A Nonlinear Autonomous Boundary Value Problem for a Non- Degenerate Differential-Algebraic System Denys Khusainov 1, Sergey Chuiko 2,3,4, Olga Nesmelova 2,4 and Daria Diachenko 2 1 Taras Shevchenko National University of Kyiv, Volodymyrska St, 60, Kyiv, Ukraine; 2 Donbass State Pedagogical University, Donetsk region, Slavyansk, st. General Batyuk, 19, Slaviansk, 84 116, Ukraine 3 Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, 1, Magdeburg, 39106, Germany 4 Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, st. General Batyuk, 19, Slaviansk, 84 116, Ukraine Abstract We have found the constructive necessary and sufficient conditions for solvability and the scheme for constructing solutions of a nonlinear autonomous boundary value problem for a nondegenerate differential-algebraic system. The nonlinear boundary value problem for the autonomous system significantly differs from similar autonomous boundary value problems by its dependence on an arbitrary continuous vector function. We have also constructed a convergent iterative scheme for finding approximate solutions of the nonlinear autonomous boundary value problem for the nondegenerate differential-algebraic system in critical and noncritical cases. Proposed in this paper scheme for studying the nonlinear autonomous boundary value problem for the nondegenerate system of differential-algebraic equations can be transferred to degenerate systems of differential-algebraic equations in the same way. Keywords 1 Differential-algebraic equations, nonlinear autonomous boundary value problems. 1. Statement of the problem Let ๐ด and ๐ต are (๐‘š ร— ๐‘›) dimensional matrices and ๐‘(๐‘ง, ๐œ€) is a ๐‘› dimensional vector function. We will call a weakly nonlinear autonomous periodic differential-algebraic boundary value problem the problem of finding solution [1] ๐‘ง(๐‘ก, ๐œ€): ๐‘ง(โ‹…, ๐œ€) โˆˆ ๐ถ 1 [๐‘Ž, ๐‘(๐œ€)], ๐‘ง(๐‘ก,โ‹…) โˆˆ ๐ถ[0, ๐œ€0 ], ๐‘(0): = ๐‘ โˆ— of a differential-algebraic system ๐ด๐‘ง โ€ฒ = ๐ต๐‘ง + ๐œ€๐‘(๐‘ง, ๐œ€), (1) which satisfy the boundary condition โ„“๐‘ง(โ‹…, ๐œ€) = ๐›ผ. (2) Here, โ„“๐‘ง(โ‹…, ๐œ€) is a linear bounded vector functional: โ„“๐‘ง(โ‹…, ๐œ€): ๐ถ[๐‘Ž, ๐‘(๐œ€)] โ†’ ๐‘…๐‘ž . The solution of the problem (1), (2) is found in a small neighbourhood of the solution ๐‘ง0 (๐‘ก) โˆˆ ๐ถ 1 [๐‘Ž, ๐‘โˆ— ] of the Noether (๐‘ž โ‰  ๐‘›) differential-algebraic generating boundary value problem A z ๏‚ข0 ๏€ฝ B z0 ๏€ฌ z0 (๏ƒ—) ๏€ฝ ๏ก ๏ƒŽ R q ๏€ฎ (3) The vector function ๐‘(๐‘ง, ๐œ€) we assume to be continuously differentiable with respect to the unknown ๐‘ง(๐‘ก, ๐œ€) in a small neighbourhood of the solution of the generating problem and continuously differentiable with respect to a small parameter ๐œ€ in a small positive neighbourhood of zero. The Dynamical System Modeling and Stability Investigation (DSMSI-2023), December 19-21, 2023, Kyiv, Ukraine EMAIL: d.y.khusainov@gmail.com (A. 1); chujko-slav@ukr.net (A. 2); star-o@ukr.net (A. 3); dyachenkodaria2016@gmail.com (A. 4) ORCID: 0000-0001-5855-029X (A. 1); 0000-0001-7186-0129 (A. 2); 0000-0003-2542-5980 (A. 3); 0000-0001-6287-1838 (A. 4) ยฉ๏ธ 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR Workshop Proceedings (CEUR-WS.org) CEUR Workshop ceur-ws.org ISSN 1613-0073 90 Proceedings matrix ๐ด we assume, in general, to be rectangular: ๐‘š โ‰  ๐‘›, or square, but degenerate [2, 3, 4]. Under the condition ๐‘ƒ๐ดโˆ— = 0 (4) the generating system (3) is reduced to the traditional system of ordinary differential equations [5] ๐‘งโ€ฒ0 = ๐ด+ ๐ต๐‘ง0 + ๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ก); (5) here rank ๐ด: = ๐‘š < ๐‘›. In addition, ๐ด+ is a pseudo-inverse (by Moore-Penrose) matrix, ๐‘ƒ๐ดโˆ— is a matrix-orthoprojector: ๐‘ƒ๐ดโˆ— : ๐‘…๐‘š โ†’ ๐‘(๐ดโˆ— ), ๐‘ƒ๐ด๐œŒ0 is a (๐‘› ร— ๐œŒ0 ) matrix formed from ๐œŒ0 linearly independent columns of (๐‘› ร— ๐‘›) matrix- orthoprojector ๐‘ƒ๐ด : ๐‘…๐‘› โ†’ ๐‘(๐ด), ๐œˆ0 (๐‘ก) โˆˆ ๐‘…๐œŒ0 is an arbitrary continuous vector function. Under the condition (4) the system (1) we will call nondegenerate. In the critical case ๐‘ƒ๐‘„โˆ— โ‰  0, ๐‘„: = โ„“๐‘‹0 (โ‹…) for a fixed vector function ๐œˆ0 (๐‘ก) โˆˆ ๐ถ[๐‘Ž, ๐‘ โˆ— ] under the condition ๐‘ƒ๐‘„๐‘‘โˆ— {๐›ผ โˆ’ โ„“๐พ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](โ‹…)} = 0 (6) the generating problem (3) has ๐‘Ÿ parametric family of solutions [5] ๐‘ง0 (๐‘ก, ๐‘๐‘Ÿ ) = ๐‘‹๐‘Ÿ (๐‘ก) ๐‘๐‘Ÿ + ๐บ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก), ๐‘๐‘Ÿ โˆˆ ๐‘…๐‘Ÿ . Here ๐‘‹0 (๐‘ก) is a normal (๐‘‹0 (๐‘Ž) = ๐ผ๐‘› ) fundamental matrix of the homogeneous part of the differential system (5), and ๐บ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก) is the generalized Greenโ€™s operator [3, 5] of the generating periodic differential-algebraic boundary value problem (3), ๐พ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก) is the generalised Greenโ€™s operator [3, 5] of the Cauchy problem ๐‘ง(๐‘Ž) = 0 for the differential-algebraic system (3). The matrix ๐‘ƒ๐‘„๐‘‘โˆ— is formed from ๐‘‘ linearly independent rows of the matrix-orthoprojector ๐‘ƒ๐‘„โˆ— , and the matrix ๐‘ƒ๐‘„๐‘Ÿ is formed from ๐‘Ÿ linearly independent columns of the matrix-orthoprojector ๐‘ƒ๐‘„ . Under the condition (4) the system (1) leads to the traditional system of ordinary differential equations ๐‘ง โ€ฒ = ๐ด+ ๐ต ๐‘ง + ๐‘ƒ๐ด๐œŒ ๐œˆ0 (๐‘ก) + ๐œ€ ๐ด+ ๐‘(๐‘ง, ๐œ€); 0 (7) The periodic boundary value problem for an autonomous system (6) significantly differs [1, 6] from similar autonomous boundary value problems by its dependence on an arbitrary vector function ๐œˆ0 (๐‘ก) โˆˆ ๐ถ[๐‘Ž, ๐‘โˆ— ]. In addition, only in exceptional cases, the autonomous boundary value problem (1), (2) is solvable on a segment of fixed length. Example 1. Let us find a solution to the autonomous nonlinear differential-algebraic boundary value problem for equation ๐ด๐‘ง โ€ฒ = ๐ต๐‘ง + ๐œ€ ๐‘(๐‘ง, ๐œ€), ๐‘ก โˆˆ [0, ๐‘‡], โ„“๐‘ง(โ‹…, ๐œ€) = 0; (8) here, 1 0 0 0 0 1 0 0 0 ๐ด: = ( ) , ๐ต: = ( ) , ๐›บ: = ( ), 0 0 1 โˆ’1 0 0 0 0 1 and ๐‘(๐‘ง(๐‘ก, ๐œ€), ๐œ€): = ๐›บ ๐‘ง(๐‘ก, ๐œ€)(1 โˆ’ ๐‘ง โˆ— (๐‘ก, ๐œ€) ๐‘ง(๐‘ก, ๐œ€)), โ„“๐‘ง(โ‹…, ๐œ€): = ๐‘ง(0, ๐œ€) โˆ’ ๐‘ง(๐‘‡, ๐œ€). The condition (4) is satisfied, so the system (8) is nondegenerate. In this case, the matrix ๐ด is rectangular, and 0 ๐œŒ0 = 1 โ‰  0, ๐‘ƒ๐ด๐œŒ0 = (1), 0 therefore, the homogeneous part of the system (8) has a solution that depends on an arbitrary continuous function; we put ๐œˆ0 (๐‘ก): = 0: ๐‘ง0 (๐‘ก, ๐‘) = ๐‘‹0 (๐‘ก)๐‘ + ๐พ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก), ๐‘ โˆˆ ๐‘…3 , where 91 ๐‘๐‘œ๐‘  ๐‘ก 0 ๐‘ ๐‘–๐‘› ๐‘ก 0 ๐‘‹0 (๐‘ก) = ( 0 1 0 ) , ๐พ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก) = (0). โˆ’ ๐‘ ๐‘–๐‘› ๐‘ก 0 ๐‘๐‘œ๐‘  ๐‘ก 0 The generating solution 0 ๐‘ง0 (๐‘ก, ๐‘๐‘Ÿ ) = ๐‘ง(๐‘ก, 0), ๐‘๐‘Ÿ : = (๐‘2 ) , ๐‘2 โˆˆ ๐‘…1 0 determines the partial solution ๐‘ง(๐‘ก, ๐œ€) = ๐‘ง0 (๐‘ก, ๐‘๐‘Ÿ ) = ๐‘๐‘Ÿ of nonlinear autonomous differential-algebraic boundary value problem (8) on the segment [0, ๐‘‡] of fixed length. 2. Necessary condition of solvability An autonomous boundary value problem for the system (7) is significantly different from similar nonautonomous boundary value problems; in that the length of the interval [๐‘Ž, ๐‘(๐œ€)], on which we determined the solution of a nonlinear boundary value problem for the system (7), in general, is unknown. We will use the technique [1, 6], which consists in representing the unknown function ๐‘(๐œ€) = ๐‘โˆ— + ๐œ€ (๐‘โˆ— โˆ’ ๐‘Ž) ๐›ฝ(๐œ€) through a new unknown ๐›ฝ(๐œ€) โˆˆ ๐ถ[0, ๐œ€0 ], ๐›ฝ(0): = ๐›ฝโˆ— . Function ๐›ฝ(๐œ€) is to be determined in the process of finding a solution of the boundary value problem for the system (7). The technique consists in replacing the of the independent variable ๐‘ก = ๐‘Ž + (๐œ โˆ’ ๐‘Ž)(1 + ๐œ€๐›ฝ(๐œ€)) and finding the solution of the nonlinear boundary value problem (2), (7) and the function ๐›ฝ(๐œ€), as a function of a small parameter. In the critical case, under the condition (6) for a fixed function ๐œˆ0 (๐œ) the condition of solvability of the nonlinear boundary value problem (2), (7) takes the form ๐‘ƒ๐‘„โˆ— {(1 + ๐œ€๐›ฝ(๐œ€)) ๐›ผ โˆ’ โ„“๐พ[๐›ฝ(๐œ€)(๐ด+ ๐ต๐‘ง(๐‘ , ๐œ€) + ๐‘ƒ๐ด๐œŒ ๐œˆ0 (๐‘ ) + ๐‘‘ 0 (9) + +(1 + ๐œ€ ๐›ฝ(๐œ€)) ๐ด ๐‘(๐‘ง(๐‘ , ๐œ€), ๐œ€)](โ‹…)} = 0. Using the continuity of the nonlinear vector function ๐‘(๐‘ง(๐‘ก, ๐œ€), ๐œ€), on ๐œ€ in a small positive neighborhood of zero, we find the limit for ๐œ€ โ†’ 0 in equality (9) and obtain the necessary condition F (ฤ 0) ๏€บ๏€ฝ PQ๏€ช {๏ก ๏€ญ K [ ๏ข ๏€ช ( A๏€ซ B z0 ( s๏€ฌ cr๏€ช ) ๏€ซ PA๏ฒ ๏ฎ 0 ( s ) ๏€ซ A๏€ซ Z ( z0 ( s๏€ฌ cr๏€ช )๏€ฌ 0)](๏ƒ—)} ๏€ฝ 0 (10) d 0 of existence of a solution to the boundary value problem (1), (2) in the critical case; here ๏ƒฆ ๏€ช ๏ƒถ ๏ƒง cr ๏ƒท r ๏€ซ1 ฤ 0 ๏ƒง๏ƒง ๏ƒท๏ƒท ๏ƒŽ R ๏€ฎ ๏€บ๏€ฝ ๏ƒง ๏ƒจ ๏ข ๏€ช ๏ƒท๏ƒธ Thus, the following lemma is proved. Lemma. Assume that the autonomous differential-algebraic boundary value problem (1), (2) for a fixed constant ๐œˆ0 โˆˆ ๐‘…๐œŒ0 under the conditions (4) and (6) represents the critical case ๐‘ƒ๐‘„โˆ— โ‰  0 and has the solution ๐‘ง(๐‘ก, ๐œ€) = col(๐‘ง (1) (๐‘ก, ๐œ€), . . . , ๐‘ง (๐‘›) (๐‘ก, ๐œ€)), ๐‘ง (๐‘–) (โ‹…, ๐œ€) โˆˆ ๐ถ 1 [๐‘Ž, ๐‘(๐œ€)], ๐‘ง (๐‘–) (๐‘ก,โ‹…) โˆˆ ๐ถ[0, ๐œ€0 ], ๐‘– = 1, 2, . . . , ๐‘›, which for ๐œ€ = 0 turns into the generating ๐‘ง(๐‘ก, 0) = ๐‘ง0 (๐‘ก, ๐‘๐‘Ÿโˆ— ). Then the vector ฤ 0 satisfies equation (10). The first ๐‘Ÿ components of ๐‘๐‘Ÿโˆ— โˆˆ ๐‘…๐‘Ÿ of the root of the equation (10) determine the amplitude of the generating solution ๐‘ง0 (๐‘ก, ๐‘๐‘Ÿโˆ— ), in small neighborhood of which the desired solution of the initial problem (1), (2) can exist. In addition, from the equation (10) the value ๐›ฝโˆ— , which determines the first approximation to the unknown function ๐‘1 (๐œ€) = ๐‘ โˆ— + ๐œ€(๐‘โˆ— โˆ’ ๐‘Ž)๐›ฝโˆ— , 92 can be found. If the equation (10) has no real roots, then the initial differential algebraic problem (1), (2) has no desired solutions. The equation (10) will be further called the equation for the generating constants of the autonomous nonlinear differential-algebraic boundary value problem (1), (2). The statement of the lemma generalizes the corresponding results of [1, 6, 7, 9] on the case of an autonomous nonlinear differential-algebraic boundary value problem (1), (2), namely, on the case ๐ด โ‰  ๐ผ๐‘› . Similarly to [1, 6, 9] we demonstrate that the periodic problem for the system (7) is solvable provided that the roots of the equation for the generating constants (10) are simple. 3. Sufficient condition of solvability Assume that the equation for the generating constants (10) has real roots. Fixing one of the solutions ฤ 0 โˆˆ ๐‘…๐‘Ÿ+1 of the equation (10), we come to the problem of finding solutions of the problem (1), (2) ๐‘ง(๐œ, ๐œ€) = ๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ) + ๐‘ฅ(๐œ, ๐œ€) in the neighbourhood of the generating solution ๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ) = ๐‘‹๐‘Ÿ (๐œ)๐‘๐‘Ÿโˆ— + ๐บ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐œ). The deviation of ๐‘ฅ(๐‘ก, ๐œ€) from the generating solution is determined by the boundary value problem ๐‘ฅ โ€ฒ = ๐ด+ ๐ต๐‘ฅ + ๐œ€{๐›ฝ๐ด+ ๐ต๐‘ง + ๐›ฝ๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ ) + (1 + ๐œ€๐›ฝ)๐ด+ ๐‘(๐‘ง, ๐œ€)}, โ„“๐‘ฅ(โ‹…, ๐œ€) = 0. (11) Using the continuous differentiability of the function ๐‘(๐‘ง, ๐œ€) with respect to both the first and second arguments in the neighbourhood of the generating solution ๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ) and the point ๐œ€ = 0, we get the expansion of this function ๐‘(๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ) + ๐‘ฅ(๐œ, ๐œ€), ๐œ€) = ๐‘(๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ),0) + +๐ด1 (๐œ)๐‘ฅ(๐œ, ๐œ€) + ๐œ€๐ด2 (๐œ) + ๐‘…(๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ) + ๐‘ฅ(๐œ, ๐œ€), ๐œ€), where ๐œ•๐‘(๐‘ง, ๐œ€) ๐œ•๐‘(๐‘ง, ๐œ€) A1 (๐œ) = | , A2 (๐œ) = | โˆ‚z ๐‘ง=๐‘ง0 (๐œ,๐‘๐‘Ÿโˆ—), โˆ‚๐œ€ ๐‘ง=๐‘ง0 (๐œ,๐‘๐‘Ÿโˆ— ), ๐œ€=0, ๐œ€=0, The residual ๐‘…(๐‘ง(๐œ, ๐œ€), ๐œ€) of the expansion of the function ๐‘(๐‘ง(๐œ, ๐œ€), ๐œ€) of higher order of smallness on ๐‘ฅ and ๐œ€ in the neighbourhood of the points ๐‘ฅ = 0 and ๐œ€ = 0, than the first three terms of the expansion, so ๐œ•๐‘…(๐‘ง, ๐œ€) ๐œ•๐‘…(๐‘ง, ๐œ€) ๐‘…(๐‘ง, ๐œ€)| โ‰ก 0, ๐œ•๐‘ง | โ‰ก 0, ๐œ•๐œ€ | โ‰ก0 ๐‘ง=๐‘ง0 (๐œ,๐‘๐‘Ÿโˆ— ), ๐‘ง=๐‘ง0 (๐œ,๐‘๐‘Ÿโˆ— ), ๐‘ง=๐‘ง0 (๐œ,๐‘๐‘Ÿโˆ— ), ๐œ€=0, ๐œ€=0, ๐œ€=0, Let us denote by (๐‘‘ ร— (๐‘Ÿ + 1)) the dimensional matrix ๐ต0 = โˆ’๐‘ƒ๐‘„๐‘‘โˆ— โ„“๐พ{๐ด+ [๐›ฝโˆ— ๐ต + ๐ด1 (๐‘ )]๐‘‹๐‘Ÿ (๐‘ ); ๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ ) + ๐ด+ ๐ต๐‘ง0 (๐‘ , ๐‘๐‘Ÿโˆ— )}(โ‹…). In the critical case, under the condition (6) for a fixed function ๐œˆ0 (๐œ) and the solution ฤ 0 of equation (10) the solution of the nonlinear boundary value problem (11) has the form ๐‘ฅ(๐œ, ๐œ€) = ๐‘‹๐‘Ÿ (๐œ)๐‘๐‘Ÿ (๐œ€) + ๐‘ฅ (1) (๐œ, ๐œ€); here, ๐‘ฅ (1) (๐œ, ๐œ€): = ๐œ€ ๐บ[๐›ฝ๐ด+ ๐ต๐‘ง + ๐›ฝ๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ ) + (1 + ๐œ€๐›ฝ) ๐ด+ ๐‘(๐‘ง, ๐œ€)](๐œ). and ๐›ฝ(๐œ€): = ๐›ฝโˆ— + ๐›พ(๐œ€), ๐‘(๐œ€): = col(๐‘๐‘Ÿ (๐œ€), ๐›ฝ(๐œ€)) โˆˆ ๐ถ[0, ๐œ€0 ], while the condition of solvability of the nonlinear boundary value problem (11) leads to the equation ๐ต0 ๐‘(๐œ€) = โˆ’๐‘ƒ๐‘„๐‘‘โˆ— โ„“๐พ{๐›ฝโˆ— ๐ด + ๐ต๐‘ฅ (1) (๐‘ , ๐œ€) + ๐ด+ [๐œ€๐ด2 (๐‘ ) + ๐‘…(๐‘ง(๐‘ , ๐œ€), ๐œ€)]}(โ‹…), which solvable under the condition [1, 10, 11] ๐‘ƒ๐ต0โˆ— ๐‘ƒ๐‘„๐‘‘โˆ— โ„“๐พ{๐›ฝโˆ— ๐ด + ๐ต๐‘ฅ (1) (๐‘ , ๐œ€) + ๐ด+ [๐œ€๐ด2 (๐‘ ) + ๐‘…(๐‘ง(๐‘ , ๐œ€), ๐œ€)]}(โ‹…) = 0. 93 In particular, the condition of solvability of the nonlinear boundary value problem (11) is satisfied in the case of ๐‘ƒ๐ต0โˆ— ๐‘ƒ๐‘„๐‘‘โˆ— = 0. (12) Thus, under the condition (12) we get an operator system that is equivalent to the problem of finding solutions of the boundary value problem (1), (2) ๐‘ง(๐œ, ๐œ€) = ๐‘ง0 (๐œ, ๐‘๐‘Ÿโˆ— ) + ๐‘ฅ(๐œ, ๐œ€), ๐‘ฅ(๐œ, ๐œ€) = ๐‘‹๐‘Ÿ (๐œ)๐‘๐‘Ÿ (๐œ€) + ๐‘ฅ (1) (๐œ, ๐œ€), ๐‘ฅ (1) (๐œ, ๐œ€): = ๐œ€๐บ[๐›ฝ๐ด+ ๐ต๐‘ง + ๐›ฝ๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ ) + (1 + ๐œ€๐›ฝ)๐ด+ ๐‘(๐‘ง, ๐œ€)](๐œ), ๐‘(๐œ€) = โˆ’๐ต0+ ๐‘ƒ๐‘„๐‘‘โˆ— โ„“๐พ{๐›ฝโˆ— ๐ด + ๐ต๐‘ฅ (1) (๐‘ , ๐œ€) + ๐ด+ [๐œ€๐ด2 (๐‘ ) + ๐‘…(๐‘ง(๐‘ , ๐œ€), ๐œ€)]}(โ‹…). (13) The operator system (13) belongs to the class of systems for which the method of simple iterations is applicable [1]. Thus, the following theorem is proved. Theorem. Assume that the autonomous differential-algebraic boundary value problem (1), (2) for a fixed constant ๐œˆ0 โˆˆ ๐‘…๐œŒ0 under the conditions (4) and (6) represents the critical case ๐‘ƒ๐‘„โˆ— โ‰  0. Suppose also that the equation for the generating constants (10) has real roots. Under the conditions (4), (6) and (12) for the fixed function ๐œˆ0 (๐œ) and for the solution ฤ 0 of equation (10) the operator system (13) is equivalent to the problem of finding solutions of the boundary value problem (1), (2) and has at least one solution. To find the solution to the operator system (13) the method of simple iteration is applicable. For finding the solution of the autonomous boundary value problem (1), (2) in the neighbourhood of the generating solution, the Newton-Kantorovich method can also be used [8]. Example 2. Letโ€™s find a solution to the autonomous nonlinear differential-algebraic boundary value problem for the equation ๐ด๐‘ง โ€ฒ = ๐ต๐‘ง + ๐œ€ ๐‘(๐‘ง, ๐œ€), ๐‘ก โˆˆ [0, ๐‘‡], โ„“๐‘ง(โ‹…, ๐œ€) = 0; (14) here ๐‘ข(๐‘ก, ๐œ€) 1 0 0) 0 1 1) 1 0 0) ๐ด: = ( , ๐ต: = ( , ๐›บ: = ( , ๐‘ง(๐‘ก, ๐œ€): = ( ๐‘ฃ(๐‘ก, ๐œ€) ), 0 0 1 โˆ’1 0 0 0 0 1 ๐‘ค(๐‘ก, ๐œ€) and ๐‘ข(๐‘ก, ๐œ€)๐‘ฃ(๐‘ก, ๐œ€) ๐‘(๐‘ง(๐‘ก, ๐œ€), ๐œ€): = ( ) , โ„“๐‘ง(โ‹…, ๐œ€): = ๐‘ง(0, ๐œ€) โˆ’ ๐‘ง(๐‘‡, ๐œ€). ๐‘ข(๐‘ก, ๐œ€)๐‘ฃ(๐‘ก, ๐œ€) Since the condition (4) is satisfied, the system (14) is nondegenerate. In this case, the matrix ๐ด is rectangular, and 0 ๐œŒ0 = 1 โ‰  0, ๐‘ƒ๐ด๐œŒ0 = (1), 0 so the homogeneous part of the system (14) has a solution that depends on an arbitrary continuous function; we put ๐œˆ0 (๐‘ก): = ๐‘๐‘œ๐‘  3 ๐‘ก: ๐‘ง0 (๐‘ก, ๐‘) = ๐‘‹0 (๐‘ก) ๐‘ + ๐พ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก), ๐‘ โˆˆ ๐‘…3 , where ๐‘๐‘œ๐‘  ๐‘ก ๐‘ ๐‘–๐‘› ๐‘ก ๐‘ ๐‘–๐‘› ๐‘ก 3 ๐‘๐‘œ๐‘  ๐‘ก โˆ’ 3 ๐‘๐‘œ๐‘  3 ๐‘ก 1 ๐‘‹0 (๐‘ก) = ( 0 1 0 ) , ๐พ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก) = 24 ( 8 ๐‘ ๐‘–๐‘› 3 ๐‘ก ). โˆ’ ๐‘ ๐‘–๐‘› ๐‘ก โˆ’1 + ๐‘๐‘œ๐‘  ๐‘ก ๐‘๐‘œ๐‘  ๐‘ก โˆ’3 ๐‘ ๐‘–๐‘› ๐‘ก + ๐‘ ๐‘–๐‘› 3 ๐‘ก In this case, the condition (6) is satisfied, so the linear part of the problem (14) has a solution that depends on the continuous function ๐œˆ0 (๐‘ก): = ๐‘๐‘œ๐‘  3 ๐‘ก: ๐‘ง0 (๐‘ก, ๐‘๐‘Ÿ ) = ๐‘‹๐‘Ÿ (๐‘ก)๐‘ + ๐บ[๐‘ƒ๐ด๐œŒ0 ๐œˆ0 (๐‘ )](๐‘ก), ๐‘‹๐‘Ÿ (๐‘ก): = ๐‘‹0 (๐‘ก); here ๐บ[๐‘ƒ๐ด๐œŒ ๐œˆ0 (๐‘ )](๐‘ก) = ๐พ[๐‘ƒ๐ด๐œŒ ๐œˆ0 (๐‘ )](๐‘ก), ๐‘๐‘Ÿ โˆˆ ๐‘…3 . 0 0 The equation for the generating constants (10) has a real root ๏ƒฆ1๏ƒถ ๏ƒฆ ๏ƒง cr๏€ช ๏ƒถ๏ƒท ๏ƒง ๏ƒท ฤ 0 ๏€บ๏€ฝ ๏ƒง ๏ƒŽ R ๏€ฌ c ๏€ฝ ๏ƒง 0 ๏ƒท ๏ƒŽ R3 ๏€ฌ ๏ข ๏€ช ๏€ฝ 0๏€ฌ ๏ƒท 4 ๏€ช ๏ข ๏ƒง๏ƒง r ๏€ช ๏ƒท๏ƒท ๏ƒจ ๏ƒธ ๏ƒง1๏ƒท ๏ƒจ ๏ƒธ 94 which corresponds to the full rank matrix ๐œ‹ 0 1 0 16 ๐ต0 = 8 ( ), 0 17 0 โˆ’16 thus, the condition of solvability (12) of the nonlinear boundary value problem (14) is satisfied. Proposed in this paper scheme for studying a nonlinear autonomous boundary value problem for a nondegenerate system of differential-algebraic equations [12,13,14,15,16,17,18] can be, analogously [5], transferred to degenerate systems of differential-algebraic equations in the same way. For finding the solution of an autonomous boundary value problem for a nondegenerate system of differential- algebraic equations (1), (2) the main requirement is the solvability requirement (12), which is equivalent to the condition of simplicity of the roots of the equation for the generating constants (10) [1, 6]. The scheme for studying a nonlinear autonomous boundary value problem for a nondegenerate system of differential-algebraic equations proposed in this paper can be similarly transferred to systems of differential-algebraic equations with a variable rank of derivative matrix. 4. References [1] ะž.ะ. Boichuk and A.M. Samoilenko, Generalized inverse operators and Fredholm boundary- value problems, Utrecht, Boston: VSP, 2004. [2] S.L. Campbell, Singular Systems of differential equations, Pitman Advanced Publishing Program, San Francisco-London-Melbourne, 1980. [3] S.ะœ. Chuiko, Nonlinear matrix differential-algebraic boundary value problem, Lobachevskii Journal of Mathematics, 38 (2018) 236โ€“244. [4] ะœ.V. Bulatov, V.F. Chistyakov, A numerical method for solving differential-algebraic equations, Computational Mathematics and Mathematical Physics 42 (2002) 439โ€“449. [5] ะž.ะ. Boichuk, A.A. Pokutnyi, and V.F. Chistyakov, โ€œApplication of perturbation theory to the solvability analysis of differential algebraic equations, Computational Mathematics and Mathematical Physics 53 (2013) 777โ€“788. [6] I.G. Malkin, Some Problems in the Theory of Nonlinear Oscillations, US Atomic Energy Commission, Technical Information Service, Maryland, 1959. [7] O. Vejvoda, On perturbed nonlinear boundary value problems, Czechoslovak Mathematical Journal 11 (1961) 323โ€“364. [8] L.V. Kantorovich and G.P. Akilov, Functional Analysis, Nauka, Moscow, 1977. [9] S.ะœ. Chuiko, Domain of convergence of an iterative procedure for an autonomous boundary value problem, Nonlinear Oscillations (US) 9 (2006) 405โ€“422. doi: 10.1007/s11072-006-0053-y. [10] M.Z. Nashed, Generalized Inverses and Applications, Academic Press, New York, 1976. [11] A.E. Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York, 2012. [12] P. Benner, M. Bollhofer, D. Kressner, C. Mehl, T. Stykel Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Co Numerical Algebra, Matrix Theory, Differential- Algebraic Equations and Control Theory, Springer International Publishing, 2015. [13] R. Lamour, R. Marz, C. Tischendorf Differential-Algebraic Equations. A Projector Based Analysis, Springer International Publishing, Berlin, Heidelberg, 2013. [14] S. Campbell, A. Ilchmann, V. Mehrmann, T. Reis Applications of Differential-Algebraic Equations: Examples and Benchmarks, Springer International Publishing, 2019. [15] T. Reis, S. Grundel, S. Schรถps Progress in Differential-Algebraic Equations II, Springer International Publishing, 2020. [16] A. Ilchmann, V. Mehrmann, T. Reis Surveys in Differential-Algebraic Equations IV, 2017. [17] A. Ilchmann, V. Mehrmann, T. Reis Surveys in Differential-Algebraic Equations III, Springer International Publishing, 2015. [18] A. Ilchmann, T. Reis Surveys in Differential-Algebraic Equations I, Springer International Publishing, 2013. [19] S. Actis, A. Denner, L. Hofer A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP, 2013, (1304, 037) 1โ€“48. 95