
Asymmetric and Directed Bidirectional Transformation for
Container Orchestrations
Antonio Garcia-Dominguez

1

1University of York, York, UK

Abstract
In many DevOps scenarios, tools operate from declarative models of intended system configuration (e.g. Ansible/Puppet/Chef

descriptions of infrastructure-as-code, or Kubernetes and Docker Compose descriptions of orchestrations of containers).

DevOps-oriented domain-specific modeling notations will typically only cover a subset of all the capabilities in these

configuration formats: this means users will need to manually edit the configuration files generated from the higher-level

models. In many editing sessions, users will also touch upon parts that came from the high-level model, and will want that

high-level model to be updated accordingly. Likewise, a user may want to introduce a change through the high-level model

and not lose the YAML customisations that are unrelated to the high-level model. These requirements imply a need for a

bidirectional transformation (“bx”) which is asymmetric (the configuration file contains all the information in the high-level

model and more), and directed (changes are only applied to one side at a time). This case proposes revisiting the current state

of bx tools for asymmetric and directed transformations, and complements the prior Families to Persons case from TTC 2017,

which focused on a symmetrical and directed transformation. The case will reuse the Benchmarx framework from the TTC

2017 case.

Keywords
container orchestration, bidirectional transformations, model merging, graphical models, YAML

1. Introduction
DevOps was defined by Leite et al. [1] as a “collaborative

and multidisciplinary effort within an organization to

automate continuous delivery of new software versions,

while guaranteeing their correctness and reliability”. The

rising interest in DevOps (with over 10% of the 61,302

responses to the Stack Overflow 2022 Developer Sur-

vey
1

considering themselves “DevOps specialists”) has

motivated the creation of a number of domain-specific

modelling notations for it, covering aspects such as mi-

croservice architectures [2], DevOps processes [3], or

multi-cloud applications [4].

At a technical level, the automated continuous delivery

efforts in DevOps typically require using tools to auto-

mate deployment. These include infrastructure-as-code

tools (e.g. Puppet
2

or Ansible
3

), and container orches-

tration tools such as Kubernetes
4

or Docker Compose
5

.

Many of these tools operate by reading a declarative

description of the desired system state or the intended

combination of containers, usually written in a struc-

TTC’23: 15th Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20
July 2023, Leicester, UK.

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1
https://survey.stackoverflow.co/2022/

2
https://www.puppet.com/

3
https://www.ansible.com/

4
https://kubernetes.io/

5
https://docs.docker.com/compose/

tured format (e.g. YAML
6

) according to a loosely defined

schema (c.f. the Docker Compose file format reference,

which evolves from version to version
7

).

It stands to reason that DevOps model-driven ap-

proaches would often aim to generate at least some of

these configuration files from the high-level descriptions

of the intended service compositions. Piedade et al. ob-

served a significant reduction in development effort with

a visual notation for developing Docker Compose con-

tainer orchestrations [5], while also noticing that sev-

eral of the existing visual tools for Docker Compose

lacked support for certain Docker Compose concepts

(e.g. DockStation did not support specifying networks).

Their high-level descriptions will only model the subset

of the capabilities of the underlying tools that is relevant

for their abstractions, as trying to capture all capabilities

would overcomplicate the models and make them more

brittle to minor changes in the underlying configuration

file formats. From this limitation, it follows that users

would typically manually customise the generated con-

figuration files to cover the aspects not described by the

high-level model. Users may later want to update the

high-level model from the configuration file, to use it for

visualisation (e.g. for onboarding new developers) or for

reorganising the system in a more approachable notation

with domain-specific validation rules.

It is worth noting that there are some agreed-upon

specifications in cloud computing that have been adapted

into model-driven approaches. Zalila et al. [6] proposed

6
https://yaml.org/

7
https://docs.docker.com/compose/compose-file/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://survey.stackoverflow.co/2022/
https://www.puppet.com/
https://www.ansible.com/
https://kubernetes.io/
https://docs.docker.com/compose/
https://yaml.org/
https://docs.docker.com/compose/compose-file/


OCCIware Studio, a model-driven toolchain that for-

malises the concepts in the Open Cloud Computing Inter-

face (OCCI, a unified RESTful protocol for cloud comput-

ing management) into an OCCIware Ecore metamodel,

and provides a runtime component for design, deploy-

ment, execution, and supervision of cloud applications.

Challita et al. later proposed TOSCA Studio [7], also based

on OCCIware, which provides a model-driven approach

to design OASIS Topology and Orchestration Specifica-

tion for Cloud Applications (TOSCA) descriptions: these

are usually written in YAML and only describe the struc-

ture of cloud applications in a declarative manner, leaving

the exact implementation up to the TOSCA-supporting

cloud provider. OpenTOSCA
8

is an open-source end-to-

end toolchain for deploying and managing cloud applica-

tions, which includes Eclipse Winery, a web-based envi-

ronment for visual modeling of TOSCA cloud application

topologies (which generates TOSCA YAML descriptions).

This paper proposes a case based on a scenario inspired

by the findings of Piedade et al. [5], focusing on container

orchestration with Docker Compose. A high-level graph-

ical domain-specific model (implemented with Sirius) is

transformed into a Docker Compose YAML file, which

can be customised by the user using a plain text editor.

The high-level model can be updated from the YAML

file at any time. It should also be possible to edit the

high-level model and push the changes to the YAML file,

while retaining any elements that were not part of the

high-level graphical DSML.

At an essential level, this case implies the definition of a

bidirectional transformation (“bx” from now on) between

the high-level DSML and Docker Compose YAML files.

In TTC 2017, the Families to Persons case by Anjorin et

al. [8] evaluated the available approaches for symmetric

and directed bx using the proposed Benchmarx frame-

work. This work was later updated and expanded upon

in a journal paper [9], which also collected a number of

useful terms to describe bx, as well as a feature model to

cover the variability of bx tools. Families to Persons was

symmetric (neither side was a view of the other, with

information loss happening in both directions), and di-

rected (consistency-relevant changes were only applied

to one side at a time). The proposed case is still directed,

but it is asymmetrical (the Docker Compose YAML file

contains strictly more information than the high-level

model, so information loss only happens in one direction).

While this should make it conceptually “easier” than the

symmetric Families to Persons bx, the mapping is also

more complicated, with some objects in the high-level

model being turned into simple string concatenations

in the target model. At the same time, it can be argued

that the generation of Docker Compose YAML files is a

more industrially relevant scenario: if the current state of

8
https://www.opentosca.org/

Composition Node

NamedElement

name : EString

Image

image : EString

Container

replicas : EInt = 1

VolumeMount

path : EString

Volume

[0..*] nodes

[0..1] image

[0..*] dependsOn

[0..*] volumeMounts

[0..1] volume

Figure 1: Class diagram for the Containers metamodel

Value

Map MapEntry

key : EString

List Scalar

value : EString

[0..*] entries

[0..1] value[0..*] values

Figure 2: Class diagram for the MiniYAML metamodel

the art in bx tools (which may have significantly evolved

since the TTC 2017 case) can handle it well, this could

prove to be an interesting application niche.

2. Modeling Languages
The proposed bx is between two languages: a “Contain-

ers” domain-specific modelling language (shown in Fig-

ure 1), and a simplification of the YAML data model called

“MiniYAML” (shown in Figure 2).

2.1. Abstract syntax
Models conforming to the Containers metamodel (Fig-

ure 1) have a Composition as their root object, con-

taining a number of Nodes of various types. An Image

represents a specific Docker image by its full name in-

cluding the registry (if it is not the Docker Hub) and

tag, as stored in its image attribute. A Container is a

component that runs one or more replicas of a cer-

tain Image. A Container may have VolumeMounts of

certain Volumes (units of persistent storage) at specific

paths. Containers and Volumes are NamedElements,

which have a name that also acts as their unique identifier.

A Container may dependOn other Containers, mean-

ing that it should only be started after its dependencies

have been started.

On the other hand, a model conforming to the

MiniYAML metamodel (Figure 2) has a Map as its root ob-

ject, which contains MapEntry objects. Each MapEntry

has a key (a string, which should be unique within its

containing Map), and a value. Besides Map, other types

of Values include Lists (of Values), and Scalar values

https://www.opentosca.org/


mariadb

/bitnami/mariadb mariadb_data

redis

/bitnami/redis/data
redis_data

nginx

docker.io/bitnami/mariadb:10.5-debian-10

java-worker

/home/www-data/.m2 m2_data

default-
worker

autofeedback/worker:production

echo

docker.io/bitnami/redis:6.0-debian-10

autofeedback/nginx:production

autofeedback/app:productionautofeedback/echo:production

app

Figure 3: Example containers model, based on the AutoFeedback open-source system

with a string (this is a simplification from YAML, which

can support integer and floating point types through its

JSON schema).

2.2. Concrete syntax
The concrete syntax of the Containers modelling lan-

guage is implemented through Eclipse Sirius
9

and ex-

emplified in Figure 3, which models the container or-

chestration used by the AutoFeedback system developed

by the author
10

. Containers are grey rectangles deco-

rated with a puzzle piece icon, labelled after their name.

A Container may contain yellow ovals representing

their VolumeMounts, labelled after their paths and dec-

orated with a folder icon. An Image is reflected as a

green oval with a cardboard box icon, labelled after their

image. Volumes are purple rectangles with a hard disk

icon, labelled after their name. Note that the replicas
of a Container is not part of its graphical syntax, but

can be edited through the Properties view of the Sirius

editor.

The MiniYAML language does not have an explicitly

defined concrete syntax: while the case artifact includes

a tree-based editor autogenerated from the metamodel,

the ultimate concrete syntax is YAML itself. The case arti-

fact includes an uk.ac.york.ttc.miniyaml.model-
2yaml project with a MiniYAMLConverter Java class

which uses SnakeYAML
11

to automatically convert be-

tween MiniYAML models in XMI format, and YAML files.

3. Intended Transformations
The general intent of the transformation is to start from

a model as the one in Figure 3, and produce a YAML

document such as the one in Listing 1. This YAML doc-

ument can be edited manually in various ways: a user

9
https://www.eclipse.org/sirius/

10
https://gitlab.com/autofeedback/autofeedback-webapp/-/

blob/master/docker-compose.yml

11
https://bitbucket.org/snakeyaml/snakeyaml

Listing 1: Example YAML from Figure 3

version: ’2.4’
services:

mariadb:

image: docker.io/bitnami/mariadb:10.5−debian−10

volumes: [’mariadb_data:/bitnami/mariadb’]

redis:

image: docker.io/bitnami/ redis :6.0−debian−10

volumes: [’redis_data:/bitnami/redis/data’]

nginx: {image: ’autofeedback/nginx:production’}

app:

image: autofeedback/app:production

depends_on: [mariadb, redis]

java−worker:

image: autofeedback/worker:production

replicas: ’2’
volumes: [’m2_data:/home/www-data/.m2’]

depends_on: [app]

default−worker:

image: autofeedback/worker:production

replicas: ’2’
depends_on: [app]

echo:

image: autofeedback/echo:production

depends_on: [redis]

volumes: {mariadb_data: null, redis_data : null , m2_data: null}

could do a find-and-replace to rename a given container,

or they could add extra options for a given container or

volume which are not part of the Containers metamodel.

It should be possible for the user to update the Containers

model from the YAML file at any point. It should also

be possible to edit a Containers model and update the

YAML file from it, while keeping any customisations that

are unrelated to the Containers metamodel.

https://www.eclipse.org/sirius/
https://gitlab.com/autofeedback/autofeedback-webapp/-/blob/master/docker-compose.yml
https://gitlab.com/autofeedback/autofeedback-webapp/-/blob/master/docker-compose.yml
https://bitbucket.org/snakeyaml/snakeyaml


3.1. High-level description
In its forward direction (from Containers to MiniYAML),

operating in batch mode (where the MiniYAML model

does not exist yet), the transformation should follow

these rules:

1. A Composition should be transformed into a

Map with three keys: version set to a “2.4”

Scalar, services set to a Map whose MapEn-

try objects are produced from the Containers,

and volumes set to a Map produced from the

Volumes.

2. A Container should be transformed into a

MapEntry where the key is equal to its name.

The value of the MapEntry should be a Map of

its own, with at least the image key set to the

image of the Image of the Container.

The Map may also have keys for:

• replicas, if the value is different from 1.

• volumes, set to a List produced from the

VolumeMounts of the Container.

• depends_on, set to a List of Scalars

with the names of the Containers that

this Container depends upon.

3. A VolumeMount should be transformed into a

Scalar whose value should be of the form “volu-

meName:path”.

4. A Volume should be turned into a MapEntry

whose key should be its name. The MapEntry

should not have a value.

If the MiniYAML model already exists before running

the transformation forward, then the containers, vol-

umes, volume mounts, replicas, and inter-container de-

pendencies of the Containers model should replace those

of the MiniYAML model, while preserving any other

elements outside the Containers metamodel (e.g. a cus-

tom restart entry in a container’s Map). At the very

least, adding or removing one of these elements from the

Containers model should add or remove the relevant ele-

ment in the MiniYAML model. Ideally, the transformation

should be able to handle the renaming of a Container or

Volume while preserving the additional content that is

unrelated to the Containers metamodel. Furthermore, the

transformation should minimise unnecessary changes

in the YAML file (e.g. changes in the order of the map

entries).

In its backward direction (from MiniYAML to Contain-

ers) in batch mode, the transformation should recover the

Compositions, Images, Volumes and VolumeMounts

from the same MiniYAML elements that would have been

produced in the forward direction. These will replace the

contents of the Containers model entirely. Ideally, the

transformation should minimise unnecessary changes

(e.g. changing the path of an Image in the model, which

would cause unnecessary changes in the Sirius diagrams).

3.2. Reference implementation
Besides the above high-level description, the case materi-

als
12

include EMF-based implementations of the Contain-

ers and MiniYAML metamodels, and a reference imple-

mentation of the transformation using a combination of

languages from the Eclipse Epsilon open-source project:

• An ETL (Epsilon Transformation Language) script

transforming Containers models to MiniYAML

models (containers2miniyaml.etl).

• An ETL script transforming MiniYAML

models to Containers models

(miniyaml2containers.etl).

• A combination of an Epsilon Merging Lan-

guage (EML) script, an Epsilon Compar-

ison Language (ECL) script, and an ETL

script which can merge two MiniYAML

models together (mergeMiniyaml.eml,

compareMiniyaml.ecl, and

mergeMiniyaml.etl) respectively.

In this transformation, the “left” MiniYAML

model is the “prioritary” one: its containers,

volumes, volume mounts, replicas, and inter-

container dependencies will take precedence over

those of the “right” MiniYAML model. Any other

content (e.g. customisations outside the Contain-

ers metamodel) will be merged.

At a high-level, the ECL script computes

a match between the “left” and “right”

models based on name-based paths (e.g.

services.redis.image), where Scalars also

consider their value. The EML script merges

matching elements together, and the ETL script

copies non-matching elements from either side.

These transformations are then encapsulated as Java

classes:

• ContainersToMiniYAML implements the batch

forward transformation, MergingContainer-

sToMiniYAML implements the forward transfor-

mation with merging if the MiniYAML model al-

ready exists, and MergingContainersToYAML

class implements the forward transformation

with merging if the YAML file already exists.

• MiniYAMLToContainers implements the batch

backward transformation from a MiniYAML

model to a Containers model, and YAMLToCon-

tainers also transforms the YAML file into a

MiniYAML model before transforming it into a

Containers model. The reference implementation

does not have a “merging” version of the back-

ward transformation: it replaces the Containers

model if it exists.

12
https://github.com/agarciadom/benchmarx/tree/main/

examples/containerstominiyaml

https://github.com/agarciadom/benchmarx/tree/main/examples/containerstominiyaml
https://github.com/agarciadom/benchmarx/tree/main/examples/containerstominiyaml


4. Research questions
The aim of this case is to explore the capabilities of the

current state of the art of transformation tools in an asym-

metric and directed bx. Specifically, the case is intended

to answer these questions:

1. How concisely can we specify such a bx with

current tools?

Having to maintain separate one-way transforma-

tions as in the reference implementation would

incur significant cost when scaling up to the full

complexity of real-world metamodels. Ideally, it

should be possible to implement the bx through

a single set of relationships, without repetition.

This could be done through explicit consistency

relationships, through triple graph grammars, or

through static analysis of a one-way transforma-

tion (with perhaps some use of heuristics).

2. How well can such a bx preserve customisations

in the YAML which are outside of the bx, across

various types of changes in the models?

The reference implementation can handle well

the case where elements are added and removed,

but it cannot handle renames well: renaming a

container in the Containers model will result in

losing the additional content in the YAML file. A

bx tool that can operate with operational deltas

(“o-deltas”) would most likely be able to handle

this case in a more robust manner.

3. How would such a bx scale to larger models, with

more containers, more volumes, and more custom

YAML elements outside of the transformation’s

control?

In the reference implementation, the merging pro-

cess of the MiniYAML model newly created from

the Containers model with the previously existing

(and potentially customised) MiniYAML model

requires pairwise object matching, with 𝑂(𝑛2)
path comparisons per type. Is such a cost unavoid-

able, or are there more efficient ways to establish

and maintain the relationships between the Con-

tainers and MiniYAML models?

In practice, it is unlikely that the YAML documents

will grow particularly large
13

. Performance would likely

not be an issue for this bidirectional transformation. In-

stead, maintainability and keeping to the principle of

“least change” would be the most important aspects to

tackle. Still, the case materials include an experiment

for evaluating the scalability of the solutions to larger

models.

13
The average size of the composer.yaml files in the

docker/awesome-compose Github project is 609B: https://github.

com/docker/awesome-compose.

Listing 2: Sample code for measuring AST/ASG side of

transformation rules modelled in EMF

public int countNodes(Resource resource) {

final TreeIterator<EObject> it = resource.getAllContents();

int size = 0;

while (it.hasNext()) {

it.next();

++size;

}

return size;

}

5. Evaluation criteria
Solutions will be evaluated across the following criteria:

1. Correctness: following the approach from the au-

thors of the Benchmarx benchmark [9], test cases

will check that the dependent model is consis-

tent with the master model. This means that they

should have the same containers, volumes, vol-

ume mounts, and images.

This criteria will be measured according to the

% of test cases that are passed. The test cases

will cover various scenarios, e.g. an initial “batch”

execution in either direction, or the update of

the dependent side after a certain change in the

master side.

2. Conciseness: a more concise description of the

transformation should in principle be more main-

tainable. Since the statement structure can be sig-

nificantly different across languages, the metric

will be “number of nodes in the transformation’s

abstract syntax, ignoring comments”. This dif-

fers from the approach that was followed in the

Benchmarx “Families to Persons” study that is the

base of this case [8], which counted words while

ignoring comments. This is to accommodate both

textual and graphical transformation notations

(e.g. triple graph grammars). For instance, if the

transformation was implemented as an Eclipse

Modeling Framework (EMF) model, the metric

would be equivalent to the code in Listing 2.

The case includes an ast-counter Maven

project which can count the number of AST nodes

in Java code and in the Epsilon languages used

for the reference solution. Participants are en-

couraged to extend this project to measure their

source languages (e.g. by counting the number of

elements in an XMI-serialised model), by adding

the relevant implementations of the IFileMea-

surer interface and associating it to the appro-

priate extension inside the static block of the Fol-

https://github.com/docker/awesome-compose.
https://github.com/docker/awesome-compose.


derMeasurer class. It is also acceptable to pro-

duce these AST measurements separately as part

of their solution (e.g. if no JVM-friendly parsers

exist for a transformation language).

The reference implementation includes an Eclipse

launch configuration that measures the num-

ber of AST nodes in its Java and Epsilon source

code. Participants are encouraged to duplicate

this launch configuration for their own solutions,

providing it with the root folder of their transfor-

mation source code.

Note that the reference implementation also in-

cludes a count-words.sh script which uses the

C preprocessor to remove comments for Epsilon

/ Java programs. This is only to emulate what

the old approach (based on words) would have

produced, for the sake of comparison: it will not

be used for the contest, as results may not be di-

rectly comparable. As an example, these are the

results of the two measurement methods at the

time of writing for the reference implementation:

• AST node counting: 86 nodes in ECL, 241

nodes in EML, 92 nodes in EOL, 805 nodes

in ETL, and 1772 nodes in Java, for a total

of 2996 nodes.

• Word counting: 84 words in ECL, 162 words

in EML, 81 words in EOL, 485 words in ETL,

and 809 words in Java, for a total of 1621

words.

3. Least Change: beyond just correctness, the trans-

formations should avoid making any unnecessary

changes that do not impact the consistency of the

master and dependent model. For instance, in the

forward direction, they should preserve the addi-

tional information in the existing YAML file, and

the relative order of the keys in the YAML docu-

ment. In the backward direction, they should also

preserve the locations of the various nodes, avoid-

ing disturbing existing Sirius diagrams whenever

possible.

To measure this, the test suite has been designed

to be run in two modes: 1) requiring that if the

YAML model already exists, the relative order of

map entries and list items is preserved, and 2)

waiving this requirement. Mode 1 is intended for

evaluating “least change” (in terms of % of tests

passed in this mode), whereas Mode 2 is for eval-

uating general correctness of the transformation.

4. Scalability: the transformations should be able to

scale to models with increasing numbers of con-

tainers, volumes, and images. The case materials

include a ScalabilityMeasurements class to

measure this in the forward and backward direc-

tions, both in batch and in incremental situations.

6. Target prizes
The prizes will be based on a combination of the three

criteria above. The “Most Complete” prize will go to

the solution that passes the most tests (resolving ties

using the “Least Change” criterion). The “Most Concise”

prize will go to the solution that requires the least nodes,

while still passing the correctness tests for adding and

deleting elements (the tests for renaming elements will

not be considered). The “Most Scalable” prize will go to

the solution with the lowest execution times, which is

still correct in the batch scenarios and in the incremental

addition and removal of containers, volumes, volume

mounts, and images.

If there are enough solutions, an overall ranking can

be devised by adding their rankings in each category, and

sorting in ascending order. Ties will be resolved by sort-

ing in ascending order of standard deviation (therefore, a

tool that is 2nd/2nd would be ranked above a tool that is

1st/3rd). Further ties will be resolved by the case author

and TTC organizers.

7. Journal-quality solution criteria
To be eligible for a follow-up journal publication, a so-

lution must be correct in the “batch” context in both

directions, and in the “incremental” context in regard

to addition and removal of containers, volumes, volume

mounts, and images. Conciseness, “least change”, and

scalability are desirable properties, but not required for

such a publication. Ideally, declarative solutions that sup-

port maintainability by not requiring the specification of

both transformation directions would be preferred.

References
[1] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles,

A Survey of DevOps Concepts and Challenges,

ACM Computing Surveys 52 (2020). doi:10.1145/
3359981.

[2] J. Sorgalla, P. Wizenty, F. Rademacher, S. Sachweh,

A. Zündorf, Applying Model-Driven Engineering

to Stimulate the Adoption of DevOps Processes in

Small and Medium-Sized Development Organiza-

tions, SN Computer Science 2 (2021). doi:10.1007/
s42979-021-00825-z.

[3] A. Colantoni, L. Berardinelli, M. Wimmer, De-

vOpsML: towards modeling DevOps processes and

platforms, in: Proceedings of the 23rd ACM/IEEE

International Conference on Model Driven Engi-

neering Languages and Systems: Companion Pro-

ceedings, ACM, Virtual Event Canada, 2020. doi:10.
1145/3417990.3420203.

http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1007/s42979-021-00825-z
http://dx.doi.org/10.1007/s42979-021-00825-z
http://dx.doi.org/10.1145/3417990.3420203
http://dx.doi.org/10.1145/3417990.3420203


[4] N. Ferry, F. Chauvel, H. Song, A. Rossini, M. Lush-

penko, A. Solberg, CloudMF: Model-Driven Man-

agement of Multi-Cloud Applications, ACM Trans-

actions on Internet Technology 18 (2018). doi:10.
1145/3125621.

[5] B. Piedade, J. P. Dias, F. F. Correia, Visual no-

tations in container orchestrations: an empirical

study with Docker Compose, Software and Sys-

tems Modeling 21 (2022) 1983–2005. doi:10.1007/
s10270-022-01027-8.

[6] F. Zalila, S. Challita, P. Merle, Model-driven cloud

resource management with OCCIware, Future

Generation Computer Systems 99 (2019) 260–277.

doi:10.1016/j.future.2019.04.015.

[7] S. Challita, F. Korte, J. Erbel, F. Zalila, J. Grabowski,

P. Merle, Model-based cloud resource manage-

ment with TOSCA and OCCI, Software and Sys-

tems Modeling 20 (2021) 1609–1631. doi:10.1007/
s10270-021-00869-y.

[8] A. Anjorin, T. Buchmann, B. Westfechtel, The Fam-

ilies to Persons Case, in: Proceedings of the 10th

Transformation Tool Contest, volume 2026, CEUR-

WS.org, Marburg, Germany, 2017, pp. 27–34. URL:

http://ceur-ws.org/Vol-2026/paper2.pdf.

[9] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin,

H.-S. Ko, R. Eramo, G. Hinkel, L. Samimi-Dehkordi,

A. Zündorf, Benchmarking bidirectional transforma-

tions: theory, implementation, application, and as-

sessment, Software and Systems Modeling 19 (2020)

647–691. doi:10.1007/s10270-019-00752-x.

http://dx.doi.org/10.1145/3125621
http://dx.doi.org/10.1145/3125621
http://dx.doi.org/10.1007/s10270-022-01027-8
http://dx.doi.org/10.1007/s10270-022-01027-8
http://dx.doi.org/10.1016/j.future.2019.04.015
http://dx.doi.org/10.1007/s10270-021-00869-y
http://dx.doi.org/10.1007/s10270-021-00869-y
http://ceur-ws.org/Vol-2026/paper2.pdf
http://dx.doi.org/10.1007/s10270-019-00752-x

	1 Introduction
	2 Modeling Languages
	2.1 Abstract syntax
	2.2 Concrete syntax

	3 Intended Transformations
	3.1 High-level description
	3.2 Reference implementation

	4 Research questions
	5 Evaluation criteria
	6 Target prizes
	7 Journal-quality solution criteria

