
An NMF Solution to the TTC2023 Containers to MiniYAML
Case
Georg Hinkel

1

1RheinMain University of Applied Sciences, Unter den Eichen 5, 65195 Wiesbaden, Germany

Abstract

This paper presents a solution to the Containers to MiniYAML Case at the TTC 2023 using the .NET Modeling Framework

(NMF), especially NMF Synchronizations. This solution is able to derive an incremental change propagation entirely in an

implicit manner.

Keywords
incremental, model-driven, transformation

1. Introduction
To denote the infrastructure of distributed systems, mod-

els are often used to capture deployment information

at a high level. Often, very generic languages are used

as they offer a great flexibility. However, to process the

information contained in these models, often type-safe

representations need to be extracted and may be individ-

ually maintained. If this is the case, a synchronization

between both representations is necessary in order to

keep both artifacts up to date. The TTC 2023 Containers

to MiniYAML case poses an example where deployment

information is stored in very generic YAML files that

need to be synchronized as the deployment information

may contain details not present in the conceptual model

while the latter may contain information such as layouts

for graphical editors that are not present in the original

YAML file.

This case is particular interesting for NMF as it applies

model synchronization to models of different levels of

abstraction. While previous cases denoted a synchro-

nization of models that contained essentially the same

information in different ways, this case denotes a syn-

chronization between a very specific model like the con-

tainers model and a very generic metamodel for YAML.

In this paper, I demonstrate a solution to this case using

NMF Synchronizations. NMF Synchronizations makes

it possible to use a simple and concise specification of

consistencies to gain an efficient, bidirectional transfor-

mation with support for incremental updates on both

TTC’23: 15th Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20
July 2023, Leicester, UK.
$ georg.hinkel@hs-rm.de (G. Hinkel)

� https://www.hs-rm.de/de/hochschule/personen/hinkel-georg

(G. Hinkel)

� 0000-0002-6462-5208 (G. Hinkel)

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ends.

The remainder of this paper is structured as follows:

Section 2 gives a brief overview how NMF Expressions

and NMF Synchronizations work. Section 3 explains the

actual solution. Section 4 explains how the solution was

integrated into the benchmark framework. Section 5

discusses results from the benchmark framework before

Section 6 concludes the paper.

2. NMF Expressions and NMF
Synchronizations

NMF Expressions [1] is an incrementalization system

integrated into the C# language. That is, it takes ex-

pressions of functions and automatically and implicitly

derives an incremental change propagation algorithm.

This works by setting up a dynamic dependency graph

that keeps track of the models state and adapt when nec-

essary. The incrementalization system is extensible and

supports large parts of the Standard Query Operators

(SQO
1

).

NMF Synchronizations is a model synchronization ap-

proach based on the algebraic theory of synchronization

blocks. Synchronization blocks are a formal tool to run

model transformations in an incremental (and bidirec-

tional) way [2]. They combine a slightly modified notion

of lenses [3] with incrementalization systems. Model

properties and methods are considered morphisms be-

tween objects of a category that are set-theoretic products

of a type (a set of instances) and a global state space Ω.

A (well-behaved) in-model lens 𝑙 : 𝐴 →˓ 𝐵 between

types 𝐴 and 𝐵 consists of a side-effect free Get mor-

phism 𝑙 ↗∈ 𝑀𝑜𝑟(𝐴,𝐵) (that does not change the

global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟(𝐴 × 𝐵,𝐴)

1
http://msdn.microsoft.com/en-us/library/bb394939.aspx; SQO

is a set of language-independent standard APIs for queries, specifi-

cally defined for the .NET platform.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:georg.hinkel@hs-rm.de
https://www.hs-rm.de/de/hochschule/personen/hinkel-georg
https://orcid.org/0000-0002-6462-5208
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://msdn.microsoft.com/en-us/library/bb394939.aspx


called the Put function that satisfy the following condi-

tions for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎, 𝜔)

𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, �̃�) for some �̃� ∈ Ω.

The first condition is a direct translation of the original

PutGet law. Meanwhile, the second line is a bit weaker

than the original GetPut because the global state may

have changed. In particular, we allow the Put function

to change the global state.

A (single-valued) synchronization block 𝑆 is an oc-

tuple (𝐴,𝐵,𝐶,𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷, 𝑓, 𝑔) that declares a

synchronization action given a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 :
𝐴 ∼= 𝐶 of corresponding elements in a base isomor-

phism Φ𝐴−𝐶 . For each such a tuple in states (𝜔𝐿, 𝜔𝑅),
the synchronization block specifies that the elements

(𝑓(𝑎, 𝜔𝐿), 𝑔 ↗ (𝑏, 𝜔𝑅)) ∈ 𝐵 ×𝐷 gained by the lenses

𝑓 and 𝑔 are isomorphic with regard to Φ𝐵−𝐷 .

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 1: Schematic overview of unidirectional synchroniza-
tion blocks

A schematic overview of a synchronization block is

depicted in Figure 1. The usage of lenses allows these

declarations to be enforced automatically and in both di-

rections, if required. The engine computes the value that

the right selector should have and enforces it using the

Put operation. Similarly, a multi-valued synchronization

block is a synchronization block where the lenses 𝑓 and

𝑔 are typed with collections of 𝐵 and 𝐷, for example

𝑓 : 𝐴 →˓ 𝐵* and 𝑔 : 𝐶 →˓ 𝐷* where stars denote

Kleene closures.

Synchronization blocks have been implemented in

NMF Synchronizations, an internal DSL hosted by C#

[4, 2]. For the incrementalization, it uses the extensible

incrementalization system NMF Expressions. This DSL

is able to lift the specification of a model transforma-

tion/synchronization in three orthogonal dimensions:

• Direction: A client may choose between trans-

formation from left to right, right to left or in

check-only mode

• Change Propagation: A client may choose

whether changes to the input model should be

propagated to the output model, also vice versa

or not at all

• Synchronization: A client may execute the trans-

formation in synchronization mode between a

left and a right model. In that case, the engine

finds differences between the models and han-

dles them according to the given strategy (only

add missing elements to either side, also delete

superfluous elements on the other or full duplex

synchronization)

This flexibility makes it possible to reuse the specifi-

cation of a transformation in a broad range of different

use cases. Furthermore, the fact that NMF Synchroniza-

tions is an internal language means that a wide range

of advantages from mainstream languages, most notably

modularity and tool support, can be inherited [5].

Based on this formal notion of synchronization blocks

and in-model lenses, one can prove that model synchro-

nizations built with well-behaved in-model lenses are

correct and hippocratic [2]. That is, updates of either

model can be propagated to the other model such that

the consistency relationships are restored and an update

to an already consistent model does not perform any

changes.

3. Solution
The solution consists of three synchronization rules adapted

from the Epsilon solution and a couple of synchroniza-

tion blocks, synchronizing details of the models. These

synchronization rules are the MainMap rule as the start

rule, the Container2MapEntry that synchronizes con-

tainers and the Volume2MapEntry rule to synchronize

volumes.

The MainMap rule consists of three rather simple syn-

chronization blocks depicted in Listing 1.

1 SynchronizeLeftToRightOnly(_ => "2.4", m => m.Scalar<string>(
"version"));

2

3 SynchronizeMany(SyncRule<Volume2MapEntry>(),
4 c => c.Nodes.OfType<INode, IVolume>(),
5 m => m.ForceEntries("volumes"));
6 SynchronizeMany(SyncRule<Container2MapEntry>(),
7 c => new ServicesCollection(c),
8 m => m.ForceEntries("services"));

Listing 1: The MainMap rule

The first one simply sets the version scalar attribute to

2.4. The second and third synchronization blocks denote

synchronization blocks to synchronize the containers

and the volumes. The Composition metaclass only has

a very generic nodes reference, therefore we need to

work with a type filter. Due to type inference restric-

tions in .NET, unfortunately these type filters also need

to specify the actual collection type. On the YAML side,

we are working with a helper method to find the map

entry with name volumes (or services, respectively), make

sure it exists, make sure its value is a map and return

the entries of that map. Because this is done outside



of NMF Synchronizations, it has the downside that this

is not being change-tracked. That is, if a client was to

change the name of the map entry, NMF Synchroniza-

tions would not see that the elements would no longer

be services/volumes.

When adding a container to the services because a

corresponding entry was added to the YAML model, there

is an additional task: We also need to make sure that an

image element exists that corresponds to the image entry

of the YAML container. Because this is a very imperative

logic, this is implemented in a dedicated collection class

ServicesCollection in order to take control over the

behavior when NMF Synchronizations adds the container

created for the Map entry to the container model.

A sketch of the implementation for ServicesCol-
lection is depicted in Listing 2. The same type filter

operation is passed into the constructor of this class (with

just one generic type argument because this time, the

collection is readonly), but with custom implementations

for collection modifications: adding, removing or entirely

clearing the collection. In NMF, collection classes like

ServicesCollection are called virtual collections.

1 private class ServicesCollection : CustomCollection<
IContainer> {

2 public ServicesCollection(Composition comp)
3 : base(comp.Nodes.OfType<IContainer>())
4 { _comp = comp; }
5

6 public override void Add(IContainer item) { ... }
7 public override void Clear() { ... }
8 public override bool Remove(IContainer item) { ... }
9 }

Listing 2: A sketch of the ServicesCollection
implementation

The second rule and maybe the most interesting one

is Containers2MapEntry. This rule controls the syn-

chronization of a container with a map entry in the YAML

model. It consists of five synchronization blocks as de-

picted in Listing 3.

1 Synchronize(c => c.Name, me => me.Key);
2

3 Synchronize(c => GetImage(c), me => me.Scalar<string>("image"
));

4 Synchronize(c => c.Replicas.WithDefault(1), me => me.Scalar<
int?>("replicas"));

5

6 SynchronizeMany(
7 c => new VolumeMountCollection(c),
8 me => new ScalarCollection(me, "volumes"));
9 SynchronizeMany(

10 c => new DependsOnNameCollection(c),
11 me => new ScalarCollection(me, "depends_on"));

Listing 3: The synchronization blocks of

Containers2MapEntry

The first synchronization block just denotes that the

names of the container and the map entry generated for

it should be synchronized. The next two synchronization

blocks utilize a helper function to read and write entries

of the map entries map as a given type and denote that

this value should be synchronized with values from the

container. This applies to the image of the container

and the replicas. For the replicas, we want to treat no

definition of replicas as 1, for which we created another

helper function WithDefaults. This helper function

essentially changes the default value for a given type and

is sufficiently generic that we will take it over into the

source code of NMF.

In order to run the synchronization block bidirection-

ally, these helper functions need to be specified as in-

model lenses. For this, NMF uses dedicated annotations

as depicted in Listing 4.

1 [LensPut(typeof(YamlHelpers), nameof(SetScalar))]
2 public static T? Scalar<T>(this IMapEntry? entry, string key)
3 { ... }
4

5 public static void SetScalar<T>(this IMapEntry? entry, string
key, T? value)

6 { ... }

Listing 4: Signature of the Scalar helper method and

Lens put

The definition of Listing 4 is what NMF calls a persis-

tent lens [2]. This denotes that the put function entirely

propagates the value. An alternative is a non-persistent

lens, which in this case would have to return a value of

type T? that NMF would then propagate to the next lens.

Lenses are used as black boxes in the synchronization.

That is, even though the implementation of the Scalar
method depicted in Listing 4 of course casts the value

of the map entry to a map and then looks for the map

entry with the given name, casting its value to a scalar,

these accesses are not recorded and the transformation

will therefore not react on changes in this chain. For

instance, if one accidentally or not renames the image
element, NMF Synchronization would not reset the image

of the container because it does not notice that the scalar

element is no longer the correct one.

1 [LensPut(typeof(YamlHelpers), nameof(SetScalar))]
2 [ObservableProxy(typeof(YamlHelpers), nameof(

ScalarIncremental))]
3 public static T? Scalar<T>(this IMapEntry? entry, string key)
4 { ... }
5

6 public static INotifyValue<T?> ScalarIncremental<T>(IMapEntry
entry, string key)

7 { ... }
8

9 public static void SetScalar<T>(this IMapEntry? entry, string
key, T? value)

10 { ... }

Listing 5: Signature of the Scalar helper method and

Lens put, revised

To achieve this, a second annotation is used to tell

NMF Expressions when the scalar value changes, de-

picted in Listing 5. To implement the incremental ver-

sion of the helper, we use a standard implementation



NotifyExpression and instruct it to reevaluate the

scalar value whenever the contents of the Entries col-

lection of the underlying map changes. This implemen-

tation is slightly incomplete as also value changes of the

scalar would have to taken into account, but this is not

implemented because it was not needed for the bench-

mark. Implementing this kind of helper methods with

lens put operations and incremental proxies is admittedly

complex, but could be reused for any model synchroniza-

tion targeting YAML, thus potentially in a wide range

of projects, justifying a slightly higher implementation

effort.

However, YAML is not the only metamodel where

this kind of key-value storage appears, so we are also

considering to add more generic primitives to NMF syn-

chronizations that generically target metamodels with

key-value-like storage.

Similarly, the function GetImage in the second syn-

chronization block is also a lens. However, in this case

the incrementalization of the method can be done by

NMF directly, which is why we can use this functionality.

1 private static readonly ObservingFunc<IContainer, string?>
2 _getImage = ObservingFunc<IContainer, string?>.FromExpression

(
3 c => c.Image != null ? c.Image.Image_ : null);
4

5 [ObservableProxy(typeof(Container2MapEntry), nameof(
GetImageIncremental))]

6 [LensPut(typeof(Container2MapEntry), nameof(SetImage))]
7 public static string? GetImage
8 (IContainer container) => _getImage.Evaluate(container);
9

10 public static INotifyValue<string?> GetImageIncremental
11 (IContainer container) => _getImage.Observe(container);
12

13 public static void SetImage(IContainer container, string
image)

14 { ... }

Listing 6: The GetImage helper method

This implementation is depicted in Listing 6. NMF

encapsulates both incremental and non-incremental im-

plementation of the actual lambda expression into an

object that can be used to either evaluate the lambda ex-

pression for a given input or observe the parameters and

return an object that can be used to fetch updates when

the value changes. Here, NMF is able to infer that the

image changes either if a image element is assigned or

the actual image reference of the image element changes.

Also note that NMF automatically suffixed the image
property with a _ because properties cannot have the

same name as their declaring class in C# and the naming

convention of Pascal case would cause a name conflict

between the Image class and property name.

The third pair of synchronization blocks denote the

synchronization of collections. Here, we again use three

helper classes that denote virtual collections. As an exam-

ple for these collections, the custom collection for volume

mounts is depicted in Listing 7.

1 private class VolumeMountCollection : CustomCollection<string
> {

2 private readonly IContainer _container;
3

4 public VolumeMountCollection(IContainer container)
5 : base(container.VolumeMounts.Select(vm => \$"{vm.Volume.

Name}:{vm.Path}"))
6 { _container = container; }
7

8 public override void Add(string item)
9 { ... }

10

11 public override void Clear()
12 { ... }
13

14 public override bool Remove(string item)
15 { ... }
16 }

Listing 7: Sketch of the custom collection for the volume

mounts of a container

Custom collections are initialized with an expression

that NMF is able to incrementalize but unable to infer

generic operations to add elements. In the case of the

collection of volume mounts, this is a select call from the

volume mounts to format them into strings. However,

the reverse of such operations is usually not clear, in this

case it is not obvious how to convert the string repre-

sentation of a volume mount back to the model. Rather,

this logic is very application specific, in this case that we

know that the colon is always the separator between the

volume name (which must not contain colons) and the

path. Therefore, NMF requires the developer to explicitly

specify what should happen in these cases, but at least

the developer does not have to care where these changes

come from.

The third synchronization rule to synchronize volumes

to map entries only contains a synchronization rule to

synchronize the names of the volume and the correspond-

ing map entry.

4. Integration into Benchmarx
While the benchmark framework Benchmarx is imple-

mented in Java, the presented NMF solution runs in .NET.

NMF also uses its own model representation implement-

ing the standard change notification interfaces present in

the .NET platform. Therefore, meanwhile technologies

exist to expose Java objects to the .NET runtime, these ap-

proaches would not help because the code generated by

EMF does not implement these (.NET) interfaces. There-

fore, similarly to the FamiliesToPersons case in 2017, we

have chosen an approach to register to the EMF change

notifications, generate an NMF change model out of it,

serialize the change model into an XMI file and then load

these change descriptions within a companion process

that runs the NMF solution.

The communication to this companion process is done

through a mixture of stdin/stdout and file-based commu-



nication. When Benchmarx starts the synchronization di-

alogue, the solution starts the companion process, which

in turn creates empty source and target models. When-

ever changes are made to source or target model, the

(Java) NMF implementation of the benchmark uses an

adapter attached to the in-memory models to obtain the

changes in the format of NMF change models and serial-

izes these change models to a temporary file. Once this is

completed, the solution notifies the companion process

to load the changes by writing the path to the change

model to stdin. The companion app then deserializes the

changes. Because NMF Synchronizations is an online

incremental solution, applying the changes causes the

respective other model to get synchronized. The compan-

ion app therefore measures the time to apply the updates

as these include propagating them to the other side. The

measured time is then written to stdout from where the

Java implementation of the benchmark can pick it up.

The Java benchmark implementation then asks the com-

panion process to serialize the current source or target

model into a given file from which it deserializes this

model in order to allow for the correctness checks from

the benchmark.

The implementation of the change recorder is very

generic. In particular, the implementation from the 2017

FamiliesToPersons case [6] could be reused but needed

to be extended because the Containers to MiniYAML

case includes more kinds of changes. However, with the

changes for the TTC 2023, the change recorder imple-

mentation is quite feature-complete and could be reused

for any application that needs to serialize changes of EMF

models to the NMF change model format.

While this kind of integration means that the solution

has a high overhead in terms of serializing and dese-

rializing model changes, it also allows to implement a

requirement from the benchmark framework: As an on-

line synchronization approach, NMF Synchronizations

always propagates changes. However, the Containers

to MiniYAML benchmark mandates also so called idle

edits, which in the Containers to MiniYAML case are

interpreted as changes that should not be propagated.

In the NMF solution, this is implemented by just not

propagating the updated models back to the benchmark

framework. However, if the behavior to defer the propa-

gation of changes is really necessary, NMF has multiple

options to implement this: One could either create all the

changes in a transaction, which means that the change

propagation is only done once the transaction is com-

pleted. Alternatively, NMF Synchronizations can also run

in an incremental check-only mode in which it records

inconsistencies and keeps a incrementally maintained

list of inconsistencies with methods allowing a user to

resolve these inconsistencies (by updating either source

or target model).

5. Evaluation
As expected, the solution passes all tests that ignore the

order in the YAML while all tests that check that the solu-

tion preserves the order in the YAML files fail. The reason

here is that NMF Synchronizations differentiates strongly

between synchronization blocks that use the identity as

the isomorphism (such as typically used to synchronize

attributes) and those that use other synchronization rules.

This is because NMF Synchronizations uses NMF Trans-

formations under the hoods, which defers the execution

of the rule bodies in order to turn possible trace resolves

to "late resolve" operations as in QVT-R. Further, NMF

Expressions generally does not have support for ordering

elements, yet. That is, while synchronization blocks are

processed in the order in which they occur, the collection-

valued lens implementations generally ignore the order

of elements. This is not a limitation of the theory but

rather only a limitation of the implementation that cur-

rently does not support order. The change interface that

NMF is using in fact does report indices where elements

have been inserted or removed but there is no functional-

ity in place to ensure that orderings are kept across lenses

as they are sometimes hard to implement. As an example,

it is quite hard to get the index of an added element in a

filtered collection, given the index of the element in the

source collection, compared at least to propagating the

change in constant time when order is not required. Cur-

rently, the infrastructure of NMF Expressions is not able

to calculate whether the order of elements is required,

particularly because this information is not present in

the .NET collection interfaces. Therefore, all tests that

require an exact order are going to fail.

Traditionally, the time measurements of the bench-

mark framework is entirely odd as the actual propagation

of changes only takes a fraction of the actual runtime,

which is mainly used for recording the changes, serial-

izing them, deserializing them in NMF, serializing the

result model in NMF and deserializing it in the bench-

mark framework. In the FamiliesToPersons case from

2017 [6, 7], this serialization effort took more than 90% of

the runtime while the actual propagation was very fast.

I do not see a reason why the actual change propagation

time should be higher in this case, but performance was

not a concern of the case and therefore, no measurements

have been performed.

A problem of the NMF solution here is certainly that

although synchronization blocks are by themselves very

concise, the synchronization needs a lot of customiza-

tion which contribute to the entire solution being more

verbose than others in the end. Here, especially the fact

that the YAML model is extremely generic plays a crucial

role and makes it necessary for the solution to search for

the required information instead of directly accessing it

as in a more closed metamodel. However, in the wild,



there are a lot of standards that – like MiniYAML – oper-

ate rather on an open-world assumption and essentially

allow users to denote whatever they want rather than

having a fixed schema (like the container model does).

Therefore, supporting such open-world metamodels will

be an important subject of future work.

I see the major advantage of this solution that it does

combine both directions into a single transformation,

even though it may make the synchronization a bit more

difficult to write sometimes. Essentially, NMF Synchro-

nization breaks up the bidirectionality of the transfor-

mation into smaller pieces. Instead of multiple largely

independent transformations of entire models that need

to fit together, NMF forces developers to work imple-

ment bidirectionality in smaller chunks, mostly in-model

lenses or their collection-valued equivalents, custom col-

lections. Because the transformation crosses abstraction

boundaries, we often needed to implement our own in-

model lenses, particularly on the rather generic meta-

model, which here is the YAML metamodel. These in-

model lenses are a lot easier to review and test and the

formal foundation of synchronization blocks gives a clear

notion of what properties these pairs of functions need

to fulfill. Ideally, these notions could be proved by theo-

rem provers, but this has not been done, yet and may be

subject of future work.

6. Conclusion
The NMF solution shows how the Containers to YAML

transformation from the case study can be implemented

in a bidirectional fashion by decomposing it into multiple

isomorphisms with synchronization blocks. The advan-

tage of this decomposition is that it allows developers

to break down the bidirectionality into smaller pieces

that are easier to implement and review while ensuring

correctness of the resulting transformation through theo-

retical proofs. However, the solution also shows that the

support of NMF when synchronizing models at different

abstraction levels is complicated and requires a lot of

helper functions. To provide a better support in such

cases and to support order of elements will be subject of

future research.

References
[1] G. Hinkel, R. Heinrich, R. Reussner, An extensible

approach to implicit incremental model analyses,

Software & Systems Modeling (2019). URL: https://

doi.org/10.1007/s10270-019-00719-y. doi:10.1007/
s10270-019-00719-y.

[2] G. Hinkel, E. Burger, Change propagation and

bidirectionality in internal transformation dsls,

Softw. Syst. Model. 18 (2019) 249–278. URL: https:

//doi.org/10.1007/s10270-017-0617-6. doi:10.1007/
s10270-017-0617-6.

[3] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,

A. Schmitt, Combinators for bidirectional tree trans-

formations: A linguistic approach to the view-update

problem, ACM Transactions on Programming

Languages and Systems (TOPLAS) 29 (2007). URL:

http://doi.acm.org/10.1145/1232420.1232424. doi:10.
1145/1232420.1232424.

[4] G. Hinkel, Change Propagation in an Internal Model

Transformation Language, in: D. Kolovos, M. Wim-

mer (Eds.), Theory and Practice of Model Trans-

formations: 8th International Conference, ICMT

2015, Held as Part of STAF 2015, L’Aquila, Italy,

July 20-21, 2015. Proceedings, Springer Interna-

tional Publishing, Cham, 2015, pp. 3–17. URL: http:

//dx.doi.org/10.1007/978-3-319-21155-8_1. doi:10.
1007/978-3-319-21155-8_1.

[5] G. Hinkel, T. Goldschmidt, E. Burger, R. Reuss-

ner, Using Internal Domain-Specific Languages

to Inherit Tool Support and Modularity for Model

Transformations, Software & Systems Model-

ing (2017) 1–27. URL: http://rdcu.be/oTED. doi:10.
1007/s10270-017-0578-9.

[6] G. Hinkel, An NMF solution to the Families to Per-

sons case at the TTC 2017, in: A. Garcia-Dominguez,

G. Hinkel, F. Krikava (Eds.), Proceedings of the 10th

Transformation Tool Contest, a part of the Software

Technologies: Applications and Foundations (STAF

2017) federation of conferences, CEUR Workshop

Proceedings, CEUR-WS.org, 2017.

[7] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin,

H. Ko, R. Eramo, G. Hinkel, L. Samimi-Dehkordi,

A. Zündorf, Benchmarking bidirectional transforma-

tions: theory, implementation, application, and as-

sessment, Softw. Syst. Model. 19 (2020) 647–691. URL:

https://doi.org/10.1007/s10270-019-00752-x. doi:10.
1007/s10270-019-00752-x.

https://doi.org/10.1007/s10270-019-00719-y
https://doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0617-6
http://dx.doi.org/10.1007/s10270-017-0617-6
http://dx.doi.org/10.1007/s10270-017-0617-6
http://doi.acm.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://rdcu.be/oTED
http://dx.doi.org/10.1007/s10270-017-0578-9
http://dx.doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-019-00752-x
http://dx.doi.org/10.1007/s10270-019-00752-x
http://dx.doi.org/10.1007/s10270-019-00752-x

	1 Introduction
	2 NMF Expressions and NMF Synchronizations
	3 Solution
	4 Integration into Benchmarx
	5 Evaluation
	6 Conclusion

