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Abstract
Inductive knowledge graph completion has gained significant attention due to the dynamic nature of
entities and facts in knowledge graphs (KGs). The goal of this task is to predict missing links between
entities that are unseen during training. Graph neural networks (GNNs) have proven to be effective in
handling this task. However, existing GNN-based methods overlook the type information of entities in
KGs and thus may make incorrect predictions, which also limits the interpretability of the GNN-based
models for KG completion. To address this limitation, we propose to incorporate type information into
an existing GNN-based model for inductive KG completion. Experimental results show that our proposed
approach is effective in improving the performance of inductive link prediction.
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1. Introduction

Knowledge graphs (KGs) contain a vast amount of structured data, but they are often incomplete.
Knowledge graph completion (KGC) is to predict missing links in KGs, which can be beneficial
to downstream tasks such as recommender systems and question answering systems. While
many models have been proposed for KGC, they are not effective for predicting the relations
of entities that are unseen in the training. Inductive KGC aims to develop KGC models that
are able to perform link prediction involving new entities. Graph neural networks (GNNs)
have proven effective in handling this task [1][2]. However, existing GNN-based methods for
inductive link prediction overlook the type information of entities in KGs and thus may make
incorrect predictions. Utilizing type information may also enhance the interpretability of the
GNN-based models for KG completion.

In fact, by transferring knowledge during training to the inference stage, type information
facilitates inductive KGC in two ways. Firstly, GNN-based models make predictions solely based
on subgraph structures, and incorporating type information as supplementary information can
enhance performance. GNN-based models can predict a triple as true if the target entities (i.e.,
the head entity and the tail entity) are genuinely linked but through a relation different from the
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target relation. For example, the target triple (albert_einstein,worksAt, theory_of_relativity)
may be predicted as true because there is evidence in the subgraph suggesting albert_einstein
and theory_of_relativity are connected. However, they are linked by the relation develops not
worksAt. By imposing type constraints and recognizing that theory_of_relativity is not a work-
place, we can readily rectify this classification error. Secondly, the inclusion of type information
can enhance the interpretability of models. Without the guidance type constraints, models may
generate predictions that are clearly wrong and can be easily recognized by humans, as exempli-
fied by the erroneous prediction (albert_einstein,worksAt, theory_of_relativity). Introducing
type information can help reduce such errors, thereby enhancing the model’s reliability.

In this paper, we propose to incorporate type information from KGs into an existing GNN-
based model for inductive knowledge graph completion. This is achieved by a novel integration
of type information in subgraph structures by prioritizing triples that are more likely to adhere
to the type constraints. This is not straightforward since type information can be incomplete
and the numbers of entities of different types can be diverse. To resolve these issues, we
develop a method for inferring new entity type information from the existing entities and
type hierarchies. Our model is the first attempt for incorporating type information into in-
ductive KGC models. We note that while several works have been done on utilising type
information for standard KGC [3][4], they cannot be directly applied to inductive KGC. Just
as most inductive KGC settings, we only consider unseen entities, while relations and type
information are seen in the training set. This is because in real-life applications, the relations
and type information are usually more stable whereas entities may change. For instance, in
e-commerce platforms, new products and users continually emerge, yet their types often remain
consistent with the existing knowledge graph. Experimental results show that our proposed
approach is effective in improving the performance of inductive link prediction, particularly
in terms of ranking accuracy. The code and data used in our experiments are all available at
https://github.com/Bohemianc/ISWC23-typed-inductive-LP.

2. Our Approach

In this section, we provide a detailed description of our solution that utilizes type information.
First, we introduce the two forms of information we use, namely entity types and type hierar-
chies, and explain how we infer new entity types through type hierarchies. Second, we explain
how we effectively integrate graph structures with type information, including details of joint
training.

2.1. Type Mapping

We consider two forms of type information: (1) types of entities, such as
(albert_einstein, rdf:type,Physicist) expressing that Einstein is a physicist, (2) and type
hierarchies, such as (Physicist, rdfs:subClassOf, Scientist) expressing that physicists belong
to the category of scientists. Let ℰ , 𝒯 , and ℛ denote the entity set, type set, and relation set
in the KG, respectively. Entity type assertions are defined as (𝑒, rdf:type, 𝑡) with 𝑒 ∈ ℰ and
𝑡 ∈ 𝒯 , while type hierarchy assertions are defined as (𝑡1, rdfs:subClassOf, 𝑡2) with 𝑡1, 𝑡2 ∈ 𝒯 .

https://github.com/Bohemianc/ISWC23-typed-inductive-LP


Additionally, we refer to (𝑒1, 𝑟, 𝑒2) with 𝑒1, 𝑒2 ∈ ℰ as an instance triple, and (𝑡1, 𝑟, 𝑡2) with
𝑡1, 𝑡2 ∈ 𝒯 as a type triple.

In contrast to most existing works utilising type information [3] [4], we use explicit entity
type assertions, which are more accurate than learnable type representations. However, this
leads to two issues: incomplete entity type information and type imbalance (i.e., the numbers
of entities of different types can be diverse). We believe that the impact of type imbalance
on type representation is caused by overly specific entity types. For example, if there are
much more mathematicians than physicists in the KG, the model will consider the type triple
(Mathematician, develops,Theory) to be more likely than (Physicist, develops,Theory), while
(Scientist, develops,Theory) is a more reasonable type triple that is not affected by type imbal-
ance. To address these two issues, we use type hierarchies to explicitly infer new entity type
assertions. Specifically, we apply the inference rule

(𝑒, rdf:type, 𝑠) ∧ (𝑠, rdfs:subClassOf, 𝑡) → (𝑒, rdf:type, 𝑡).

We recursively use this rule to supplement entity type assertions to address the incomplete
entity type issue. To address the type imbalance issue, we use type hierarchy assertions to select
the most general type among an entity’s multiple types, such as types Person and Location.
Note that we do not consider the type Thing to prevent mapping all entities to this type.

2.2. Fusing Graph Structures with Type Information

Next, we introduce how to integrate graph structures with type information. For graph struc-
tures, we adopt the method proposed in RMPI [2], which is one of the state-of-art models in
inductive KGC. This method transforms the sampled subgraph from the KG into another graph
in which each node is an instance triple in the KG. Then, it applies a GNN to the transformed
graph and obtain the final score using a linear layer. For type information, we assume that
both relations and types during inference are already present during training, and thus we can
represent relations and types using relation-specific and type-specific embeddings. Inspired
by the translation-based principle in TransE [5], given a type triple (𝑡1, 𝑟, 𝑡2), we expect that
t1 + r ≈ t2, where t1, t2 and r ∈ R𝑑 are embeddings of types or relations. Although we map
entities to general types, the types of an entity are not necessarily unique. For entities with
multiple types, we take the average score of corresponding type triples to obtain the likelihood
of the type triple being true. By fusing graph structures and type information, our method
prioritize those instance triples that are more likely to adhere to the type constraints. The score
of an instance triple (𝑢, 𝑟, 𝑣) is calculated as

𝐸2(𝑢, 𝑟, 𝑣) =
1

|𝒯 (𝑢)| × |𝒯 (𝑣)|
∑︁

𝑡1∈𝒯 (𝑢),𝑡2∈𝒯 (𝑣)

−||t1 + r− t2||2, (1)

score(𝑢, 𝑟, 𝑣) = 𝐸1(𝑢, 𝑟, 𝑣) + 𝐸2(𝑢, 𝑟, 𝑣), (2)

where 𝐸1 is the score function of RMPI, 𝐸2 is the score function of type triples, and 𝒯 (𝑒) is the
set of types of an entity 𝑒.

Following previous works, we adopt margin ranking loss for training. Specifically, we apply
margin ranking loss to the final score score(𝑢, 𝑟, 𝑣) and jointly train the two energy func-
tions 𝐸1 and 𝐸2. An alternative training strategy is to separately train the energy functions,



Table 1
AUC-PR results on inductive link prediction.

Methods
FB15k237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4

GraIL 84.69 90.57 91.68 94.46 86.05 92.62 93.34 87.50
TACT 85.03 91.72 93.14 93.85 77.54 93.30 92.53 85.25

CoMPILE 85.50 91.68 93.12 94.90 80.16 95.88 96.08 85.48
RMPI-NE 85.22 92.08 91.77 92.27 81.07 93.64 94.99 88.82
Ours 84.22 92.09 91.67 92.77 77.79 94.23 95.67 90.27

Table 2
Hits@10 results on inductive link prediction.

Methods
FB15k237 NELL-995

v1 v2 v3 v4 v1 v2 v3 v4

GraIL 64.15 81.80 82.83 89.29 59.50 93.25 91.41 73.19
TACT 62.20 80.02 84.16 88.41 51.50 91.49 92.46 72.98

CoMPILE 67.66 82.98 84.67 87.44 58.38 93.87 92.77 75.19
RMPI-NE 70.00 82.85 83.18 86.52 60.50 94.01 91.78 84.27
Ours 68.78 84.62 85.03 89.22 60.50 94.12 94.13 84.06

similar to AutoETER [3]. However, optimizing 𝐸2 alone using margin ranking loss can lead
to issues, as the corresponding type triple of a negative instance triple may not necessar-
ily be false. For example, the type triple (Scientist, develops,Theory) of the negative triple
(feynman, develops, theory_of_relativity) still holds.

3. Experiments

We conducted experiments on two benchmark knowledge graphs, FB15k-237 and NELL995,
each with 4 versions split by GraIL [1]. Since the existing datasets lack type information, we
obtained original entity types from external knowledge graphs or entity names and completed
them as detailed in Section 2.1. Specifically, for FB15k-237, we map the anonymous entities
in FB15k-237 to entities in DBpedia by sameAs.org1, and then retrieved entity types and type
hierarchies through the meta-relations rdf:type and rdfs:subClassOf by querying DBpedia2. As
for NELL995, its entity names inherently include a specific type of entities, and the associated
website provides type hierarchies3. Our baselines include GraIL [1], TACT [6], CoMPILE [7] and
RMPI-NE [2]. We select RMPI-NE, a variant of RMPI, as the representative of models proposed
in [2] due to its superior performance than other variants. In our model, we also use RMPI-NE
to calculate 𝐸1(𝑢, 𝑟, 𝑣) in Equation 2. Our experiments aimed to demonstrate the effectiveness
of our type-enhanced model in improving performance of inductive link prediction.

1http://sameas.org/store/freebase/
2https://dbpedia.org/sparql
3http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz



Table 1 and Table 2 present the evaluation results of inductive link prediction on AUC-PR (area
under the precision-recall curve) and Hits@10 (the percentage of testing triples whose ground
truths are ranked within top-10 positions), respectively. The results of four baselines are taken
from [2]. The best results for each dataset are bold, and the second highest results are underlined.
We can see that our type-enhanced model achieves competitive performance in terms of AUC-PR
and outperforms the baselines on most datasets in terms of Hits@10. This suggests that the
incorporation of type information effectively prioritizes instance triples that are more likely to
adhere to the type constraints. The less impressive performance on the AUC-PR metric may be
attributed to the presence of inaccuracies in the raw type information. Additionally, it is worth
highlighting that our model consistently outperforms its base model RMPI-NE in most cases,
both in terms of AUC-PR and Hits@10. This underscores the effectiveness of our approach in
enhancing link prediction performance while emphasizing the need for further refinement in
handling type information for more accurate results.
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