAny =
if if self.oclIsKindOf (KMEHR!DocumentRoot) then

let cp : KMEHR!DocumentRoot = self.oclAsType(KMEHR
!DocumentRoot) in
true
else
false
endif then
thisModule.DocumentRoot (self.oclAsType(KMEHR
DocumentRoot)) .t
else

if if self.oclIsKindOf (KMEHR!FolderType) then
let cp : KMEHR!FolderType = self.oclAsType
(KMEHR! FolderType) in
not cp -- @type kmehr!FolderType
.patient -- @type kmehr!PersonType
.oclIsUndefined() -- @type Boolean
-- @type Boolean

else
false
endif then
thisModule.Folder(self.oclAsType (KMEHR!
FolderType)) .t
else

Listing 2: Part of the generated RESOLVE helper

After these two steps, the produced ATL transfor-
mation is compatible with ATOL, and can be compiled
to a Java class. The transformation is applied by call-

ing the now (as a result of the HOT) unique lazy rule
DocumentRoot, which transforms the root of the source
model.

4. Results

The original ATL reference transformation is a batch
transformation, thus the case does not provide data to
test changes on the source model. To evaluate the cor-
rectness of our solution, we compared outputs (with a
textual diff) of our solution with outputs of the reference
solution for the three given source models. When do-
ing so, we observed that our solution produces identical
target models when serialized in the FHIR format (ig-
noring attributes that rely on uuid, which are randomly
generated).

Overall, the structure of the transformation is close to
the reference one. However, compatibility with ATOL
forces us to rewrite advanced ATL constructs. This can
reduce transformation readability and maintainability.

Figures 2a, 2b and 2c show runtime performance of
our proposed solution. We can see that both ATOL and
reference solutions have similar performances for load
and initialization. For the actual application of the trans-
formation, ATOL is a bit slower with models of a smaller
size but scales better than the reference solution. We have
not investigated this performance difference yet, but it
may be due to the fact that the Java code generated from
ATOL compiles to more efficient bytecode than what the
EMFTVM just in time compiler produces.

However, in Figure 2d we see that ATOL is consuming
much more memory than the reference solution. ATOL
uses more memory because, on top of the trace, it stores
the propagation graph, which is needed to compute and
propagate updates when the source model changes. One
should note that the current version of our solution has
not been optimized for memory and thus represent a
worst case scenario. The typical way to optimize mem-
ory usage is to make sure the propagation graph does
not contain duplicate values. This can be performed by
adding attribute helpers, which result will be cached, thus
avoiding duplication.

Basic incremental updates on the source model (e.g.,
modifying properties of source elements) should work
without issues. However, we know that null values in
the source model will most likely cause crashes because
the original transformation has not been strengthened
against all possible null values.

The current implementation of ATOL also suffers of
a known bug related to the rule matching system we
use. As described in Section 3, we use a HOT to replace
all resolvings with a call to a resolve helper that calls the
correct rule. However, after the initial transformation
is applied, source elements can mutate, and they could

now be matched by other rules. When this happens, the
old rule application should be removed/disabled, and the
result of the new rule application added. However, at the
moment, ATOL cannot easily deactivate the bindings of
the old rule. Thus, changes are still propagated through
the old rule bindings, which can cause crashes because
of inconsistent properties. We identified this issue with
our TTC 2023 incremental Class to Relational case, and
are working on a fix.

5. Discussions

In Section 3 we presented an overview of the changes
we applied to the reference ATL transformation. In this
section we discuss, with more details, the kind of changes
we made to the reference solution, and why, as well as the
improvements we made to ATOL and the tooling around
it.

5.1. Differences with the reference
solution

We made two kinds of changes, some that simplified
the transformation without breaking compatibility with
EMFTVM, and ATOL-specific changes.

5.1.1. Simplification

Helper inlining: ATOL currently only supports at-
tribute helpers in the context of source metamodel types.
To circumvent this limitation, several helpers on Strings
were inlined (e.g., normalize or toGender). The im-
pact of this change is limited, because most of these
helpers were rarely used.

Manual type hints in bindings: sometimes the Java
code produced by ATOL fails to compile because the Java
compiler fails to unify the types. In these situations, we
added . oclAsType (<type>) operation calls to explic-
itly type the expression, and fix these errors.

Rewriting of matched rules: as mentioned in Sec-
tion 3, ATOL only supports unique lazy rules. In order
to compile the transformation, we applied a HOT that
replaces all matched rules by unique lazy ones, adds a
RESOLVE helper that calls the correct rule for its source,
and adds calls to that helper when resolving is needed.
This HOT is still a work in progress, and needs more work
before it can be released. That is why it is not present
with the ATOL solution. Instead, we provided both its
source, and its target ATL files.

Rewriting rules with multiple inputs to single
input: ATOL supports calling lazy rules with multiple
source elements but the HOT that transforms matched
rules to unique lazy ones does not. In the KMEHRToFHIR
transformation, rules with multiples inputs can easily be

Tool atol ---- reference
0.900 -
0.895 -
— 0.89
@ 0.89 -
® | 3
g 08
= 0.89
0.885-
0.880 - s
1 10 100 1000
Model size
(a) Initialization time
Tool atol ---- reference
21.02
10.0-
—~ 30-
)
©
= :
F 1o- 1.04
0.3- 0.31
0.16
1 10 100 1000
Model size

(c) Run time

Figure 2: Benchmark metrics for ATOL & reference solution

rewritten to rules with a single input element, as other
elements can be recovered using navigation. In older ver-
sions of ATL, it was a good practice to avoid rules with
multiple inputs when non-necessary, to avoid the Carte-
sian product matching performance cost. With recent
improvements to the matching algorithm of EMFTVM
(since ATL 4.8.0), this old guideline is not that relevant
anymore.

Rewriting some lazy rules to unique lazy rules:
unique lazy rules are the only kind supported by ATOL,
because in incremental contexts it is important to keep
caches and not recreate target elements. Most lazy
rules in the reference transformation were replaced by

Tool atol ---- reference
0.91
=057 0.48
©
E
= 036
03- (0.31 -
0.2-
1 10 100 1000
Model size
(b) Loading time
Tool atol ---- reference
1000~
o
2
S
I3 300-
[%2]
=}
Pl
5]
£ 100- 118.96
2 0
2247 f---- 23.51
i 1‘0 160 10‘00
Model size

(d) Memory usage during run

unique lazy rules without trouble. For the few ones
that required the non-unique behavior (namely the
FhirString, FhirBoolean, FhirPositiveInt and
FhirDecimal) we implemented them as native Xtend
helpers. For Coding and its subrules we added a naive
support for non-unique lazy rules to ATOL. Like the pre-
vious change, this is also a good practice to prefer unique
lazy rules instead of lazy rules when possible.
Rewriting a call to super rule into several call to
subrules: in the rule Folder, the original transforma-
tion computed the union of many elements which are
transformed by matched abstract rules. Because of typ-
ing issues with ATOL we instead applied the subrules for

each elements before merging them in a single collection.

Rewriting of multiple inheritance in an
additional rule: ATOL does not support mul-
tiple rule inheritance. Multiple rule inheritance
is only used once in the transformation, for the
SumEHRTransactionWithAuthorAndCustodian
rule. In our solution, we simply duplicated code from
both inherited rules into the subrule.

5.1.2. ATOL-specific changes

Up to now, previous changes were compatible with other
ATL engines. However, ATOL provides features not sup-
ported by other engines, and also requires some specific
modifications.

Change to helper type declaration: enumeration
types are handled as Strings in ATOL, therefore all in-
stances of enumeration literals types were replaced by
Strings.

Navigation into lazy rule target tuple: calling
a lazy rule with ATOL returns a target tuple, and
not just the first element. Therefore, with ATOL,
it is mandatory to suffix all calls to lazy rules with
the name of the element to be accessed in the target
tuple (e.g., thisModule.CompositionBundleEntry
(s.transaction) .be). This is a breaking change be-
cause other engines do not support this. Without this
change, only the first target element of each rule applica-
tion would be accessible. Because ATOL only supports
lazy rules, this is more of a problem than in classical ATL,
hence the change.

Replacement of the join helper with a native op-
eration: the standard OCL iterate operation (which
corresponds to a left fold) is not supported by ATOL. In
this situation, the join helper that used the iterate oper-
ation was replaced by an ad hoc join operation written
in Xtend.

Property navigation disambiguation is necessary
in some cases, when multiple metamodel properties have
the same name, because of the way the ATOL compiler
works. This is performed by appending a numeric suffix
to the property name, as assigned in the generated meta-
model representation Java class by the @AOFAccessors
annotation processor [1]. This is a technical matter that
a future version of ATOL or of the HOT could hide from
the programmer.

5.2. Improvements to ATOL

The KMEHR to FHIR transformation uses many aspects
of ATL, several of which were not handled by ATOL. In
order to compile the transformation we added support
for:

» Maps and mutable sequences;

« custom join operation;

« initial support for non-unique lazy rules

« automated conversion between enumeration lit-
erals and Strings in our helper generator.

6. Conclusion

In this paper, we presented our solution to the KMEHR
to FHIR TTC 2023 case. This solution is based on the
reference ATL solution but is compiled with ATOL, which
makes it incremental. Because ATOL supports only a
subset of ATL, changes to the reference transformation
(both manual and automated) had to be done.

We showed that runtime performance of the produced
code is similar to the reference solution with slightly
better scaling. We also showed that the generated target
models are identical to those generated by the reference
solution.

Basic incrementality should be working. We identified
several propagation bugs due to the way the transfor-
mation is written, or because of known limitations in
ATOL.

Finally, this case allowed us to improve our HOT and
ATOL compiler.

References

[1] T. Le Calvar, F. Jouault, C. Chhel, M. Clavreul, Ef-
ficient ATL incremental transformations, J. Object
Technol. 18 (2019) 2:1-17. doi:10.5381/jot.2019.
18.3.a2.

G. Hinkel, NMF: A multi-platform modeling frame-
work, in: Theory and Practice of Model Transfor-
mation, Springer International Publishing, 2018, pp.
184-194. doi:10.1007/978-3-319-93317-7_10.
A. Boronat, Expressive and efficient model trans-
formation with an internal DSL of xtend, in: Pro-
ceedings of the 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages
and Systems, ACM, 2018. doi:10.1145/3239372.
3239386.

D. Wagelaar, The TTC 2023 KMEHR to FHIR Case,
in: TTC 2023, 2023.

G. Hinkel, A. Garcia-Dominguez, R. Schone,
A. Boronat, M. Tisi, T. L. Calvar, F. Jouault, J. Mar-
ton, T. Nyiri, J. B. Antal, M. Elekes, G. Szarnyas, A
cross-technology benchmark for incremental graph
queries, Software and Systems Modeling 21 (2021)
755-804. d0i:10.1007/s10270-021-00927-5.

F. Jouault, T. Le Calvar, (Ab)using incremental
ATL on the TTC 2021 incremental laboratory work-
flow benchmark, in: TTC 2020/2021 - Joint Pro-
ceedings of the 13th and 14th Tool Transforma-
tion Contests. The TTC pandemic proceedings with

http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.5381/jot.2019.18.3.a2
http://dx.doi.org/10.1007/978-3-319-93317-7_10
http://dx.doi.org/10.1145/3239372.3239386
http://dx.doi.org/10.1145/3239372.3239386
http://dx.doi.org/10.1007/s10270-021-00927-5

CEUR-WS co-located with Software Technologies:
Applications and Foundations (STAF 2021), Virtual
Event, Bergen, Norway, July 17, 2020 and June 25,
2021, 2021. URL: https://ceur-ws.org/Vol-3089/ttc21_
paper10_labflow_Jouault_solution.pdf.

https://ceur-ws.org/Vol-3089/ttc21_paper10_labflow_Jouault_solution.pdf
https://ceur-ws.org/Vol-3089/ttc21_paper10_labflow_Jouault_solution.pdf

	1 Introduction
	2 ATOL overview
	3 Solution overview
	4 Results
	5 Discussions
	5.1 Differences with the reference solution
	5.1.1 Simplification
	5.1.2 ATOL-specific changes

	5.2 Improvements to ATOL

	6 Conclusion

