
A BXtendDSL Solution to the TTC2023 Incremental MTL vs.
GPLs Case
Thomas Buchmann1,*,†

1Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469 Deggendorf

Abstract
This paper presents a solution to the Case at TTC 2023 using BXtendDSL. BXtendDSL is declarative language for bidirectional
and incremental model transformations, built on top of an imperative framework. The transformation developer may extend
the transformation on the imperative layer whenever the expressive power of the declarative language is not enough to tackle
the transformation problem at hand. Thus, BXtendDSL provides a flexible and powerful tool for all possible transformation
problems.

Keywords
incremental transformations, Model Transformation Language, GPL, Class model, relational, data schema

1. Introduction
The "Incremental MTL vs. GPLs: Class into Relational
Database Schema" case [1] from the 2023 edition of the
Transformation Tool Contest (TTC) addresses a compari-
son between dedicated model transformation languages
(MTLs) and general purpose programming languages
(GPLs) in the context of an incremental transformation
of Class models into Relational Data Schemas.

Since model transformation languages typically are
domain-specific languages tailored to efficiently express
model-to-model transformations, they comprise high-
level constructs like rules and automatic support for
traceability which are missing in GPLs. Furthermore,
MTLs often provide different modes of execution: In a
batch transformation, the input model is transformed
and an output model is produced. An incremental trans-
formation on the other hand is able to propagate changes
from the input model to the output model while retaining
changes in the output model. Some MTLs also support
for bidirectional transformations, i.e., the output model
maybe transformed back into the input model and vice
versa.

During the last decades, a wide range of MTLs and
accompanying tool support has been proposed, however,
many model transformations in practice are still written
in GPLs. While there are reasons for this situation in the
context of the batch execution of a transformation, an
incremental transformation has different requirements
and should shift the focus towards dedicated MTLs.

The proposed case addresses an incremental transfor-
mation scenario of class diagrams into relational data

TTC’23, 15th Transformation Tool Contest, July 20, 2023, Leicester, UK
$ thomas.buchmann@th-deg.de (T. Buchmann)
� https://tbuchmann.github.io/ (T. Buchmann)
� 0000-0002-5675-6339 (T. Buchmann)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

schemas with the aim to compare solutions written in
MTLs with solutions written in GPLs. The research ques-
tion in the transformation case is to determine whether
MTLs perform better than GPLs in incremental transfor-
mation scenarios.

In this paper, we present our solution to the proposed
transformation case using BXtendDSL [2, 3, 4] – our hy-
brid language for bidirectional and incremental model
transformations. BXtendDSL is a dedicated language for
bidirectional and incremental model transformations, i.e.,
the transformation developer is relieved from addressing
tracing and incrementality, as it is handled completely
by the underlying framework. Besides a declarative lan-
guage for specifying relations between source and tar-
get model elements, BXtendDSL provides an imperative
layer, which may be used whenever parts of the trans-
formation problem at hand can not be expressed on the
declarative layer.

The paper is structured as follows: In Section 2, we
provide an overview about BXtendDSL. Section ?? de-
scribes both the declarative and imperative parts of our
solution to the transformation case, followed by a de-
tailed evaluation according to different criteria in Section
4. Section 5 concludes the paper.

2. BXtendDSL
BXtendDSL [2, 3, 4] is a state-based framework for defin-
ing and executing bidirectional incremental model trans-
formations that is based on EMF [5] and the programming
language Xtend1. It builds upon BXtend [6], a framework
that follows a pragmatic approach to programming bidi-
rectional transformations, with a special emphasis on
problems encountered in the practical application of ex-
isting bidirectional transformation languages and tools.

1https://eclipse.dev/Xtext/xtend/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:thomas.buchmann@th-deg.de
https://tbuchmann.github.io/
https://orcid.org/0000-0002-5675-6339
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

The stand-alone BXtend framework is completely inte-
grated (and slightly exented, c.f., [3]) into BXtendDSL,
i.e. no additional dependencies are required.

When working with the stand-alone BXtend frame-
work, the transformation developer needs to specify both
transformation directions separately, resulting in BXtend
transformation rules with a significant portion of repeti-
tive code.

To this end, BXtendDSL adds a declarative layer on top
of the BXtend framework, which significantly reduces the
effort required by the transformation developer. Figure
1 depicts the layered approach of our tool: First, the
external DSL (BXtendDSL Declarative) is used to specify
correspondences declaratively. Second, the internal DSL
(BXtendDSL Imperative) is employed to add algorithmic
details of the transformation that can not be expressed
on the declarative layer adequately.

Transformation code
(BXtendDSL Declarative)

Hand written code
(BXtendDSL Imperative)

Generated code
(BXtend)

Framework code
(BXtend)

+

Transformation code
(BXtend)

Transformation
developer

Source model
Correspondence

model
Target model

Figure 1: Layered approach used in BXtendDSL

The handwritten code and the generated code are com-
bined with framework code to provide for an executable
transformation. The transformation developer is relieved
from writing repetitive routine parts of the transforma-
tion manually using a code generator. The generated
code ensures roundtrip properties for simple parts of
the transformation. Since the declarative DSL usually
is not expressive enough to solve the transformation
problem at hand completely, the generated code must
be combined with handwritten imperative code. Certain
language constructs of the declarative DSL define the in-
terface between the declarative and the imperative parts
of the transformation. From these constructs, hook meth-
ods are generated, the bodies of which must be manually
implemented. Hook methods are used, e.g. for imple-
menting filters or actions to be executed in response to
the deletion or creation of objects, etc.

Incremental change propagation relies on a persis-
tently stored correspondence model, which allows for m
: n correspondences between source and target model

elements. A powerful internal DSL may be used at the
imperative level, to retrieve correspondence model ele-
ments associated with a given element from the source
and target models, respectively. Please note that the trans-
formation developer does not have to deal with managing
correspondences at the declarative level, rather all the al-
gorithmic details of managing the correspondence model
are handled by our framework automatically.

3. Solution
In this section, we explain the details of our BXtendDSL
solution for the Class into Relational Data Schema case.
We will discuss the different layers in separate subsec-
tions. Please note that incremental behavior is pro-
vided automatically by our framework, so the transfor-
mation developer does not need to address it specifically.
The source code of our solution is publicly available on
GitHub.

3.1. Declarative Layer
BXtendDSL code at the declarative layer is used to define
transformation rules between elements of source and
target models respectively. Listing 1 depicts the code for
the transformation at the declarative layer. Although
BXtendDSL supports bidirectional transformations, the
current transformation case requires an unidirectional
transformation only. Thus, all mappings are directed
from source (Class) to target (Relational) model, indicated
by the --> symbol.

1 sourcemodel "Class"
2 targetmodel "Relational"
3

4 rule DataType2Type
5 src DataType dt;
6 trg Type t;
7

8 dt.name --> t.name;
9

10 rule SingleAttribute2Column
11 src Attribute att | filter;
12 trg Column col;
13

14 att.name --> col.name;
15 {att.type : DataType2Type} --> {col.type : DataType2Type};
16

17 rule MultiAttribute2Table
18 src Attribute att | filter;
19 trg Table tbl;
20

21 att.name att.owner --> tbl.name;
22 att.name att.type att.owner --> tbl.col;
23

24 rule SingleClassAttribute2Column
25 src Attribute att | filter;
26 trg Column col;
27

28 att.name att.type --> col.name;
29 att.name att.type --> col.type;
30

31 rule MultiClassAttribute2Column
32 src Attribute att | filter;
33 trg Table t;
34 Column id | creation;

https://github.com/tbuchmann/Incremental-class2relational-fixed

35 Column fk | creation;
36

37 att.name att.owner --> t.name;
38 att.name att.owner --> id.name;
39 att.name att.owner --> fk.name;
40

41 rule Class2Table
42 src Class clz;
43 trg Table tbl | creation;
44

45 clz.name --> tbl.name;
46 {clz.attr : SingleAttribute2Column, SingleClassAttribute2Column

, MultiAttribute2Table} --> tbl.col;

Listing 1: BXtendDSL code at the declarative layer

The declarative transformation specification com-
prises rules for all required model elements. Each rule is
composed of src and trg patterns with elements of source
and target models, respectively. Some patterns make use
of modifiers, such as filter and creation. Those modifiers
are transformed into hook methods, whose bodies need
to be implemented by the transformation developer on
the imperative layer (see, Section 3.2). After declaring
src and trg patterns, the mapping of attributes and refer-
ences is specified by mappings. As explained above, we
only use directed mappings in this transformation (-->).
Lines 4-8 depict the transformation rule for DataTypes
and Types. A DataType object from the class model is
mapped to a Type object in the relational model and the
datatype name is assigned to the attribute name of the
Type.

Rule singleAttribute2Column employs a filter modifier
on the source pattern. This is required to indicate that the
rule should only be applied to Attributes that are singleval-
ued and whose type refers to a DataType. Please note that
no algorithmic details for the filter are specified on the
declarative level, since this would have required a much
more expressive and thus complex language. Rather a
hook method is generated and the behavior is specified
on the imperative layer using the Xtend programming
language (see Section 3.2).

Furthermore, the mapping in Line 15 is enclosed in
curly brackets. This indicates, that references to already
transformed elements should be used and retrieved from
the correspondence model. The execution of the rules fol-
lows the textual order as specified in the declarative spec-
ification, i.e. the rule DataType2Type is actually executed
before the rule SingleAttribute2Column, which means that
when we want to apply the mapping, we can be sure
that the respective types already exist in the target model
and we can easily retrieve them from the correspondence
model (i.e., the trace model).

In case that the types of structural features used in the
mapping is not compatible, a hook method is also gen-
erated. As well in cases where more than one structural
feature is used on either side of the arrow symbol (e.g. in
Line 21 of Listing 1).

Please note that source or target patterns may consist
of more then one element, as shown e.g. in Lines 33-35.

If a multivalued attribute with a type reference that is
not a datatype is transformed, a new table consisting of
an objectID and a foreign key should be created. For the
two columns a creation modifier is used, which allows
the transformation developer to add additional impera-
tive code that is executed after new elements have been
created (in our case, the columns get the required type
reference and are added to the parent table).

The last rule that is executed is Class2Table. When this
rule is executed, all columns that have been transformed
because other rules have been applied, actually exist and
can be assigned to the proper tables in the mapping de-
picted in Line 46.

3.2. Imperative Layer
On the imperative layer, the bodies for hook methods
must be supplied. This holds for the specification of
modifiers (e.g., filter or creation), as well as for mappings
where further information is required, which cannot be
supplied using the declarative language only. Similar fil-
ter implementations are used for single valued attributes
and attributes whose type is a datatype. This also works
in an incremental way, e.g. if the multi-valued property
of an attribute is changed, or if the type of an attribute
changes. Please note that all manual changes are retained
in case the declarative file changes and code is regener-
ated.

Listing 2: Hook method for mapping filtering attributes

1 override protected filterAtt(Attribute att) {
2 (att.isMultiValued) && (att.type instanceof

Class)
3 }

Listing 2 depicts the implementation of a filter,
specified on the declarative layer in the rule MultiAt-
tribute2Column (see Line 32, Listing 1). The rule should
only consider attributes which are multivalued and
whose type is a Class. Similar implementations have
been supplied for the other filter modifiers.

Listing 3: Creation hook

1 override protected onIdCreation(Column id) {
2 id.type = Utils.getType(findIntegerDatatype())
3 id.corr.target().t.col += id
4 }

Listing 3 depicts the implementation of a creation hook
method. Using creation modifiers on the declarative layer
results in the generation of respective methods, that need
to be implemented on the imperative layer. The method
shown in Listing 3, is called when the id Column is created
during the execution of rule MultiClassAttribute2Column
(see Line 34 in Listing 1). The id column has Integer
type and the respective Object is retrieved by the utility

methods getType() and findIntegerDatatype(), which have
been added to the imperative layer manually. Finally, the
column is added to its parent table’s reference col. Please
note that both utility method do not modify the model,
they are only used to retrieve the matching values. The
(incremental) transformation of types is handled by the
rule DataType2Type on the declarative layer (see Listing
1, lines 4-8).

Listing 4: Hook method for feature mapping
1 override protected colFrom(String attName,
2 Classifier type, Class owner) {
3 val colList = newArrayList
4 val columnName = (owner === null
5 || owner.name === null
6 || owner.name === "")? "tableId"
7 : owner.name.toFirstLower + "Id"
8 val idCol = RelationalFactory.eINSTANCE
9 .createColumn() => [name = columnName

10 type = Utils.getType(findIntegerDatatype())
11]
12 val valCol = RelationalFactory.eINSTANCE
13 .createColumn() => [
14 name = attName
15 type = Utils.getType(type)
16]
17 colList += idCol
18 colList += valCol
19 return new Type4col(colList)
20 }

Listing 4 depicts the hook method that is created as a
result of the feature mapping defined in Line 22 of Listing
1. The rule MultiAttribute2Table is called, when a multi-
valued attribute with a primitive type is transformed into
a Table with id-Column and value-Column. Please note
that in the declarative specification, only the target table
is created, the corresponding columns are then created
in the hook method. The required information to cre-
ate the columns is passed to the hook method as input
parameters. The hook method is required to return a pre-
defined Xtend @Data-class. When creating the columns
and assigning the respective types, the Utility methods
explained above are reused. Please note that in the cur-
rent implementation of the hook method, it does not
work in an incremental way. I.e., the columns are not
reused, rather they are recreated.

Listing 5: Hook method for mapping attribute type +
name to table name

1 override protected tblNameFrom(String attName,
2 Class owner) {
3 var tblName = owner.name
4 if (tblName === null || tblName === "") tblName

= "Table"
5 new Type4tblName(owner.name + "_" + attName)
6 }

Listing 5 depicts another hook method which is created
because two features on the source side (Attribute.name

and Attribute.owner) are mapped to a single feature on the
target side (Table.name). The method stub is generated as
a result of the statement specified in Line 21 of Listing 1.
In the imperative implementation of the hook, we check
if the owner has a name value. If this is the case it is
concatenated with the attribute name, otherwise we use
the prefix "Table" and concatenate it with the attribute
name.

Listing 6: Hook method for adding all columns to the
right tables

1 override protected colFrom(List<Column> attSinCol,
2 List<Column> attSinCol_2, List<Table> attMulT,
3 Table parent) {
4 val columnsList = newArrayList
5 if (!parent.col.empty) {
6 var key = parent.col.get(0)
7 columnsList += key
8 }
9

10 for (Column c : attSinCol) {
11 var obj = unwrap(c.corr.
12 source.get(0) as SingleElem) as Attribute
13 if (obj.type !== null) {
14 columnsList += c
15 } else {
16 c.owner = null
17 EcoreUtil.delete(c, true)
18 }
19 }
20
21 for (Column c : attSinCol_2) {
22 var obj = unwrap(c.corr.
23 source.get(0) as SingleElem) as Attribute
24 if (obj.type !== null)
25 columnsList += c
26 else EcoreUtil.delete(c, true)
27 }
28
29 for (Table t : attMulT) {
30 var obj = unwrap(t.corr.
31 source.get(0) as SingleElem) as Attribute
32 if (obj.type === null)
33 EcoreUtil.delete(t, true);
34 }
35 new Type4col(columnsList)
36 }

Finally, the last Listing discussed in this paper is shown
in Listing 6. The method stub is generated as a result of
the feature mapping depicted in Line 46 of Listing 1. It
is used to assign all columns to their respective parent
tables. Furthermore, we address handling the dangling
references in the code specified in the imperative layer.
Lists of columns and tables, that have been transformed
when the other rules have been applied are passed as
method parameters. Before adding the respective column
to the resulting data object (Type4col), we make sure that
its associated source object actually has a non-null type-
reference. If the associated type is null, we delete the
column.

4. Evaluation
The implementation of the solution to this transformation
case was pretty straightforward using BXtendDSL. Since
only one transformation direction was required, directed
mappings could be used. While incrementality comes for
free, not every aspect of the transformation at hand can
be expressed on the declarative layer of BXtendDSL only.
Thus, a significant portion of the transformation code
had to be supplied via filters and hook methods on the
imperative layer using the Xtend programming language.

In our GitHub repository (see Appendix ??), the project
BXtendDSLSolutionRunner is used to integrate the BX-
tendDSL solution into the evaluation framework pro-
vided by the case authors. In order to execute it, an exe-
cutable JAR file has to be created from the BXtendDSLSo-
lutionRunner project, which can then be called from the
shell scripts used for evaluation in the framework.

The results show that the BXtendDSL solution is cor-
rect (i.e. commuting batch and incremental transforma-
tions) in every of the provided test cases. In a second
test criterion (completeness), the resulting target models
are compared against predefined expected models. Only
in three out of thirteen cases, the obtained model after
the transformation does not match any of the predefined
expected models. See table 1 for a detailed analysis.

Test Correctness Completeness
correctness1 ok expected1.xmi
correctness2 ok no match
correctness3 ok expected1.xmi
correctness4 ok expected1.xmi
correctness5 ok expected1.xmi
correctness6 ok expected1.xmi
correctness7 ok expected1.xmi
correctness8 ok expected1.xmi
correctness9 ok expected1.xmi
correctness10 ok expected2.xmi
correctness11 ok expected2.xmi
correctness12 ok no match
correctness13 ok no match
correctness_couple ok no expected
correctness_full ok no expected
scale1 ok no expected
scale200 ok no expected
scale2000 ok no expected

Table 1
Correctness and Completeness of our solution.

We labeled our solution according to the requirements
stated in the case description. However, we also deter-
mined the specification effort in terms of LOC metrics
as used e.g. in [7]. Furthermore, we obtained separate
numbers for the declarative and the imperative layer. Our
solution is concise and requires only a moderate specifica-
tion effort, due to the fact that incrementality and tracing

is automatically provided by our framework and does
not need to be addressed explicitly by the transformation
developer. The results are depicted in table 2.

Declarative Imperative
Layer Layer

Number of lines 48 117
Number of words 131 394
Number of characters 974 3343

Table 2
Size of the transformation definition.

Regarding performance, the provided models are too
small to obtain sounding results for execution times, as
they are around several milliseconds. In other (and larger
performance tests), BXtendDSL has already proven to
scale excellent with growing model sizes [7, 3].

5. Conclusion
In this paper, we described our BXtendDSL solution to
the Incremental MTL vs. GPLs Case. The transforma-
tion case aims at investigating the benefit of dedicated
MTLs specifically in terms of the incremental nature of
the transformation problem at hand. BXtendDSL is a ded-
icated language for bidirectional and incremental model
transformations which provides tracing and incremental
functionality automatically.

The transformation developer may focus only on the
current transformation problem without taking into ac-
count these technical details. Using the declarative part
of BXtendDSL, the transformation developer specifies
relations between source and target model elements, and
whenever the expressive power of the declarative layer
is not enough to tackle parts of the transformation prob-
lem, the developer may switch to the imperative layer to
specify the algorithmic details. Thus, the overall solution
is very concise while it completely fulfills the commuta-
tivity criterion and almost every completeness criterion
of the evaluation framework.

The transformation case helped to reveal a bug in our
code generation engine, which will be fixed in the upcom-
ing release of BXtendDSL. Please follow the instructions
given in the README file of the public Git repository in
order to get the BXtendDSL solution to compile without
errors.

Resources
The BXtendDSL solution may be obtained from a public
GitHub repository, which can be found at https://github.
com/tbuchmann/Incremental-class2relational.

https://github.com/tbuchmann/Incremental-class2relational
https://github.com/tbuchmann/Incremental-class2relational

References
[1] S. Greiner, S. Höppner, F. Jouault, T. Le Calvar,

M. Clavreul, Incremental mtl vs. gpls: Class into
relational database schema (2023).

[2] M. Bank, T. Buchmann, B. Westfechtel, Combining
a declarative language and an imperative language
for bidirectional incremental model transformations,
in: S. Hammoudi, L. F. Pires, E. Seidewitz, R. Soley
(Eds.), Proceedings of the 9th International Confer-
ence on Model-Driven Engineering and Software
Development, MODELSWARD 2021, Online Stream-
ing, February 8-10, 2021, SCITEPRESS, 2021, pp. 15–
27. URL: https://doi.org/10.5220/0010188200150027.
doi:10.5220/0010188200150027.

[3] T. Buchmann, M. Bank, B. Westfechtel, Bx-
tenddsl: A layered framework for bidirectional
model transformations combining a declarative
and an imperative language, J. Syst. Softw. 189
(2022) 111288. URL: https://doi.org/10.1016/j.jss.2022.
111288. doi:10.1016/j.jss.2022.111288.

[4] T. Buchmann, M. Bank, B. Westfechtel, Bxtenddsl
at work: Combining declarative and imperative
programming of bidirectional model transforma-
tions, SN Comput. Sci. 4 (2023) 50. URL: https://
doi.org/10.1007/s42979-022-01448-8. doi:10.1007/
s42979-022-01448-8.

[5] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks,
EMF Eclipse Modeling Framework, The Eclipse Se-
ries, 2nd ed., Addison-Wesley, Boston, MA, 2009.

[6] T. Buchmann, Bxtend - A framework for (bidi-
rectional) incremental model transformations, in:
Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Devel-
opment, MODELSWARD 2018, Funchal, Madeira
- Portugal, January 22-24, 2018., 2018, pp. 336–
345. URL: https://doi.org/10.5220/0006563503360345.
doi:10.5220/0006563503360345.

[7] A. Anjorin, T. Buchmann, B. Westfechtel, Z. Diskin,
H.-S. Ko, R. Eramo, G. Hinkel, L. Samimi-Dehkordi,
A. Zündorf, Benchmarking bidirectional transforma-
tions: theory, implementation, application, and as-
sessment, Software and Systems Modeling 19 (2020)
647–691. doi:10.1007/s10270-019-00752-x.

https://doi.org/10.5220/0010188200150027
http://dx.doi.org/10.5220/0010188200150027
https://doi.org/10.1016/j.jss.2022.111288
https://doi.org/10.1016/j.jss.2022.111288
http://dx.doi.org/10.1016/j.jss.2022.111288
https://doi.org/10.1007/s42979-022-01448-8
https://doi.org/10.1007/s42979-022-01448-8
http://dx.doi.org/10.1007/s42979-022-01448-8
http://dx.doi.org/10.1007/s42979-022-01448-8
https://doi.org/10.5220/0006563503360345
http://dx.doi.org/10.5220/0006563503360345
http://dx.doi.org/10.1007/s10270-019-00752-x

	1 Introduction
	2 BXtendDSL
	3 Solution
	3.1 Declarative Layer
	3.2 Imperative Layer

	4 Evaluation
	5 Conclusion

