
Two NMF Solutions to the TTC2023 Incremental Class to
Relational Case
Georg Hinkel

1

1RheinMain University of Applied Sciences, Unter den Eichen 5, 65195 Wiesbaden, Germany

Abstract

This paper presents a solution to the Incremental Class to Relational Case at the TTC 2023 using the .NET Modeling Framework

(NMF), using either plain C# or NMF Synchronizations. This solution is able to derive an incremental change propagation

entirely in an implicit manner.

Keywords
incremental, model-driven, transformation

1. Introduction
Models are formally defined abstractions of concepts or

physical objects and as properties of these concepts or

objects change, so does the model. However, if other arti-

facts have been derived from the model, it is often impor-

tant to keep these derived artifacts up-to-date. Because

recreating these artifacts from scratch takes a significant

amount of time and destroys references to individual

model elements, it is often necessary to propagate the

changes. A common assumption is that implementing

this change propagation manually is cumbersome, error-

prone and verbose. Model transformation languages have

often claimed to have a superior support for change prop-

agation [1]. However, few research so far has been con-

ducted to quantify the possible savings, comparing an

implicit change propagation in a model transformation

language with popular general-purpose programming

languages.
1

To assess the amount of code savings possible by im-

plicit change propagation, the Transformation Tool Con-

test
2

2023 hosts a case for incremental transformation

of class diagram models to relational database schema

models. This paper presents a solution to this case using

the .NET Modeling Framework (NMF) [4].

NMF is a framework built for support of model-driven

TTC’23: 15th Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel, 20
July 2023, Leicester, UK.
$ georg.hinkel@hs-rm.de (G. Hinkel)

� https://www.hs-rm.de/de/hochschule/personen/hinkel-georg

(G. Hinkel)

� 0000-0002-6462-5208 (G. Hinkel)

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1
For model queries, a comprehensive comparison of general-

purpose implementations and incremental query technology is avail-

able [2], but model transformations have their own characteristics,

for example through the common notion of non-trivial traces [3].

2
https://www.transformation-tool-contest.eu

engineering, incremental model analyses and incremen-

tal model transformations. In particular, NMF Expres-

sions [5] is an incrementalization system able to incre-

mentalize arbitrary function expressions and NMF Syn-

chronizations [6, 7] is an incremental model transfor-

mation approach. Using both tools in combination, it is

possible to solve the incremental class to relational case

in a declarative manner such that the required change

propagations can be derived implicitly.

The remainder of this paper is structured as follows:

Section 2 gives a brief overview how NMF Expressions

and NMF Synchronizations work. Section 3 explains

the actual solutions. Section 4 discusses results from

the benchmark framework and Section 5 concludes the

paper.

2. NMF Expressions and NMF
Synchronizations

NMF Expressions [5] is an incrementalization system

integrated into the C# language. It takes expressions of

functions and automatically and implicitly derives an in-

cremental change propagation algorithm. This works by

setting up a dynamic dependency graph that keeps track

of the models state and adapt when necessary. The in-

crementalization system is extensible and supports large

parts of the Standard Query Operators (SQO
3

).

NMF Synchronizations is a model synchronization ap-

proach based on the algebraic theory of synchronization

blocks. Synchronization blocks are a formal tool to run

model transformations in an incremental (and bidirec-

tional) way [7]. They combine a slightly modified notion

of lenses [8] with incrementalization systems. Model

properties and methods are considered morphisms be-

tween objects of a category that are set-theoretic products

3
http://msdn.microsoft.com/en-us/library/bb394939.aspx; SQO

is a set of language-independent standard APIs for queries, specifi-

cally defined for the .NET platform.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:georg.hinkel@hs-rm.de
https://www.hs-rm.de/de/hochschule/personen/hinkel-georg
https://orcid.org/0000-0002-6462-5208
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.transformation-tool-contest.eu
http://msdn.microsoft.com/en-us/library/bb394939.aspx


of a type (a set of instances) and a global state space Ω.

A (well-behaved) in-model lens 𝑙 : 𝐴 →˓ 𝐵 between

types 𝐴 and 𝐵 consists of a side-effect free Get mor-

phism 𝑙 ↗∈ 𝑀𝑜𝑟(𝐴,𝐵) (that does not change the

global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟(𝐴 × 𝐵,𝐴)
called the Put function that satisfy the following condi-

tions for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎, 𝜔)

𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, �̃�) for some �̃� ∈ Ω.

The first condition is a direct translation of the original

PutGet law. Meanwhile, the second line is a bit weaker

than the original GetPut because the global state may

have changed. In particular, we allow the Put function

to change the global state.

A (single-valued) synchronization block 𝑆 is an 8-

tuple (𝐴,𝐵,𝐶,𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷, 𝑓, 𝑔) that declares a

synchronization action given a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 :
𝐴 ∼= 𝐶 of corresponding elements in a base isomor-

phism Φ𝐴−𝐶 . For each such tuple in states (𝜔𝐿, 𝜔𝑅),
the synchronization block specifies that the elements

(𝑓(𝑎, 𝜔𝐿), 𝑔 ↗ (𝑏, 𝜔𝑅)) ∈ 𝐵 ×𝐷 gained by the lenses

𝑓 and 𝑔 are isomorphic with respect to Φ𝐵−𝐷 .

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 1: Schematic overview of unidirectional synchroniza-
tion blocks

A schematic overview of a synchronization block is

depicted in Figure 1. The usage of lenses allows these

declarations to be enforced automatically and in both di-

rections, if required. The engine computes the value that

the right selector should have and enforces it using the

Put operation. Similarly, a multi-valued synchronization

block is a synchronization block where the lenses 𝑓 and

𝑔 are typed with collections of 𝐵 and 𝐷, for example

𝑓 : 𝐴 →˓ 𝐵* and 𝑔 : 𝐶 →˓ 𝐷* where stars denote

Kleene closures.

Synchronization blocks have been implemented in

NMF Synchronizations, an internal DSL hosted by C#

[6, 7]. For the incrementalization, it uses the extensible

incrementalization system NMF Expressions. This DSL

is able to lift the specification of a model transforma-

tion/synchronization in three orthogonal dimensions:

• Direction: A client may choose between trans-

formation from left to right, right to left or check-

only mode.

• ChangePropagation: A client may choose whether

changes to the input model should be propagated

to the output model, also vice versa or not at all.

• Synchronization: A client may execute the trans-

formation in synchronization mode between a

left and a right model. In that case, the engine

finds differences between the models and handles

them according to the given strategy (only add

missing elements to either side, also delete super-

fluous elements on the other side or full duplex

synchronization).

This flexibility makes it possible to reuse the specifi-

cation of a transformation in a broad range of different

use cases. Furthermore, the fact that NMF Synchroniza-

tions is an internal language means that a wide range

of advantages from mainstream languages, most notably

modularity and tool support, can be inherited [9].

Based on this formal notion of synchronization blocks

and in-model lenses, one can prove that model synchro-

nizations built with well-behaved in-model lenses are

correct and hippocratic [7], which means that updates of

either model can be propagated to the other model such

that the consistency relationships are restored and an

update to an already consistent model does not perform

any changes.

3. Solutions
Solving the case has unveiled a few problems in the bench-

mark framework, discussed in Section 3.1. Because NMF

is used in both solutions for the model serialization and

deserialization, both solutions presented in this paper

are affected. Afterwards, Section 3.2 explains the solu-

tion in plain C# and Section 3.3 the solution using NMF

Synchronizations.

3.1. Shortcomings of the benchmark
framework

For some reason, many metamodels used in the ATL

Transformation Zoo tend to be ignorant to the fact that

the URI of a metamodel should be a URI. Unfortunately,

this applies to both source and target metamodel in the

case. NMF translates URI fields of Ecore metamodels to

namespace URIs and is strict in that these are actually

valid URIs. References that do not begin with a URI are

resolved as file references and thus must fail. Therefore,

additional helpers are necessary in order to help NMF

resolve these changes. Furthermore, the fact that new

classes have been added to the NMF changes metamodel

is a problem for NMF, because the (unchanged) meta-

model is an integral part of NMF and once NMF loads a

metamodel, it freezes it in order to prevent any changes.

Therefore, it was necessary to force the code generation



for the changed metamodel (NMF normally does not gen-

erate code for metamodels for which code already exists),

delete everything that is already part of NMF and make

some code adjustments in the generated code. For NMF,

the added classes are not necessary, because NMeta does

have an explicit class Model to represent a resource.

3.2. Plain C# with dynamic language
runtime

Our first solution uses plain C#, using the dynamic lan-

guage runtime, plus NMF for model serialization and

deserialization. The dynamic language runtime is a lan-

guage feature that allows C# programs to quit the static

type system in select places. This is an advanced feature

that helps to implement functionality such as trace links

with few code lines at the expense of losing a lot of type

system benefits that come with a static type system. It

is activated by using the type dynamic. If a variable has

the static type dynamic, the compiler does not resolve

any method calls but emits code that will select the actual

method to invoke for a method call at runtime. This is

a rather uncommon language feature used in situations

where a static type system is not particularly nice to work

with.

We found that one of these situations is the implemen-

tation of trace links, because we do not want to keep

track of trace links in multiple hashtables just in order to

have correct trace links and sometimes, the actual type of

elements does not even matter. An example of the latter

is that the translation of any root element should appear

as a root element in the result model, regardless of what

type it is. However, the translation of data types into

types in the relational model typically has to be aware

that the translation of a data type is a type and therefore

can be used as a type of a column.

Breaking out of the static type system allows a very

convenient implementation of a trace functionality in C#

in just a few lines of code, as depicted in Listing 1.

1 private Dictionary<object, IModelElement> _trace = new Dictionary<
object, IModelElement>();

2 private object TraceOrTransform(object item)
3 {
4 if (!_trace.TryGetValue(item, out var transformed))
5 {
6 transformed = Transform((dynamic)item);
7 _trace.Add(item, transformed);
8 }
9 return transformed;

10 }

Listing 1: Implementation of trace links in plain C#

The object keyword in C# is an alias to the type

System.Object, equivalent to java.lang.Object in

Java. dynamic, however, aliases to a different type that

essentially captures both the runtime object reference

and an object that encapsulates the overload resolution

rules of the programming language, in this case C#, such

that the virtual machine can apply these at runtime based

on the actual type of the object. This indirection is nec-

essary because .NET in general supports many more

programming languages than just C#.

This implementation, however, has the disadvantage

that all the rules to implement the transformation of the

actual model elements have to be done in methods called

Transform that take exactly one argument. Further,

if there is a model element that is not covered by the

existing Transform methods, this yields an exception

at runtime.

Model navigation in plain C# is also very convenient

since C# has a sub-language to specify queries. Using

this sub-language, queries can be specified very similar to

SQL but are being type-checked by the compiler and IDE.

In particular, the query used to obtain the multi-valued

attributes found in the model is depicted in Listing 2.

1 from cl in classModel.RootElements.OfType<IClass>()
2 from att in cl.Attr
3 where att.MultiValued
4 select att

Listing 2: Querying the model plain C#

In this case, we are only looking for attributes that are

members of classes that are root elements of the model

and ignore attributes found elsewhere in the hierarchy.

However, the API that NMF generates for models does

also include a Descendants operation to iterate over all

descending model elements, for example starting from

the model itself (which is also a model element in NMF).

Unfortunately, there is no equivalent trick to imple-

ment change propagation in plain C#. Of course, it would

be possible to combine a manual tracing implementa-

tion with NMF Expressions for change propagation (for

instance, to obtain changes for query results), but this

would no longer count reasonable as plain C# and hence,

we refrain from such an implementation
4

. For the change

propagation, NMF fortunately offers events for changes

of all properties such that manual change propagation

can be implemented by a simple event handler as depicted

in Listing 3.

1 var type = new Type
2 {
3 Name = dataType.Name
4 };
5 dataType.NameChanged += (o, e) => type.Name = dataType.Name;

Listing 3: Simple change propagation implementations

The last line of Listing 3 is an event registration, for

which C# uses the += operator. Events in .NET are lan-

guage implementations of the observer pattern: they

4
In fact, it is already questionable whether using the dynamic

language runtime already counts as not plain C# since it is a rather

advanced language feature, but it ships with the default .NET SDK

and it is available on all platforms.



form a callback mechanism for which only registration

(+=) or deregistration (-=) are allowed for callers outside

the class that defines the event. Callers inside the class

also have the option to raise the event which means that

the registered callback methods are actually called.

The trouble starts when more dependencies are at play

such as when calculating the name of the table created for

a multi-valued attribute, which is calculated both from

the name of the attribute and the name of the class that

defined the attribute. The implementation of this change

propagation is depicted in Listing 4.

1 var key = new Column { Type = _integerType };
2 var table = new Table
3 {
4 Col =
5 {
6 key,
7 TraceOrTransform(attribute)
8 }
9 };

10 void OnNameChanged(object? sender, ValueChangedEventArgs? e)
11 {
12 table.Name = attribute.Owner.Name + "_" + attribute.Name;
13 key.Name = attribute.Owner.Name.ToCamelCase() + "Id";
14 }
15 OnNameChanged(null, null);
16 attribute.Owner.NameChanged += OnNameChanged;
17 attribute.OwnerChanged += (o, e) =>
18 {
19 if (e.OldValue != null) ((IClass)e.OldValue).NameChanged -=

OnNameChanged;
20 OnNameChanged(o, e);
21 if (e.NewValue != null) ((IClass)e.NewValue).NameChanged +=

OnNameChanged;
22 };

Listing 4: Slightly more complex change propagation

Here, we define a local method for an update routine

and then register and deregister this update routine dy-

namically when required. The problem here is that it is

very easy to forget to add or remove these change han-

dlers here and thus very easy to either miss important

updates or to cause a memory leak.

Manually implementing change propagation gets a lot

worse when collections start entering the field. Because

the changes that can occur on collections are more di-

verse, the code to handle these changes also gets a lot

more complex and it becomes even easier to miss impor-

tant kinds of changes or cause memory leaks. The worst

situation is when more complex navigation patterns are

used, such as the query for multi-valued attributes that

needs to fetch all classes and from there return all at-

tributes that have the Multivalued property set to true.

The imperative notion of the plain C# solution, how-

ever, makes it easy to implement rather imperative as-

pects of the transformation. For instance, the fact that all

primary keys and foreign keys are to use an integer type

that is also the translation of the integer data type of the

input model are easy to implement. In the solution, we

statically keep a reference to the integer type in order to

use it everywhere in the model transformation.

3.3. NMF Synchronizations
NMF allows to infer the change propagation rules implic-

itly and also has builtin support for traces. As sketched

in Section 2, the idea is to structure a model transforma-

tion through isomorphisms that define pairs of model

elements that correspond to each other. In the case of the

classes to relational transformation, there are five such

isomorphisms:

• The entire class model corresponds to the entire

relational model.

• A class corresponds to a table.

• A data type corresponds to a type.

• An attribute corresponds to a column.

• An attribute corresponds to a table, but only if it

is multi-valued.

These isomorphisms are implemented as classes that

inherit from the generic class SynchronizationRule.

The next step is to describe these isomorphisms in terms

of other isomorphisms and the identity of simple types.

For the correspondence of the entire models, this means

the following:

• All root elements that are data types should cor-

respond to the root elements that are types, given

the isomorphism of data types and types.

• All root elements that are classes should corre-

spond to the root elements that are tables, given

the isomorphism of classes and tables.

• All multivalued attributes of classes should corre-

spond to the root elements that are tables, given

the isomorphism of attributes and tables.

Note that we have two synchronization rules that tar-

get all root elements that are tables. This works, because

the synchronization is only executed in one direction

and we use a relaxed synchronization mode in which

NMF does not enforce that every model element has a

counterpart.

From these descriptions, the last is certainly the most

interesting. Its implementation is therefore depicted in

Listing 5.

1 SynchronizeManyLeftToRightOnly(SyncRule<AttributeToTable>(),
2 m => from c in m.RootElements.OfType<IClass>()
3 from a in c.Attr
4 where a.MultiValued
5 select a,
6 rels => rels.RootElements.OfType<IModelElement, ITable>());

Listing 5: Synchronizing multi-valued attributes



Note that the query used in Listing 5 is exactly the

same as the one in Listing 2, but because of a one-line

configuration at the top of the file, the compiler does not

resolve the syntax to the .NET builtin query operators

but to the query operators in NMF. For these, NMF can

create a dynamic dependency graph that tracks changes

of the underlying models [5]. The key advantage here

is that NMF Synchronizations can infer when the query

expression in Lines 3 to 6 in Listing 5 changes and there-

fore, the developer does not have to specify any change

propagation implementation.

Because the target isomorphism can also be the iden-

tity on any given type, it is also possible to specify syn-

chronizations of simple attributes. For comparison, List-

ing 6 depicts the code necessary to synchronize the names

of tables generated for multi-valued attributes, the equiv-

alent of Listing 4.

1 SynchronizeLeftToRightOnly(a => a.Owner.Name + "_" + a.Name, t =>
t.Name);

2 SynchronizeLeftToRightOnly(a => a.Owner.Name.ToCamelCase() + "Id",
t => t.Col[0].Name);

Listing 6: Synchronizing the name of an attribute-table

and its first column

Implementing more or less static references to the in-

teger type is a bit more difficult in NMF Synchroniza-

tions. Because NMF Synchronizations has a considerable

initialization effort on the synchronization as dynamic

dependency graph templates are constructed for all of

the synchronization blocks and compiled for use without

change propagation, it is not recommended to just add a

field to the synchronization class. Furthermore, because

unlike Java, nested classes in C# never have access to

an instance of the container class (in Java terms, nested

classes are always static), making it syntactically a lot

more difficult to access these fields. However, this would

mean to give up the thread-safety of NMF Synchroniza-

tions, which is also not what we want (even though not

exactly required in this case). Rather, we use the syn-

chronization context data key/value container to store

variables required during the transformation. However,

this container is unfortunately not type-safe. NMF Syn-

chronizations also allows to use the dynamic language

runtime to hide the string constant, but this turns out to

be slow.

4. Evaluation
Creating the plain C# solution started very easy. The ini-

tializer syntax makes it very easy to transform elements

into other models with a minimum of boilerplate code.

Rather, the code is a very concise notion of how to turn

objects of one metamodel into objects of another. The

ability of C# to selectively switch off the static type sys-

tem also allows support for polymorphism and tracing

in a very concise manner, even if that means that certain

type system guarantees are essentially lost.

This way of implementing a trace through the dynamic

language runtime has an important downside, though,

and that is the lack of modular extensibility. Whereas

model transformation languages typically allow to ex-

tend the set of model transformation rules through some

notion of extensions, this is not possible if the transforma-

tion method is resolved through the dynamic language

runtime as in the plain C# solution. This requirement

is rare for toy transformations such as the transforma-

tion given here, but it may be important for practical

transformations that are typically a lot more complex.

The trouble for the C# solution starts only when the

input models are changed and these changes are to be

propagated to the target model. If the use case requires

that the changes are propagated instead of rerunning

the transformation, syntactic sweets of the programming

language do not really help. Instead, one has to manu-

ally register and unregister to change events and handle

these events appropriately. This requires dedicated sup-

port for each type of change, which is cumbersome to

implement. In its current form, the plain C# solution is

not complete, meaning that by far not all changes are

actually propagated.

Developing the incremental version using NMF Syn-

chronizations is a different story. Here, the internal DSL

forces the developer to think in terms of isomorphisms

and synchronization blocks, but then the change propa-

gation comes essentially for free, i.e., the developer does

not have to implement anything.

Consequently, whereas a large proportion of the plain

C# solution is responsible for change propagation, the

NMF Synchronizations solution does not require any

code explicitly for change propagation, essentially be-

cause the transformation only relies on rather simple

model navigation queries that NMF has built-in support

for. In particular, the query that the plain C# solution

uses to find all the multi-valued attributes in order to

generate corresponding tables is the same both in the

plain C# solution and in the NMF Synchronizations solu-

tion. However, the difference is that whereas the plain

C# solution uses the .NET built-in query operators that

only execute the query in memory, the same query maps

in the NMF Synchronizations solution to NMF query op-

erators that can obtain a dynamic dependency graph that

is used to attach listeners to the notification API of the

models in order to update the query result as the model

changes.

Because a model synchronization in NMF Synchroniza-

tions is nothing else than a .NET class, the code required

to set up the transformation is also rather small. Be-

cause in principle, NMF Synchronizations can work in

both directions, we need to specify the direction when

starting the synchronization. Therefore, it is required to



have a separate variable that is then given to the syn-

chronization by reference, in C# denoted with the ref
keyword. We may add an API in the future to have dedi-

cated support for one-way transformation to get rid of

this boilerplate.

5. Conclusion
There is an ongoing debate on what claims of model trans-

formation languages are justified and which of them can

be backed by empirical evidence. I think that this TTC

case is a good step in this direction. In my opinion, the

plain C# solution shows that often called arguments that

model transformation languages simplify model traver-

sal and tracing are problematic as very good support

for these tasks can also be found in general-purpose pro-

gramming languages such as C#, which is one of the most

used programming languages in the world. The most

important consequence of this is that because the pro-

gramming language applies to essentially any problem

one could think of, developers using C# use it practically

every day, whereas a model transformation language is

typically limited to model transformations and hence,

developers need to switch. However, switching program-

ming languages is what many developers do not like and

thus, model transformation languages that only provide

advantages in these areas have a limited potential for

adoption.

In contrast, the plain C# solution also shows that imple-

menting change propagation manually is a different story,

as it is easy to forget changes that need to be propagated.

The explicit implementation of the change propagation

through the standard notification API of the .NET plat-

form is difficult to implement, error-prone and inhibits

the readability of the transformation. In this area, model

transformation languages that can infer change propa-

gation implicitly, such as NMF Synchronizations, have

a much clearer value proposition compared to general-

purpose programming languages.

References
[1] S. Götz, M. Tichy, R. Groner, Claimed advantages and

disadvantages of (dedicated) model transformation

languages: a systematic literature review, Software

and Systems Modeling 20 (2021) 469–503.

[2] G. Hinkel, A. Garcia-Dominguez, R. Schöne,

A. Boronat, M. Tisi, T. Le Calvar, F. Jouault,

J. Marton, T. Nyíri, J. B. Antal, M. Elekes,

G. Szárnyas, A cross-technology benchmark for

incremental graph queries, Software and Sys-

tems Modeling 21 (2022) 755–804. URL: https://

doi.org/10.1007/s10270-021-00927-5. doi:10.1007/
s10270-021-00927-5.

[3] G. Hinkel, Implicit Incremental Model Analyses

and Transformations, Ph.D. thesis, Karlsruhe In-

stitute of Technology, Germany, 2018. URL: https:

//publikationen.bibliothek.kit.edu/1000084464.

[4] G. Hinkel, Nmf: A multi-platform modeling

framework, in: A. Rensink, J. Sánchez Cuadrado

(Eds.), Theory and Practice of Model Transforma-

tion, Springer International Publishing, Cham, 2018,

pp. 184–194.

[5] G. Hinkel, R. Heinrich, R. Reussner, An extensible

approach to implicit incremental model analyses,

Software & Systems Modeling (2019). URL: https://

doi.org/10.1007/s10270-019-00719-y. doi:10.1007/
s10270-019-00719-y.

[6] G. Hinkel, Change Propagation in an Internal Model

Transformation Language, in: D. Kolovos, M. Wim-

mer (Eds.), Theory and Practice of Model Trans-

formations: 8th International Conference, ICMT

2015, Held as Part of STAF 2015, L’Aquila, Italy,

July 20-21, 2015. Proceedings, Springer Interna-

tional Publishing, Cham, 2015, pp. 3–17. URL: http:

//dx.doi.org/10.1007/978-3-319-21155-8_1. doi:10.
1007/978-3-319-21155-8_1.

[7] G. Hinkel, E. Burger, Change propagation and

bidirectionality in internal transformation dsls,

Softw. Syst. Model. 18 (2019) 249–278. URL: https:

//doi.org/10.1007/s10270-017-0617-6. doi:10.1007/
s10270-017-0617-6.

[8] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,

A. Schmitt, Combinators for bidirectional tree trans-

formations: A linguistic approach to the view-update

problem, ACM Transactions on Programming

Languages and Systems (TOPLAS) 29 (2007). URL:

http://doi.acm.org/10.1145/1232420.1232424. doi:10.
1145/1232420.1232424.

[9] G. Hinkel, T. Goldschmidt, E. Burger, R. Reuss-

ner, Using Internal Domain-Specific Languages

to Inherit Tool Support and Modularity for Model

Transformations, Software & Systems Model-

ing (2017) 1–27. URL: http://rdcu.be/oTED. doi:10.
1007/s10270-017-0578-9.

https://doi.org/10.1007/s10270-021-00927-5
https://doi.org/10.1007/s10270-021-00927-5
http://dx.doi.org/10.1007/s10270-021-00927-5
http://dx.doi.org/10.1007/s10270-021-00927-5
https://publikationen.bibliothek.kit.edu/1000084464
https://publikationen.bibliothek.kit.edu/1000084464
https://doi.org/10.1007/s10270-019-00719-y
https://doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0617-6
http://dx.doi.org/10.1007/s10270-017-0617-6
http://dx.doi.org/10.1007/s10270-017-0617-6
http://doi.acm.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://rdcu.be/oTED
http://dx.doi.org/10.1007/s10270-017-0578-9
http://dx.doi.org/10.1007/s10270-017-0578-9

	1 Introduction
	2 NMF Expressions and NMF Synchronizations
	3 Solutions
	3.1 Shortcomings of the benchmark framework
	3.2 Plain C# with dynamic language runtime
	3.3 NMF Synchronizations

	4 Evaluation
	5 Conclusion

