
Training neural network method modification for forward

error propagation based on adaptive components

Victoria Vysotska1,†, Vasyl Lytvyn1,†, Mariia Nazarkevych1,†, Serhii Vladov2,∗,† ,

Ruslan Yakovliev2,† and Alexey Yurko3,†

1 Lviv Polytechnic National University, Stepan Bandera Street 12 79013 Lviv, Ukraine
2 Kremenchuk Flight College of Kharkiv National University of Internal Affairs, Peremohy Street 17/6 39605
Kremenchuk, Ukraine
3 Kremenchuk Mykhailo Ostrohradskyi National University, University Street 20 39600 Kremenchuk, Ukraine

Abstract
The work is devoted to the development of a training algorithm for forward propagation neural
networks, based on the backpropagation algorithm, through the use of adaptive elements, such as
adaptive training rate, adaptive initialization of neural network weights, adaptive regularization,
adaptive neuron activation function, adaptive change in neural network architecture, adaptive
mini-batch resizing. Using the example of solving the task of helicopter turboshaft engine
parameters debugging, it is shown that the developed algorithm made it possible to achieve almost
100 % accuracy of neural network training on both the training and validation data sets with a
minimum number of iterations. The work experimentally substantiates the optimal value of the
training rate coefficient, the number of neurons in the hidden layer of the neural network, and the
optimal number of iterations when training a neural network by determining the smallest value of
the final total standard deviation per epoch. It has been established that the use of L2-
regularization in the developed method of training a feed-forward neural network with adaptive
elements increases the regulation curve (or a similar dependence), increasing its values by the
amount of regularization and bringing it closer to unity. This led to an improvement in the accuracy
of setting the gas-generator rotor r.p.m. in the task of helicopter turboshaft engine parameters
debugging by half compared to the use of the well-known Delta-Bar-Delta neural network training
algorithm. Using the developed training algorithm for forward propagation neural networks with
adaptive elements reduces the error coefficient by 1.89 times and slightly increases the accuracy
of determining gas-generator rotor r.p.m. boundary values by 1.01 times, compared to the Delta-
Bar-Delta algorithm, in helicopter turboshaft engines parameter debugging.

Keywords
Neural network, helicopter turboshaft engines, training algorithm, parameters debugging,
adaptive elements, adaptive training rate, gas-generator rotor r.p.m., L2-regularization 1

MoMLeT-2024: 6th International Workshop on Modern Machine Learning Technologies, May, 31 - June, 1, 2024,
Lviv-Shatsk, Ukraine

∗ Corresponding author.
† These authors contributed equally.

 victoria.a.vysotska@lpnu.ua (V. Vysotska); vasyl.v.lytvyn@lpnu.ua (V. Lytvyn);
mariia.a.nazarkevych@lpnu.ua (M. Nazarkevych); serhii.vladov@univd.edu.ua (S. Vladov);
director.klk.hnuvs@gmail.com (R. Yakovliev); yurkoalexe@gmail.com (A. Yurko)

 0000-0001-6417-3689 (V. Vysotska); 0000-0002-9676-0180 (V. Lytvyn); 0000-0002-6528-9867
(M. Nazarkevych); 0000-0001-8009-5254 (S. Vladov); 0000-0002-3788-2583 (R. Yakovliev); 0000-0002-
8244-2376 (A. Yurko)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mariia.a.nazarkevych@lpnu.ua
mailto:serhii.vladov@univd.edu.ua
mailto:yurkoalexe@gmail.com

1. Introduction

Feedforward neural networks are one of the most widely used classes of artificial neural

networks. They comprise neurons organized into layers, with each neuron connected to

neurons in the next layer. Direct propagation means that signals are transmitted in only one

direction, from input nodes to output units [1, 2].

In feedforward neural networks, adaptive elements play a key role. These elements allow

the network to train from the data provided and adapt its weights and parameters to

achieve the desired output. One of the most common methods for adapting elements in

neural networks is the backpropagation algorithm, which uses gradient descent to adjust

the weights [3, 4].

Development of a neural network begins with defining its architecture, which includes

the number of layers, the number of neurons in each layer, and the choice of activation

functions. Then it is necessary to initialize the neuron weights with random values. The

training process involves passing data forward through the network (forward propagation),

estimating the error between the predicted and expected output, and then backpropagating

the error to adjust the weights using gradient descent. Once training is completed, the

network is tested on a separate dataset to evaluate its performance. This process is repeated

until a satisfactory level of neural network performance is achieved [5, 6].

Important aspects of neural network development are the correct choice of network

architecture, optimization of training parameters, and accurate data processing.

Feedforward neural networks with adaptive elements provide a powerful tool for modeling

complex relations in data and solving a variety of tasks in the fields of machine learning and

artificial intelligence [7, 8].

A critical drawback of the element adaptation method in feedforward neural networks,

namely the backpropagation algorithm, is its tendency to get stuck in local minima and

saddle points of the loss function, especially in the case of complex and non-smooth

functions. This can limit the network's ability to reach an optimal solution and slow down

the training process, requiring careful selection of hyperparameters and the use of

additional methods to avoid getting stuck [9, 10].

The work aim is to research and develop new methods for optimizing the

backpropagation algorithm in feedforward neural networks to improve its resistance to

getting stuck in local minima and saddle points of the loss function. This includes analyzing

problem situations, developing new gradient optimization methods and algorithms, and

experimentally testing and comparing their effectiveness on different datasets and network

architectures. The result should be innovative approaches that can increase the speed and

accuracy of neural network training, reduce the likelihood of getting stuck in local minima,

and provide more stable convergence to the optimal solution.

2. Related works

It is known that a feed-forward neural network consists of interacting adaptive elements

called neurons, each of which carries out a certain functional transformation of input signals

[11, 12].

In [13] the first proposed to represent the error backpropagation process using a

functional diagram known as a system backpropagation diagram. This diagram serves as a

visual tool to explain the operation of the backpropagation algorithm. The authors use it as

an aid to simplify the derivation of necessary expressions when analyzing dynamic neural

networks designed to process time-dependent signals. This method has also been used by

other authors, for example in [14, 15], as a visual way to represent backpropagation rules

when studying neural networks.

In [16], the approach proposed in [13] was expanded and streamlined by constructing a

neural network based on adaptive components, which must remain independent of each

other during the construction of a mathematical model of the network. Bidirectional

connections are established between the components, forming two combined graphs to

describe the transmission of signals in both directions. Each component performs signal

processing in both forward and backward directions and also adjusts its adaptive

parameters during training using the Delta-Bar-Delta method [17]. Unlike gradient descent

and torque, the main difference in this method is that each adaptive parameter is assigned

its training rate coefficient. At the end of each training epoch, both the adaptable parameters

and the training rate coefficient are corrected.

A critical disadvantage [16, 17] is the increased complexity of model control and tuning

due to the need to track and adjust individual training rate coefficients for each adaptive

parameter. This requires additional computational resources and time to conduct training

since each parameter must be separately configured according to the training dynamics,

which can slow down the process and complicate network configuration. In addition, there

is an increased likelihood of incorrectly selecting training rate coefficients, which can lead

to instability and poor model performance.

Thus, the relevance of the research is emphasized by the need to overcome the

difficulties associated with managing and tuning neural networks due to the increased

complexity of adaptive parameters that require individual adjustment of training rate

coefficients. This limits the training efficiency and stability of models, increasing the

likelihood of instability and slower training. In the context of the desire to improve the

performance and accuracy of neural networks, the development of new optimization

methods is becoming an urgent task aimed at improving the stability of training, reducing

setup time, and increasing the stability of models when converging to the optimal solution.

3. Methods and materials

One possible optimal adaptive element to improve the backpropagation algorithm could be

the “Adaptive Training Rate” (ATR). This element will dynamically change the training rate

depending on the gradients obtained at each training step (Table 1). The paper proposes an

algorithm for training a forward propagation neural network using an adaptive element in

the form of an "Adaptive Training Rate" by combining the backpropagation algorithm with

ATR.

Table 1

“Adaptive Training Rate” description (author's research)

Factor Description

Automatic regulation

of training speed

ATR allows the training rate to be adapted at each step based on

gradient information. If the gradients are small, which could

indicate that the network is near a local minimum or saddle

point, ATR will automatically reduce the training rate to prevent

the weights from changing too much and possibly getting stuck

at local minima or saddle points.

Quick adaptation to

changing conditions

ATR allows you to quickly adapt to changes in data structure or

task complexity. For example, if some model parameters require

more intensive training, ATR can increase the training rate for

those parameters, providing more efficient training.

Preventing

divergence and

increasing training

stability

An adaptive training rate can help prevent the backpropagation

algorithm from diverging by controlling the rate at which the

weights change. This provides more stable training and

improves the overall convergence of the neural network.

Improving training

efficiency

ATR allows for more efficient use of training resources because

it allows the training rate to be tailored to the specific conditions

of each training step, reducing the likelihood of overfitting and

accelerating convergence to the optimal solution.

Conclusion The introduction of an adaptive element in the form of an

"Adaptive Training Rate" can significantly improve the training

process of neural networks, making it more stable, efficient, and

resistant to various conditions and problems associated with the

backpropagation algorithm.

At the initial stage, adaptive initialization of the neural network weights is carried out by

calculating the average value of the input data and the dispersion of the input data according

to the expressions:

𝜇 =
1

𝑁
∙ ∑ 𝑥𝑖

𝑁

𝑖=1

, (1)

𝜎2 =
1

𝑁
∙ ∑(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

, (2)

where N is the number of training examples, xi is the input data.

Using weight initialization methods (for example, the He's method [18] or Xavier [19]),

the initial values of the weights are set, taking into account the obtained statistical

characteristics of the input data (Table 2).

Table 2

Initial weights initialization methods description (author's research)

He's method Xavier method

𝑊~𝑁 (0,
2

𝑛𝑖𝑛
),

where N(μ, σ2) is a normal distribution with

mean μ and variance σ2, nin is the number of

input neurons.

𝑊~𝑈 (−
√6

√𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

,
√6

√𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

),

where U(a, b) is a uniform distribution on

the interval [a, b], nout is the number of

output neurons.

Let 𝑊𝑖𝑗
(𝑙)

 be the weight connecting the i-th neuron in the l-th layer with the j-th neuron

in the next (l + 1)-th layer. For each training example x, the output �̂� of the neural network

is calculated according to the expressions:

𝑧(𝑙) = 𝑊(𝑙) ∙ 𝑎(𝑙−1) + 𝑏(𝑙), (3)

𝑎(𝑙) = 𝜎(𝑧(𝑙)), (4)

where z(l) is the weighted sum of inputs for the i-th layer, a(l) is the activation of the l-th layer,

σ is the activation function of the l-th layer.

Next, the error of the neural network is estimated using the loss function L and the

expected value of y according to the expression:

𝐸 =
1

2
∙ ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

. (5)

Next, the gradient of the loss function is calculated according to the neural network

weights according to the expressions:

𝛿
(𝐿)

=
𝜕𝐸

𝜕𝑧(𝑙)
= (𝑦 − �̂�) ∙ 𝜎′(𝑧(𝑙)), (6)

𝛿
(𝑙) = (𝑊(𝑙+1))

𝑇
∙ 𝛿

(𝑙+1)
⊙ 𝜎′(𝑧(𝑙)), (7)

where δ(l) is the error on the lth layer, ⊙ denotes element-wise multiplication

After calculating the gradient of the loss function from the neural network weights, the

weights are updated taking into account the gradient and the adaptive training rate

according to the expressions:

𝑊(𝑙) = 𝑊(𝑙) − 𝛼(𝑙) ∙
𝜕𝐸

𝜕𝑊(𝑙)
, (8)

𝑏(𝑙) = 𝑏(𝑙) − 𝛼(𝑙) ∙
𝜕𝐸

𝜕𝑏(𝑙)
, (9)

where α(l) is the adaptive training rate for the l-th layer.

In this case, the training rate at each step is updated according to the expression:

𝛼(𝑙) =
𝛼0

1 + 𝛽 ∙ ‖∇𝐿(𝜃)‖2
, (10)

where α0 is the initial training rate, β is the adaptation coefficient, ‖∇𝐿(𝜃)‖2 is the squared

norm of the gradient, L(θ) is the loss function, θ is the model parameters vector.

To control the retraining of the neural network, adaptive regularization is introduced

into the proposed training algorithm. Overfitting occurs when a model overfits the training

data and begins to lose its ability to generalize to new, previously unseen data. Adaptive

regularization allows you to dynamically adjust the level of regularization during training

depending on the current state of the network, which can improve its generalization ability

and prevent overfitting [20, 21]. For a given training algorithm that already includes

adaptive training rate and other gradient control techniques, L2 regularization may be

preferable to Dropout as it effectively controls overfitting by penalizing large weights while

keeping all neurons active during training. L2-regularization for a loss function L(θ) with

weights W and regularization coefficient λ is defined as:

𝐿2 = 𝐿 +
𝜆

2 ∙ 𝑁
∙ ∑‖𝑊(𝑙)‖

2
𝐿

𝑖=1

, (11)

where L is the number of layers in the neural network, λ is the regularization coefficient, N

is the number of training examples.

The regularization coefficient is determined according to the expression:

λ = const · Training rate, (12)

where “const” is a coefficient that is set manually and is usually chosen based on experience

or by brute force, and determines the importance of regularization compared to training

(training rate).

The choice of the optimal value for the regularization coefficient depends on the specific

task and data, as well as on the optimization method used. It should be chosen to provide

adequate control of overfitting without restricting model training too much. Typically, you

start with small values and gradually increase them while observing changes in model

performance on the validation dataset. The value can range from 10−6 to 10−2 depending on

the size of the data set and the complexity of the model. Thus, the initial value for the

constant const can be chosen, for example, equal to 10−4, and then adjusted during the

training process depending on the effectiveness of regularization and preventing

overfitting.

To improve the resistance of the training algorithm to getting stuck in local minima and

saddle points of the loss function, it is advisable to use a loss function, which contributes to

smoother and more predictable optimization. One option would be to use a smooth loss

function such as cross-entropy [22, 23] for classification tasks, and mean squared error for

regression tasks [24, 25]. In addition, you can consider using a loss function that takes into

account the distribution of the data and penalizes large deviations of the predicted values

from the actual values, for example, the Huber loss function [26] or the K-quantile loss

function [27].

A smooth loss function allows for smoother gradient changes and helps avoid sharp

jumps, which can lead to better convergence to a global minimum and prevent getting stuck

at local minima and saddle points. Choosing a smooth loss function allows the training

algorithm to adapt to different types of problems and data, allowing the neural network to

training more efficiently while minimizing the risk of getting stuck in local minima or saddle

points.

Loss functions such as Huber or K-quantile take into account the data distribution and

impose a more balanced error penalty without allowing large variations in the value of the

loss function, resulting in more stable optimization. However, a key disadvantage of Huber

or K-quantile functions over a smooth loss function is their less smooth nature, which can

lead to more complex optimization and slower neural network training.

One smooth loss function that is used here is a smooth version of the mean squared error

known as Smooth Mean Squared Error (SMSE) [28], which uses a smooth loss function

instead of the squared difference between the predicted and actual output. The SMSE

analytical expression looks like this:

𝐿(𝑦, �̂�) =
1

2 ∙ 𝑁
∙ ∑ smooth(𝑦𝑖 − �̂�𝑖)

𝑁

𝑖=1

, (13)

where smooth(𝑦𝑖 − �̂�𝑖) is a smooth function that replaces the absolute value in the squared

error.

Application (13) allows us to improve the resistance of the training algorithm to getting

stuck in local minima and saddle points of the loss function, since the smooth function

smooth(𝑦𝑖 − �̂�𝑖) ensures a smooth change in the gradient even in the vicinity of points

where the loss function has sharp changes. This avoids sudden jumps and allows gradient

descent to more efficiently find paths to the global minimum of the loss function, improving

the overall convergence of the training algorithm and preventing it from getting stuck at

local minima or saddle points.

Thus, the squared norm of the gradient is defined as:

𝐿‖∇𝐿(𝜃)‖2 = ∑ (
𝜕𝐿(𝑦, �̂�)

𝜕𝜃𝑖
)

2𝑁

𝑖=1

, (14)

where
𝜕𝐿(𝑦,�̂�)

𝜕𝜃𝑖
 is the partial derivative of the loss function L with respect to the i-th parameter

θi.

The adaptation coefficient for the proposed training algorithm is defined as:

𝛽 =
𝛽0

1 + 𝛾 ∙ ‖∇𝐿(𝜃)‖2
, (15)

where β0 is the initial value of the adaptation coefficient, γ is the adaptation coefficient for

the adaptation coefficient.

The initial value of the adaptation coefficient β0 and the adaptation coefficient for the

adaptation coefficient γ are usually set at the initialization stage of the training algorithm.

They are hyperparameters that are selected experimentally or using optimization

techniques such as cross-validation.

A small positive number, for example, 0.1 or 0.01, is usually selected as the initial value

of the adaptation coefficient β0. This initial value determines how quickly training rate

adaptation will begin. The lower the value, the faster adaptation will begin. The adaptation

factor for the adaptation factor is also chosen experimentally and depends on the specific

task and network architecture. Typically, it is selected in the range from 0.9 to 0.999. This

coefficient controls the adaptation speed of the adaptation coefficient itself: the closer to 1,

the slower the adaptation occurs.

In the proposed training algorithm, it is important to select an adaptive activation

function for the l-th layer, which will ensure stable and efficient transfer of gradients during

backpropagation. Given this goal, it is advisable to choose an activation function that has a

smooth gradient and reduces the likelihood of gradients decaying or exploding in deep

networks. Activation functions such as Mish, Swish or ELiSH [29, 30] may be preferable as

they not only provide a smooth gradient but also show high efficiency in optimizing and

generalizing neural network models. This choice of activation function is important to

ensure the stability and speed of convergence of the training algorithm, which in turn helps

to achieve better results in practice.

From these activation functions (Mish, Swish and ELiSH), it is advisable to select the Mish

function for the proposed training algorithm. The Mish function is a smooth and

continuously differentiable function that has good ability to adapt to different data and

reduce the likelihood of gradients decaying during backpropagation. Due to its shape and

unique properties, Mish demonstrates high efficiency in both optimization and

generalization of neural network models. Its use in this algorithm promotes more stable

and efficient training, which can ultimately lead to better results in practice. The adaptive

activation function Mish is described by the expression:

𝑀𝑖𝑠ℎ = 𝑥 ∙ tanh(softplus(𝑥)), (16)

where x is the input signal, tanh is the hyperbolic tangent, softplus is the softplus activation

function, defined as softplus(𝑥) = ln(1 + 𝑒𝑥).

Thus, the adaptive Mish function is a combination of a linear function x and a hyperbolic

tangent, which provides smoothness and continuous differentiability while maintaining

useful activation properties.

Adding adaptive training rate variation over time helps improve the stability and

training rate of the model, which in turn can lead to higher quality and more efficient

training. To add an adaptive change in the training rate over time in this algorithm, you can

use methods such as Learning Rate Schedulers or Learning Rate Decay (Table 3) [31, 32].

Learning Rate Schedulers allow you to dynamically change the training rate during

training depending on a specific schedule. For example, you can start with a higher training

rate and gradually decrease it as you progress in training or after a certain number of

epochs. This approach allows you to better adjust the training rate in accordance with the

training progress and the dynamics of changes in gradients.

Learning Rate Decay involves reducing the training rate after each epoch or a certain

number of training steps. This can be implemented by multiplying the current training rate

by a factor that decreases over time or with each epoch.

For example, after each epoch, you can reduce the training rate by a fixed percentage or

multiply it by a coefficient that depends on the quality indicator of the model on the

validation data set.

Table 3

Description of adaptive change in learning rate over time (author's research based on [31,

32])

Learning Rate Schedulers Learning Rate Decay

Step Decay:

𝛼𝑛𝑒𝑤 = 𝛼𝑜𝑙𝑑 ∙ 𝑓𝑎𝑐𝑡𝑜𝑟
⌊

𝑒𝑝𝑜𝑐ℎ
𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒

⌋
,

where αnew represents the new value of

parameter α, αold is the current value of

parameter α, "factor" is the constant

multiplier by which the parameter is

adjusted, "epoch" refers to the current

iteration or epoch in the process, "step

size" is the number of epochs after which

the parameter is updated.

Exponential Decay:

𝛼𝑛𝑒𝑤 = 𝛼𝑜𝑙𝑑 ∙ 𝑒−𝑑𝑒𝑐𝑎𝑦 𝑟𝑎𝑡𝑒∙𝑒𝑝𝑜𝑐ℎ ,

where “decay rate” is the decay coefficient

that determines the rate at which the

training rate decreases with each epoch.

Cosine Annealing Decay:

𝛼𝑛𝑒𝑤 = 𝛼0 ∙
1 + cos (𝜋 ∙

𝑒𝑝𝑜𝑐ℎ
max(𝑒𝑝𝑜𝑐ℎ)

)

2
,

where max(𝑒𝑝𝑜𝑐ℎ) is the total number of

training epochs.

The use of adaptive modification of the neural network architecture in the proposed

training algorithm can help improve the efficiency of the model by optimizing its structure

during the training process. This allows the model to adapt more quickly and accurately to

changing task conditions and requirements, which can ultimately lead to higher

performance and generalization ability. To adaptively change the architecture of a neural

network, automatic architecture differentiation (AutoML) is proposed, which allows the

structure of the neural network to be optimized during the training process using

optimization algorithms such as gradient descent. A neural network can automatically

change its architecture by adding or removing layers, adjusting their parameters, etc. to

improve performance based on training data [33, 34].

To optimize the neural network architecture, an optimization algorithm is used, for

example, gradient descent, according to which the task of optimizing the neural network

architecture is represented as:

𝜃∗ = arg min𝜃 𝐿(𝜃), (17)

where θ∗ are the optimal parameters of the model.

To calculate gradients based on the model parameters, the backpropagation algorithm

is used, which calculates the gradients of the loss function based on the network parameters

∇𝜃𝐿(𝜃). In the case of AutoML, gradients can also be calculated from model

hyperparameters such as number of layers, number of neurons, etc. This allows us to

optimize the network architecture during the training process. Hyperparameter gradients

can be computed using hyperparameter differentiation methods or approximate methods

such as REINFORCE or gradient backpropagation time (TBPTT) algorithms. After

computing the gradients across the model's parameters and hyperparameters, we can use

an optimization algorithm such as stochastic gradient descent (SGD) to update the

parameters and hyperparameters according to the resulting gradients. These steps form the

basis of the automatic architecture differentiation algorithm (AutoML), which allows a

neural network to change its structure during training to optimize its performance and

generalization ability.

The use of adaptive mini-batch resizing allows you to more flexibly manage the training

process and improve its efficiency. For example, if a model faces the problem of rapidly

changing gradients or computational inefficiency, increasing the mini-batch size can help

smooth out gradients and speed up training. Conversely, reducing the mini-batch size can

be useful to improve the generalization ability of the model or improve convergence in case

of overfitting [35]. Mathematically, the adaptive change in the mini-batch size is

implemented according to the expression:

𝑁𝑛𝑒𝑤 = ⌊𝑁𝑜𝑙𝑑 ∙ 𝜂⌋, (18)

where Nold is the current mini-batch size, Nnew is the new mini-batch size, η is the adaptation

coefficient, ⌊∙⌋ is the rounding down function.

The adaptation coefficient η is selected based on certain criteria or conditions. For

example, you can choose η such that the new mini-batch size increases or decreases

depending on the rate of model convergence or the dynamics of the gradients.

Once the new mini-batch size is calculated, it is applied to the next iteration of model

training. A new mini-batch is formed from training examples taking into account the new

size.

The proposed algorithm for training feedforward neural networks allowed us to

formulate the following theorem: training algorithm for a feedforward neural network with

adaptive initialization of weights, adaptive training rate, adaptive regularization, smooth

loss function, adaptive activation function, adaptive change in training rate over time,

adaptive change in neural network architecture and adaptively changing the mini-batch size

converges to an optimal solution to the training task with probability 1 if the following

conditions are met:

1. Limited training set: the training data set X consists of N independent and

identically distributed examples, where N → ∞.

2. Boundedness of the parameter space: the parameter space Θ of the model is

limited by the compact set K ⊂ ℝd, where d is the dimension of the parameter space.

3. Smoothness of the loss function: the loss function L(θ) is twice continuously

differentiable on K.

4. Convexity of the loss function: the loss function L(θ) is convex on K.

5. Strong convexity of the loss function: the loss function L(θ) is strongly

convex on K with a strong convexity constant m > 0.

6. Training rate adaptability: the training rate α(t) adapts over time in such a

way that it satisfies the following conditions: 𝛼(𝑡) > 0∀𝑡 > 0, ∑ 𝛼(𝑡)∞
𝑡=1 = ∞,

∑ (𝛼(𝑡))
2∞

𝑡=1 < ∞.

7. Adaptability of regularization: the regularization coefficient λ adapts over

time in such a way that it satisfies the following condition: 0 < 𝜆(𝑡) < 𝜆max∀𝑡 > 0.

8. Adaptability of the activation function: the activation function σ(x) is

continuously differentiable and monotonically increasing.

9. Adaptability of mini-batch size: The mini-batch size N(t) adapts over time in

such a way that it satisfies the following condition: 𝑁min < 𝑁(𝑡) < 𝑁max∀𝑡 > 0.

Proof of theorem. To prove this theorem, the stochastic gradient descent (SGD) method

is used in combination with parameters that adaptively change over time by specified

conditions. Let the loss function L(θ) be given, where θ are the parameters of the neural

network model. The aim is to minimize the loss function L(θ). For this, SGD is used, which

updates the parameters as 𝜃𝑡+1 − 𝜃𝑡 − 𝛼(𝑡) ∙ ∇𝐿(𝜃𝑡), where α(t) is the training rate at step

t, ∇𝐿(𝜃𝑡) is the gradient of the function losses in terms of parameters θ at step t. This

approach is generalized taking into account adaptive parameters: adaptive initialization of

weights is the initialization of neural network weights randomly, but taking into account

the size of the input layer and the number of neurons in the next layer; adaptive training

rate α(t) – the sequence α(t) is used, which satisfies the adaptability conditions; adaptive

regularization λ(t) is a sequence λ(t) is used that satisfies the adaptivity conditions; adaptive

activation function is a continuously differentiable and monotonically increasing activation

function is used; adaptive change in the size of the mini-batch N(t) is the sequence N(t) is

used, which satisfies the adaptivity conditions. When N → ∞, the training set covers the

entire data space, which allows the algorithm to train from a variety of examples, which

determines the boundedness of the training set. The compact parameter space ensures that

changes in the model parameters are limited, which is important for the convergence of the

algorithm. A doubly continuously differentiable loss function ensures a smooth loss surface,

which simplifies optimization, while a convex loss function ensures that the global

minimum is unique and achievable, but strong convexity ensures that the algorithm quickly

converges to a global minimum.

The convergence of the algorithm to the optimal solution is ensured by the convergence

of gradient descent and adaptive parameters. Provided that α(t) > 0 for all t > 0 and

∑ 𝛼(𝑡)∞
𝑡=1 = ∞, as well as ∑ (𝛼(𝑡))

2∞
𝑡=1 < ∞, gradient descent converges to a local minimum

of the loss function L(θ) with probability 1 under the conditions of smoothness and

convexity of L(θ). By adaptively changing the training rate α(t) and the regularization

coefficient λ(t) by the conditions of the algorithm, these parameters can adapt to the

characteristics of the loss function and ensure stable convergence of the algorithm.

Thus, by applying the stochastic gradient descent method to the loss function L(θ) with

adaptive training and regularization parameters, taking into account constraints on the data

and model parameters, the algorithm converges to the optimal solution with probability 1.

4. Experiment

The proposed algorithm for training a feedforward neural network with many adaptive

components finds wide practical applications in various fields of machine learning and

artificial intelligence. For example, in image processing, it can be used to train a neural

network to recognize objects in images with high accuracy, thanks to a smooth loss function

and an adaptive activation function, allowing it to efficiently process different types of data

and situations. Adaptive initialization of weights and training rates ensures fast model

convergence, adaptive regularization helps avoid overfitting. In addition, adaptive changes

in the architecture and size of the mini-batch allow you to optimize the training process by

the requirements of a specific task and the available computing resources. This approach

can be successfully applied in the fields of computer vision, natural language processing,

medical data analysis, and others where precise adaptation of the model to a variety of

conditions and data is required [36–40].

In [41], the use of direct propagation neural networks in the problem of debugging the

parameters of helicopter turboshaft engines (TE) is shown, which is based on the use of a

universal mathematical model for debugging the parameters of a helicopter TE and the

operating algorithm of the control device (Fig. 1), which leads to the elimination of

inconsistencies that calculated for each engine control element.

GTE model along the

r.p.m control loop

Model of an electronic governor

along the r.p.m. control loop

R.p.m. limitation

Fuel controller

Simulation

model 1

Simulation

model m

Control device

Fuel controller

reference model

Fuel system

GT

un
I

up

Control

element

Figure 1: Helicopter turboshaft engines fuel dispenser debugging diagram. (author's

research, published in [41]).

Using a universal approach, which is based on the use of Lyapunov functions, in [41]

universal tuning equations were obtained:

�̇�
𝑀

= 𝜀1 ∙ |𝐾 ∙ 𝛹(𝛼)|𝑇 or 𝐴𝑀 = ∫ 𝜀1 ∙ |𝐾 ∙ 𝛹(𝛼)|𝑇𝑑𝑡, (19)

�̇�
𝑀

= 𝜀1 ∙ |𝐿 ∙ 𝛷(𝐼)|𝑇 or 𝐵𝑀 = ∫ 𝜀1 ∙ |𝐿 ∙ 𝛷(𝐼)|𝑇𝑑𝑡, (20)

�̇�
𝑀

= 𝜀2 ∙ |𝑀 ∙ 𝑄(𝐺𝑇)|𝑇 or 𝐶𝑀 = ∫ 𝜀2 ∙ |𝑀 ∙ 𝑄(𝐺𝑇)|𝑇𝑑𝑡, (21)

�̇�
𝑀

= 𝜀2 ∙ |𝑁 ∙ 𝑈(𝛼)|𝑇 or 𝐷𝑀 = ∫ 𝜀2 ∙ |∙ 𝑈(𝛼)|𝑇𝑑𝑡, (22)

where AM, BM, CM, DM are the tunable coefficients are equal, after the end of the identification

process, to the coefficients of the equations describing the fuel dispenser, Ψ(α), Φ(I), Q(GT);

U(α) are the nonlinear functions, ε1, ε2 are the residual signals, K, L, M, N are the positive

definite diagonal matrices of given constant coefficients [41].

The identified values of the coefficients AM, BM, CM, DM, which describe a real fuel

dispenser, are compared with the values AE, BE, CE, DE of the reference model of the

dispenser. Signals of differences between identified and reference coefficients 𝛿𝐴 = 𝐴𝑀 −

𝐴𝐸 , 𝛿𝐵 = 𝐵𝑀 − 𝐵𝐸 , 𝛿𝐶 = 𝐶𝑀 − 𝐶𝐸 , 𝛿𝐷 = 𝐷𝑀 − 𝐷𝐸 are used to debug the fuel dispenser. The

amount of movement of the actuators is determined by the sensitivity of the fuel dispenser

to the movement of the engine control element.

To demonstrate the use of a feedforward neural network using adaptive elements to

solve the task of helicopter TE parameters debugging at flight modes, a two-dimensional

classification scenario was researched in [41], which consists in the fact that one of two

random narrow-band processes is observed using a quadrature demodulator. In this case,

the probability density function of each of these processes is described by the following

expression:

𝑝(𝐼, 𝑄) =
1

√2 ∙ 𝜋
∙ exp (− (

(𝐼 − 𝑚𝐼)2

2 ∙ 𝜎𝐼
2 +

(𝑄 − 𝑚𝑄)
2

2 ∙ 𝜎𝑄
2)), (23)

where σI, σQ are the dispersions, mI, mQ are the mathematical expectations of components I

and Q, I corresponds to the values of the gas-generator rotor r.p.m. nTC, Q corresponds to the

values of specific fuel consumption Ce.

As a solution to this task, in [41] the data distribution area of two classes (I and Q) and

boundary lines at levels 0.1, 0.5, 0.9 were obtained, which shows the permissible and

unacceptable values of the gas-generator rotor r.p.m. nTC according to the specific fuel

consumption Ce.

In this work, by conducting a corresponding computational experiment, it is proposed to

solve the same problem with a feed-forward neural network, while applying the proposed

training algorithm. To conduct the computational experiment, a personal computer was

used, AMD Ryzen 5 5600 processor, 32 KB third-level cache, Zen 3 architecture, 6 cores, 12

threads, 3.5 GHz, RAM – 32 GB DDR-4.

To solve the task of helicopter TE parameters debugging (on the example of TV3-117

turboshaft engine), as a training sample. We will use the values of the gas generator rotor

r.p.m. nTC at the takeoff mode, reduced to absolute values [41, 42], given in Table 4, and the

parameters of the average engine fleet the next: �̅�𝑇𝐶 = 0.994, 𝐶�̅� = 0.977.

In the input signal approximation task, according to [41], the dependence of the specific

fuel consumption Ce on the gas generator rotor r.p.m. nTC for the TV3-117 turboshaft engine

(which represents an element of the engine throttle characteristic) is presented. Fig. 2

shows the input data, indicated by points, which are approximated by broken lines for

clarity.

Table 4

Training set fragment (author's research, published in [41])

Number Gas generator rotor r.p.m. nTC Specific fuel consumption Ce

1 0.998 0.972

2 0.998 0.978

3 0.992 0.964

4 0.992 0.984

5 0.991 0.998

6 0.995 0.979

7 0.991 0.970

8 0.996 0.990

9 0.998 0.965

10 0.989 0.990

… … …

256 0.993 0.964

Figure 2: Diagram of dependence Ce = f(nTC) and the result of approximation. (author's

research, published in [41]).

At the stage of training sample pre-processing, its homogeneity is checked, divided into

control and test samples, as well as an assessment of their representativeness using cluster

analysis. To assess the homogeneity of the training set, the calculation of the Fisher-Pearson

criterion [43] is used based on the observed frequencies and comparison with the critical

values of χ2 with the number of degrees of freedom r – k –1 = 13 and the significance level

α = 0.01. This allows us to determine when statistical significance is accepted only if the

probability of obtaining these or more extreme results given the null hypothesis is less than

1 %.

The resulting value χ2 = 18.388 does not exceed the critical value of 30.577, which

confirms the consistency of the samples and the hypothesis of normal distribution.

To confirm homogeneity, the Fisher-Snedecor [44] criterion is adopted, which is the

ratio of the values of the larger and smaller dispersion with degrees of freedom r – k –1 =

13 and the significance level α = 0.01.

The resulting value of F = 3.393 does not exceed the critical value of 3.61, which confirms

the consistency of the samples and the hypothesis of normal distribution.

The representativeness of the training and test samples was assessed using cluster

analysis, the aim of which is to divide the set of input data X (Table 4) into k disjoint clusters,

where k is a predetermined number of clusters. Each cluster is a group of objects that are

considered more similar to each other than to objects from other clusters. The work uses

the k-means cluster analysis method, which is based on minimizing the sum of squared

distances between cluster objects and their centroids. Each object xi of set X is assigned to

the nearest centroid according to 𝐶𝑖 = arg min𝑗‖𝑥𝑖 − 𝜇𝑗‖
2

, where μj are the initial centroids,

‖𝑥𝑖 − 𝜇𝑗‖
2

 is the Euclidean distance between object xi and centroid μj. After this, the

centroids are recalculated as the average value of objects within each cluster according to

𝜇𝑗 =
1

|𝐶𝑗|
∙ ∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗

, where |𝐶𝑗| is the number of objects in the j-th cluster. The calculations

of Ci and μj are repeated until changes in the cluster distribution are minimal. The algorithm

terminates when none of the centroids changes significantly or the specified number of

iterations is completed [45]. The results of the cluster analysis of the training sample data

(Table 4) identified 8 classes (classes I…VIII). After random selection, training and test

samples were compiled in a 2:1 ratio (67 and 33 %, respectively). The cluster analysis of

both samples revealed the presence of eight groups in them, which indicates the similarity

of the composition of both training and test samples. The distances between groups are

almost the same in both samples, which confirms the similarity of their composition (Fig. 3).

Thus, the optimal sample size was obtained: training – 256 elements (100 %), control – 172

elements (67 % of the training sample), test – 84 elements (33 % of the training sample).

 a b

Figure 3: Diagram of dependence Ce = f(nTC) and the result of approximation. (author's

research, published in [41]).

As part of the computational experiment, a forward propagation neural network was

used (Fig. 4), the inputs of which are the parameters of the gas generator rotor r.p.m. nTC

and specific fuel consumption Ce, and the outputs are their optimal values nTCopt and Ce opt.

During its training with the proposed algorithm, the dependences of the accuracy (Fig. 5)

and losses (Fig. 6) of the neural network on the number of iterations (100 iterations were

used in the work) were obtained, in which the “blue curve” means training on the training

sample, the “orange curve” means validation on a control sample. From Fig. 5 it can be seen

that the limiting value of accuracy reaches 1, and from Fig. 6 shows that the maximum loss

value does not exceed 0.025. This indicates a high degree of efficiency in training the model

on the provided data and the ability of the model to generalize to new data with high

accuracy, which makes it potentially suitable for solving the task of helicopter TE parameter

debugging.

w
11
(1)

w
23
(1)

w
01

w
03

w
02

w
11
(2)

w
32
(2)

nTС

Ce

nTСоpt

Ce оpt

Figure 4: The proposed feedforward neural network for solving the task of helicopter TE

parameters debugging. (author's research, published in [41]).

Figure 5: Diagram of changes in the neural network accuracy function with 100 iterations.

(author's research).

Figure 6: Diagram of changes in the neural network loss function with 100 iterations.

(author's research).

In this case, the loss function was determined according to (13), and the accuracy

function – according to the expression:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∙ ∑ 𝐼(𝑦, �̂�)

𝑁

𝑖=1

, (24)

where N is the total number of examples, yi is the true value of the target variable for the i-th

example, �̂� is the predicted value of the target variable for the i-th example, 𝐼(𝑦, �̂�) is an

indicator function that returns 1 if the predicted value matches with true 𝑦 = �̂�, and 0

otherwise.

5. Results

The results of the computational experiment are both partial researches of the proposed

neural network training algorithm, and boundary lines at levels 0.1, 0.5, 0.9, which shows the

permissible and unacceptable values of the gas-generator rotor r.p.m. nTC according to the

specific fuel consumption Ce, which must be compared with the corresponding results

obtained in [41].

The adequacy of the resulting diagram of the area of distribution of data of two classes

(I and Q), reconstructed by a neural network, directly depends on the training process.

According to [46], a number of parameters are identified that affect the quality of training:

training rate coefficient (assumed 10−4); number of neurons in the hidden layer

(assumed 10); number of training epochs completed (assuming 100 training epochs).

As a criterion for assessing the quality of training, the final total standard deviation for

the epoch was used, which is determined according to the expression:

𝐸𝑒𝑝𝑜𝑐ℎ =
1

𝑁
∙ ∑ (

1

2
∙ ∑(𝑦𝑘 − �̂�𝑘)2

𝑛

𝑘=1

) .

𝑁

𝑖=1

 (25)

The results of the researches are given in Table 5–7 and in Fig. 7–9, where: Fig. 7 –

diagram determining the influence of the training rate on the final standard deviation; Fig.

8 – diagram determining the influence of the number of hidden neurons on the final

standard deviation; Fig. 9 – diagram determining the influence of the number of epochs

passed on the final standard deviation.

Table 5

Influence of the training rate coefficient on the resulting error (author's research)

Number Training rate coefficient Final standard deviation

1 0.0001 3.642

2 0.0005 4.018

3 0.001 6.024

4 0.002 6.547

5 0.003 7.112

6 0.004 7.937

7 0.005 8.645

8 0.006 9.202

9 0.008 10.383

10 0.01 12.002

Table 6

Influence of the number of neurons in the hidden layer on the resulting error (author's

research)

Number Number of neurons in the hidden layer Final standard deviation

1 2 8.307

2 5 8.865

3 10 4.317

4 15 6.997

5 20 9.005

6 25 10.513

7 30 11.817

8 35 9.545

9 40 8.997

10 45 10.816

Table 7

Influence of the number of epochs passed on the resulting error (author's research)

Number Epoch of training passed Final standard deviation

1 0 25.346

2 20 22.717

3 40 19.657

4 60 14.008

5 80 7.856

6 100 3.358

7 150 3.358

8 200 3.358

9 300 3.358

10 500 3.358

Figure 7: Diagram determining the influence of the training rate on the final standard

deviation. (author's research).

Figure 8: Diagram determining the influence of the number of hidden neurons on the final

standard deviation. (author's research).

Figure 9: Diagram determining the influence of the number of epochs passed on the final

standard deviation. (author's research).

From the results obtained it follows that the minimum final total standard deviations per

epoch were obtained with the optimal value of the training rate coefficient being 10−4 and

10 neurons in the hidden layer. It is worth noting that in [41], the optimal number of

neurons in the hidden layer is 3. Increasing the number of neurons in the hidden layer from

3 to 10 leads to a noticeable improvement in the generalization ability of the model and a

reduction in the risk of overfitting. Increasing the number of neurons to 10 allows the model

to more flexibly adapt to complex relations in the data, which helps improve the accuracy

of predictions on new, previously unseen data. This is because more neurons allow the

model to training more complex features and data structures, which is especially important

in the case of high-dimensional and complex data. Thus, increasing the number of neurons

to 10 in the hidden layer is a promising step to improve the quality of the neural network.

It is also worth noting that, starting from 100 training epochs, the minimum final total

standard deviation is minimal and constant – 3.358, which indicates that the model has

achieved optimal accuracy on this data set and further training does not lead to a significant

improvement in results. This may indicate that the model has trained to predict the target

variable with high accuracy and additional training epochs do not bring a significant increase

in the quality of predictions. Thus, a constant value of the minimum total standard deviation

after 100 epochs indicates the convergence of the model and its readiness to be used for

solving practical tasks. Thus, the proposed forward propagation neural network for solving

the task of helicopter TE parameters debugging (Fig. 4) is transformed into the form

presented in Fig. 10.

w
11
(1)

w
01

w
11
(2)

nTС

Ce

nTСоpt

Ce оpt

Figure 10: Refined proposed feedforward neural network for solving the task of helicopter

TE parameters debugging (author's research, published in [41]).

At the next stage of the computational experiment, the control curve 𝐶𝑒 = 𝑓(�̅�𝑇𝐶) is

researched, which, according to [41], is presented in the form:

𝐶𝑒(�̅�𝑇𝐶) = 0.0016 ∙ 𝑛𝑇𝐶
4 − 0.0195 ∙ 𝑛𝑇𝐶

3 + 0.0864 ∙ 𝑛𝑇𝐶
2 − 0.1774 ∙ 𝑛𝑇𝐶 + 0.4083, (26)

where �̅�𝑇𝐶 =
𝑛𝑇𝐶

𝑛𝑇𝐶max
 is the relative value of the gas-generator rotor r.p.m. nTC.

Fig. 11 shows a diagram of dependence of the objective function 𝐶𝑒(�̅�𝑇𝐶) → min from the

of the gas generator rotor r.p.m nTC value, where “blue curve” shows the original

dependence obtained in [41], “orange curve” shows the dependence obtained in this work

using L2-regularization (11). In this case, the objective function will have an updated form:

𝐶𝑒(�̅�𝑇𝐶)𝐿2 = 𝐶𝑒(�̅�𝑇𝐶) + (𝐿 +
𝜆

2 ∙ 𝑁
∙ ∑‖𝑊(𝑙)‖

2
𝐿

𝑖=1

), (27)

or

𝐶𝑒(�̅�𝑇𝐶)𝐿2 = 0.0016 ∙ 𝑛𝑇𝐶
4 − 0.0195 ∙ 𝑛𝑇𝐶

3 + 0.0864 ∙ 𝑛𝑇𝐶
2 − 0.1774 ∙ 𝑛𝑇𝐶 + 0.4083

+ (𝐿 +
𝜆

2 ∙ 𝑁
∙ (𝑊(1) + 𝑊(2) + 𝑊(3) + 𝑊(4) + 𝑊(5))),

(28)

where W(1), W(2), W(3), W(4), W(5) are the model weights corresponding to each of the five

terms in the original function 𝐶𝑒(�̅�𝑇𝐶) (26).

Figure 11: Diagram of the objective function dependence from the gas generator rotor

r.p.m. value. (author's research).

As can be seen from Fig. 11, adding L2-regularization to the objective function made it

possible to raise the adjustment curve 𝐶𝑒 = 𝑓(�̅�𝑇𝐶) up by the regularization value, bringing

it closer to 1, by adding to the original one function that increases its values. This allows the

model to more effectively take into account the complexity of the data and reduce the risk

of overfitting, due to a penalty for large values of the weighting coefficients. A raised curve

provides a more stable and robust optimization of the model, which can lead to improved

generalization ability and predictive accuracy on new data. In this case, objective function

minimum 0.40 is reached at the value r.p.m. 0.992. Thus, the correction of the mean value

of nTС by 𝑛𝑇𝐶
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0.994 − 0.991 = 0.003, while the value 𝑛𝑇𝐶

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0.006 obtained in

[41]. Thus, the addition of L2-regularization made it possible to more accurately (2 times

compared to [41]) adjust the gas generator rotor r.p.m nTC value and bring it closer to the

average value for the engine fleet �̅�𝑇𝐶 = 0.994.

The results obtained made it possible to obtain a refined area of distribution of data of

two classes (I and Q) with boundary values of nTC, respectively, lines at levels 0.1, 0.5, 0.9

(Fig. 12).

Figure 12: Data of two classes (blue area – allowed values nTC and Ce; red area – invalid

values nTC and Ce) and boundary lines at levels 0.1, 0.5, 0.9. (author's research).

Fig. 12 allows you to determine the areas in which each of the classes is most likely to be

found. Refined limit values of nTC on lines at levels 0.1, 0.5, 0.9 make it possible to more

accurately determine the optimal gas generator rotor r.p.m nTC values to achieve the

required levels of specific fuel consumption Ce. As can be seen from Fig. 12, the region of

unacceptable values of nTC and Ce (red region) includes their values located at the

boundaries of this region. This indicates that it is inadmissible to regulate the nTC parameter

to obtain the maximum permissible value of Ce. “Level 0.1” means the lower level of

permissible Ce values, “Level 0.5” – optimal Ce values, “Level 0.9” – maximum permissible Ce

values. The inadmissibility of adjusting the nTC parameter to obtain the maximum

permissible value of Ce in helicopter flight mode is explained by the fact that in this context

there is a certain connection between the gas-generator rotor r.p.m. nTC and the specific fuel

consumption Ce, which is determined by the optimal operating conditions of the engine.

When adjusting the gas-generator rotor r.p.m. nTC to achieve the maximum permissible

value of specific fuel consumption Ce located on the border of the red area in the figure, the

system may go beyond the permissible parameters of engine operation. This can lead to

undesirable consequences such as engine overheating, loss of flight stability, or even a

crash. To ensure the safety and normal operation of the helicopter at flight mode, it is

important to maintain optimal engine operating parameters, including those related to the

gas-generator rotor r.p.m., to avoid going beyond the permissible range of specific fuel

consumption values. Thus, Fig. 12 provides important information for regulating system

operation parameters, as it allows you to determine the optimal nTC values to achieve the

desired specific fuel consumption indicators.

6. Discussion

The work carried out a comparative analysis of the solution to the task of helicopter TE

parameters debugging based on a feed-forward neural network with adaptive elements

using both the training algorithm proposed in the work and the Delta-Bar-Delta algorithm

used in [41]. The I and II type errors were calculated in obtaining the gas-generator rotor

r.p.m. nTC boundary values to achieve the required levels of specific fuel consumption Ce

(Table 8).

A type I error occurs when the null hypothesis H0 is rejected when it is in fact true, and

is defined as:

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 𝑃(reject 𝐻0|𝐻0 true). (29)

A type II error occurs when accepting the null hypothesis H0 when it is in fact false, and

is defined as:

𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = 𝑃(accept 𝐻0|𝐻0 false). (30)

The null hypothesis H0 in the problem under consideration is that the use of a

feedforward neural network to determine the gas-generator rotor r.p.m. nTC boundary

values does not lead to statistically significant changes in achieving the required levels of

specific fuel consumption Ce.

The significance level adopted in this work is 0.01, which means that when conducting a

statistical test with this level of significance, the probability of a type I error is 0.01. That is,

if the test results reject the null hypothesis at this significance level, then the probability of

making a type I error is 1 %, which is a low enough probability level to detect statistically

significant differences between groups or conditions.

Table 8

The results of determining the 1st and 2nd type errors (author's research)

Neural network type The probability of error in determining

a gas-generator rotor r.p.m. nTC

boundary values

Type 1st error Type 2nd error

Feed-forward neural network with adaptive

elements using both the training algorithm

proposed in the work

0.57 0.38

Feed-forward neural network with adaptive

elements using Delta-Bar-Delta algorithm

used in [41]

0.94 0.65

Table 8 shows that the use of a feedforward neural network with adaptive elements,

trained on the basis of the algorithm proposed in the work, made it possible to reduce the

types first and second errors by 1.65...1.71 times compared with the use of the Delta-Bar-

Delta algorithm for its training [41] at the significance level is 0.01.

At the final stage of the comparative analysis, the efficiency coefficients and quality

coefficients of the feedforward neural network with adaptive elements were calculated for

both the proposed training algorithm and the Delta-Bar-Delta algorithm [41], according to

the expressions [47–50] (Table 9):

𝐾𝑒𝑟𝑟𝑜𝑟 =
𝑇𝑒𝑟𝑟𝑜𝑟

𝑇0
∙ 100%, (31)

𝐾𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = (1 −
𝑇𝑒𝑟𝑟𝑜𝑟

𝑇0
) ∙ 100%, (32)

where Kerror and Kquality represent the errorneus and quality coefficients [51–53] for

determining the gas-generator rotor r.p.m. nTC boundary values by a feedforward neural

network with adaptive elements; Terror indicates the total time of segments associated with

misclassification [54], while T0 denotes the duration of the test sample [55] (in this work,

T0 = 5 s is assumed) [56–58].

Table 9

Results of calculating the quality and efficiency coefficients (author's research)

Parameter Feed-forward neural

network with adaptive

elements using both the

training algorithm

proposed in the work

Feed-forward neural

network with adaptive

elements using Delta-Bar-

Delta algorithm used in

[41]

Kerror Kquality Kerror Kquality

Gas-generator rotor r.p.m.

nTC boundary values
0.317 99.965 0.598 99.201

From Table 9 it can be seen that the use of a forward propagation neural network with

adaptive elements, trained based on the algorithm proposed in the work, made it possible

to reduce the erroneous coefficient by 1.89 times and slightly (1.01 times) increase the

quality coefficient for determining the gas-generator rotor r.p.m. nTC boundary values

compared with the use Delta-Bar-Delta algorithm [41].

7. Conclusions

1. For the first time, a training algorithm for forward propagation neural networks has

been developed, based on the backpropagation algorithm, which, through the use of

adaptive elements, such as adaptive training rate, adaptive initialization of neural network

weights, adaptive regularization, adaptive neuron activation function, adaptive change in

neural network architecture, adaptive change in the size of the mini-batch made it possible

to achieve almost 100% accuracy of their training on both the training and validation data

sets with a minimum number of iterations.

2. The training rate coefficient optimal value, the number of neurons in the hidden

layer of the neural network, and the iterations optimal number when training a neural

network were experimentally substantiated by determining the smallest value of the final

total standard deviation per epoch. By conducting a computational experiment to solve the

task of helicopter turboshaft engine parameters debugging with 2 input neurons and 2

output neurons, as well as 256 elements of the training set, the optimal training rate

coefficient value was obtained – 0.0001, the optimal number of neurons in the hidden layer

of the neural network – 10, the optimal number of iterations – 100, since they correspond

to the minimum values of the final total standard deviation for the epoch, which,

respectively, amounted to 3.642, 4.317, 3.358.

3. It has been experimentally proven that the use of L2-regularization in the developed

feed-forward neural network training algorithm with adaptive elements raises the

adjustment curve (or a similar researched dependence) by the regularization value,

bringing it closer to 1, by adding term to the original function, which increases its meanings.

This made it possible, in the task of helicopter turboshaft engine parameters debugging, to

adjust the gas-generator rotor r.p.m. value 2 times more accurately, compared with the use

of the well-known Delta-Bar-Delta neural network training algorithm.

4. An updated area of data distribution of two classes (gas-generator rotor r.p.m. and

specific fuel consumption) was obtained with gas-generator rotor r.p.m. boundary values,

respectively, lines at levels 0.1, 0.5, 0.9, which reduced errors of the first and second kind

by 1.65...1.71 times compared with the use of the Delta-Bar-Delta neural networks training

algorithm.

5. It has been mathematically proven that the use of the developed training algorithm

for forward propagation neural networks with adaptive elements reduces the erroneous

coefficient by 1.89 times and slightly (1.01 times) increases the quality coefficient for

determining the gas-generator rotor r.p.m. boundary values in the task of helicopter

turboshaft engines parameters debugging compared with the use of Delta-Bar-Delta neural

network training algorithm.

Acknowledgements

This research was supported by the Ministry of Internal Affairs of Ukraine “Theoretical and

applied aspects of the development of the aviation sphere” under Project No. 0123U104884.

References

[1] M. Heidari, M. H. Moattar, H. Ghaffari, Forward propagation dropout in deep neural

networks using Jensen–Shannon and random forest feature importance ranking,

Neural Networks 165 (2023) 238–247. doi: 10.1016/j.neunet.2023.05.044.

[2] M. El-Sharkawy, M. Wael, M. Mashaly, E. Azab, Re-configurable parallel Feed-Forward

Neural Network implementation using FPGA, Integration 97 (2024) 102176.

doi: 10.1016/j.vlsi.2024.102176.

[3] W.-K. Hong, 4 - Forward and backpropagation for artificial neural networks, in: W.-

K. Hong (Ed.), Artificial Intelligence-Based Design of Reinforced Concrete Structures,

Woodhead Publishing, Sawston, England, 2023, pp. 67–116. doi: 10.1016/B978-0-443-

15252-8.00006-6.

[4] X. Zhu, M. Li, X. Liu, Y. Zhang, A backpropagation neural network-based hybrid energy

recognition and management system, Energy 297 (2024) 131264.

doi: 10.1016/j.energy.2024.131264

[5] A. Sachenko, V. Kochan, V. Turchenko, V. Tymchyshyn, N. Vasylkiv, Intelligent nodes for

distributed sensor network, in: Proceedings of the 16th IEEE Instrumentation and

Measurement Technology Conference (IMTC/99), Venice, Italy, 1999, pp. 1479–1484.

doi: 10.1109/IMTC.1999.776072

[6] A. Sachenko, V. Kochan, V. Turchenko, Intelligent distributed sensor network, in:

IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement

Technology Conference. Where Instrumentation is Going, St. Paul, MN, USA, 1998,

pp. 60–66. doi: 10.1109/IMTC.1998.679663

[7] S. Babichev, M. Korobchynskyi, O. Lahodynskyi, O. Korchomnyi, V. Basanets, V.

Borynskyi, Development of a technique for the reconstruction and validation of gene

network models based on gene expression, Eastern-European Journal of Enterprise

Technologies 1(4 (91)) (2018) 19–32. doi: 10.15587/1729-4061.2018.123634

[8] S. Babichev, V. Lytvynenko, J. Skvor, J. Fiser, Model of the objective clustering inductive

technology of gene expression profiles based on SOTA and DBSCAN clustering

algorithms, Advances in Intelligent Systems and Computing 689 (2018) 21–39.

doi: 10.1007/978-3-319-70581-1_2

[9] O. Ivanov, L. Koretska, V. Lytvynenko, Intelligent modeling of unified communications

systems using artificial neural networks, CEUR Workshop Proceedings 2623 (2020)

77–84.

[10] S. Vladov, R. Yakovliev, O. Hubachov, J. Rud, Neuro-Fuzzy System for Detection Fuel

Consumption of Helicopters Turboshaft Engines, CEUR Workshop Proceedings 3628

(2024) 55–72.

[11] L. Wang, W. Ye, Y. Zhu, F. Yang, Y. Zhou, Optimal parameters selection of back

propagation algorithm in the feedforward neural network, Engineering Analysis with

Boundary Elements 151 (2023) 575–596. doi: 10.1016/j.enganabound.2023.03.033

[12] H. Calvo-Pardo, T. Mancini, J. Olmo, Granger causality detection in high-dimensional

systems using feedforward neural networks, International Journal of Forecasting 37:2

(2021) 920–940. doi: 10.1016/j.ijforecast.2020.10.004

[13] K. S. Narendra, K. Parthasarathy, Identification and Control of Dynamical Systems Using

Neural Networks, IEEE Transactions on Neural Networks 1:1 (1990) 4–27.

doi: 10.1109/72.80202

[14] J. M. Maroli, Generating discrete dynamical system equations from input–output data

using neural network identification models, Reliability Engineering & System Safety

235 (2023) 109198. doi: 10.1016/j.ress.2023.109198

[15] R. G. Ramirez-Chavarria, M. Schoukens, Nonlinear Finite Impulse Response Estimation

using Regularized Neural Networks, IFAC-PapersOnLine 54:7 (2021) 174–179.

doi: 10.1016/j.ifacol.2021.08.354

[16] E. Efimov, T. Shevgunov, Development of feedforward neural networks using adaptive

elements, Journal of Radio Electronics, 8 (2012).

URL: http://jre.cplire.ru/win/aug12/4/text.html

[17] G. Dudek, A constructive approach to data-driven randomized learning for feedforward

neural networks, Applied Soft Computing 112 (2021) 107797.

doi: 10.1016/j.asoc.2021.107797

[18] P. Dumka, P. S. Pawar, A. Sauda, G. Shukla, D. R. Mishra, Application of He's homotopy

and perturbation method to solve heat transfer equations: A python approach,

Advances in Engineering Software 170 (2022) 103160.

doi: 10.1016/j.advengsoft.2022.103160

[19] J. Li, Y. Song, X. Song, D. Wipf, On the Initialization of Graph Neural Networks. in:

Proceedings of the 40th International Conference on Machine Learning, Honolulu,

Hawaii, USA, 2023, pp. 19911–19931. doi: 10.48550/arXiv.2312.02622

[20] M. Li, S. Bi, G. Cai, An adaptive fractional-order regularization primal-dual image

denoising algorithm based on non-convex function, Applied Mathematical Modelling

131 (2024) 67–83. doi: 10.1016/j.apm.2024.04.001

[21] C. Liu, R. Li, S. Chen, L. Zheng, D. Jiang, Adaptive dual graph regularization for clustered

multi-task learning, Neurocomputing 574 (2024) 127259. doi:

10.1016/j.neucom.2024.127259

[22] G. Sun, B. Ji, L. Liang, M. Chen, CeCR: Cross-entropy contrastive replay for online class-

incremental continual learning, Neural Networks 173 (2024) 106163.

doi: 10.1016/j.neunet.2024.106163

[23] J. Chan, I. Papaioannou, D. Straub, Bayesian improved cross entropy method for

network reliability assessment, Structural Safety 103 (2023) 102344.

doi: 10.1016/j.strusafe.2023.102344

[24] C. Wang, J. Zhou, An adaptive index smoothing loss for face anti-spoofing, Pattern

Recognition Letters 153 (2022) 168–175. doi: 10.1016/j.patrec.2021.12.006

[25] A. Bosman, A. Engelbrecht, M. Helbig, Visualising basins of attraction for the cross-

entropy and the squared error neural network loss functions, Neurocomputing 400

(2020) 113–136. doi: 10.1016/j.neucom.2020.02.113

[26] Y. Wang, Y. Zhu, Q. Sun, L. Qin, Adaptively robust high-dimensional matrix factor

analysis under Huber loss function, Journal of Statistical Planning and Inference 231

(2024) 106137. doi: 10.1016/j.jspi.2023.106137

[27] J. Zhang, H. Yang, Bounded quantile loss for robust support vector machines-based

classification and regression, Expert Systems with Applications 242 (2024) 122759.

doi: 10.1016/j.eswa.2023.122759

[28] A. Araveeporn, An estimating parameter of nonparametric regression model based on

smoothing techniques, Statistical Journal of the IAOS 35:2 (2019) 269–276.

doi: 10.3233/SJI-180477

[29] S. R. Dubey, S. K. Singh, B. B. Chaudhuri, Activation functions in deep learning: A

comprehensive survey and benchmark, Neurocomputing 503 (2022) 92–108.

doi: 10.1016/j.neucom.2022.06.111

[30] G. Bingham, R. Miikkulainen, Discovering Parametric Activation Functions, Neural

Networks 148 92022) 48–65. doi: 10.1016/j.neunet.2022.01.001

[31] J. Wei, X. Zhang, Z. Zhuo, Z. Ji, Z. Wei, J. Li, Q. Li, Leader population learning rate schedule,

Information Sciences 623 (2023) 455–468. doi: 10.1016/j.ins.2022.12.039

[32] J. Wei, X. Zhang, Z. Ji, Z. Wei, J. Li, DPLRS: Distributed Population Learning Rate Schedule,

Future Generation Computer Systems 132 (2022) 40–50.

doi: 10.1016/j.future.2022.02.001

[33] I. Salehin, Md. Shamiul Islam, P. Saha, S. M. Noman, A. Tuni, Md. Mehedi Hasan, Md. Abu

Baten, AutoML: A systematic review on automated machine learning with neural

architecture search, Journal of Information and Intelligence 2:1 (2024) 52–81.

doi: 10.1016/j.jiixd.2023.10.002

[34] X. He, K. Zhao, X. Chu, AutoML: A survey of the state-of-the-art, Knowledge-Based

Systems 212 (2021) 106622. doi: 10.1016/j.knosys.2020.106622

[35] S. Vladov, Y. Shmelov, R. Yakovliev, Optimization of Helicopters Aircraft Engine

Working Process Using Neural Networks Technologies, CEUR Workshop Proceedings

3171 (2022) 1639–1656.

[36] S. Vladov, Y. Shmelov, R. Yakovliev, Modified Searchless Method for Identification of

Helicopters Turboshaft Engines at Flight Modes Using Neural Networks, in:

Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology, Kharkiv,

Ukraine, October 03–07, 2022, pp. 257–262.

doi: 10.1109/KhPIWeek57572.2022.9916422

[37] D. Konar, A. D. Sarma, S. Bhandary, S. Bhattacharyya, A. Cangi, V. Aggarwal, A shallow

hybrid classical–quantum spiking feedforward neural network for noise-robust image

classification, Applied Soft Computing 136 (2023) 110099.

doi: 10.1016/j.asoc.2023.110099

[38] B. Yang, B. Liang, Y. Qian, R. Zheng, S. Su, Z. Guo, L. Jiang, Parameter identification of

PEMFC via feedforward neural network-pelican optimization algorithm, Applied

Energy 361 (2024) 122857. doi: 10.1016/j.apenergy.2024.122857

[39] X. Wang, P. Dai, X. Cheng, Y. Liu, J. Cui, L. Zhang, D. Feng, Aerospace Science and

Technology 128 (2022) 107739. doi: 10.1016/j.ast.2022.107739

[40] J. Pousin, Least squares formulations for some elliptic second order problems,

feedforward neural network solutions and convergence results, Journal of

Computational Mathematics and Data Science 2 (2022) 100023.

doi: 10.1016/j.jcmds.2022.100023

[41] S. Vladov, Y. Shmelov, R. Yakovliev, Parameter Debugging (Regulation) Method of

Helicopters Aircraft Engines in Flight Modes Using Neural Networks, CEUR Workshop

Proceedings 3179 (2022) 1–14.

[42] S. Vladov, R. Yakovliev, O. Hubachov, J. Rud, Y. Stushchanskyi, Neural Network Modeling

of Helicopters Turboshaft Engines at Flight Modes Using an Approach Based on “Black

Box” Models, CEUR Workshop Proceedings 3624 (2024) 116–135.

[43] F. S. Corotto, Appendix C - The method attributed to Neyman and Pearson, Wise Use of

Null Hypothesis Tests (2023) 179–188. doi: 10.1016/B978-0-323-95284-2.00012-4

[44] F. V. Motsnyi, Analysis of Nonparametric and Parametric Criteria for Statistical

Hypotheses Testing. Chapter 1. Agreement Criteria of Pearson and Kolmogorov,

Statistics of Ukraine 4’2018 (83) (2018) 14–24. doi: 10.31767/su.4(83)2018.04.02

[45] D. Parnes, A. Gormus, Prescreening bank failures with K-means clustering: Pros and cons,

International Review of Financial Analysis 93 (2024) 103222.

doi: 10.1016/j.irfa.2024.103222

[46] S. Vladov, Y. Shmelov, R. Yakovliev, Y. Stushchankyi, Y. Havryliuk, Neural Network

Method for Controlling the Helicopters Turboshaft Engines Free Turbine Speed at

Flight Modes, CEUR Workshop Proceedings 3426 (2023) 89–108.

[47] M. Duhan, P. K. Bhatia, Hybrid Maintainability Prediction using Soft Computing

Techniques, International Journal of Computing 20(3) (2021) 350–356.

doi: 10.47839/ijc.20.3.2280

[48] M. Duhan, P. K. Bhatia, Software Reusability Estimation based on Dynamic Metrics

using Soft Computing Techniques, International Journal of Computing 21(2) (2022)

188–194. doi: 10.47839/ijc.21.2.2587

[49] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, S. Drozdova, Helicopters Turboshaft

Engines Parameters Identification at Flight Modes Using Neural Networks, in:

Proceedings of the IEEE 17th International Conference on Computer Science and

Information Technologies (CSIT), Lviv, Ukraine, 2022, pp. 5–8.

doi: 10.1109/CSIT56902.2022.10000444

[50] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, S. Drozdova, Neural Network Method

for Helicopters Turboshaft Engines Working Process Parameters Identification at

Flight Modes, in: Proceedings of the 2022 IEEE 4th International Conference on Modern

Electrical and Energy System (MEES), Kremenchuk, Ukraine, 2022, pp. 604–609.

doi: 10.1109/MEES58014.2022.10005670

[51] V. V. Morozov, O. V. Kalnichenko, O. O. Mezentseva, The method of interaction modeling

on basis of deep learning the neural networks in complex it-projects, International

Journal of Computing 19(1) (2020) 88–96. doi: 10.47839/ijc.19.1.1697

[52] S. Bezobrazov, V. Golovko, A. Sachenko, M. Komar, R. Dolny, V. Kasyanik, P. Bykovyy,

E. Mikhno, O. Osolinskyi, Deep multilayer neural network for predicting the winner of

football matches, International Journal of Computing 19(1) (2020) 70–77.

doi: 10.47839/ijc.19.1.1695

[53] E. M. Cherrat, R. Alaoui, H. Bouzahir, Score fusion of finger vein and face for human

recognition based on convolutional neural network model, International Journal of

Computing 19(1) (2020) 11–19. doi: 10.47839/ijc.19.1.1688

[54] K. Andriushchenko, V. Rudyk, O. Riabchenko, M. Kachynska, N. Marynenko, L. Shergina,

V. Kovtun, M. Tepliuk, A. Zhemba, O. Kuchai. Processes of managing information

infrastructure of a digital enterprise in the framework of the «Industry 4.0» concept, Eastern-

European Journal of Enterprise Technologies 1(3–97) (2019) 60–72. doi: 10.15587/1729-

4061.2019.157765

[55] T. E. Romanova, P. I. Stetsyuk, A. M. Chugay, S. B. Shekhovtsov. Parallel Computing

Technologies for Solving Optimization Problems of Geometric Design, Cybernetics and

System Analysis 55(6) (2019) 894–904. doi: 10.1007/s10559-019-00199-4

[56] S. Vladov, Y. Shmelov, R. Yakovliev, Modified Neural Network Method for Classifying

the Helicopters Turboshaft Engines Ratings at Flight Modes, in: Proceedings of the

2022 IEEE 41st International Conference on Electronics and Nanotechnology

(ELNANO), Kyiv, Ukraine, 2022, pp. 535–540. doi: 10.1109/ELNANO54667.2022.9927108

[57] F. Munoz, J. M. Valdovinos, J. S. Cervantes-Rojas, S. S. Cruz, A. M. Santana, Leader–

follower consensus control for a class of nonlinear multi-agent systems using

dynamical neural networks, Neurocomputing 561 (2023) 126888.

doi: 10.1016/j.neucom.2023.126888

[58] V. Makarov, The neural network to identify an object by a sequential training mode,

Procedia Computer Science 190 (2021) 532–539. doi: 10.1016/j.procs.2021.06.062

