An Extension-Based Argument-Ranking Semantics: Social Rankings in Abstract Argumentation Lars Bengel1,โ€  , Giovanni Buraglio2,โ€  , Jan Maly3,2,โ€  and Kenneth Skiba1,โ€  1 Artificial Intelligence Group, University of Hagen, Hagen, Germany 2 Institute of Logic and Computation, TU Wien, Wien, Austria 3 Institute of Data, Process and Knowledge Management, Vienna University of Economics and Business, Wien, Austria Abstract In this paper, we introduce a new family of argument-ranking semantics which can be seen as a refinement of the classification of arguments into skeptically accepted, credulously accepted and rejected. To this end we use so-called social ranking functions which have been developed recently to rank individuals based on their performance in groups. We provide necessary and sufficient conditions for a social ranking function to give rise to an argument-ranking semantics satisfying the desired refinement property. Moreover, we analyse the properties of the argument-ranking semantics induced by the most prominent social ranking function that satisfies all of these conditions by investigating the satisfaction of principles known from the argument-ranking literature. Keywords Argumentation, Social Rankings, Extension-ranking semantics, Argument-ranking semantics 1. Introduction tion to construct a fine-grained ranking of arguments by applying a social ranking function. One of the problems of computational models of argumen- Closer to our needs, Skiba et al. [11] recently introduced tation is to classify the quality of arguments in the context so-called extension-ranking semantics that refine and ex- of the larger discussion. In abstract argumentation, this tend classical argumentation semantics by providing a par- is usually achieved by checking whether an argument is tial ranking over sets of arguments. contained in a set of arguments, called extensions, that are We show that, by applying the right social ranking func- acceptable according to one of several well-established se- tions to an extension-ranking semantics, we can define mantics. While these semantics provides a natural way to argument-ranking semantics that are a refinement of the tra- rank arguments based on the larger context of the argu- ditional skeptical/credulous acceptance of arguments, both mentation framework, it only allows us to distinguish three in spirit and in a strict technical sense. More precisely, we types of arguments: the ones that are skeptically accepted, show that by applying the lexicographic excellence operator i. e. that are contained in every extension; the ones that are introduced by Bernardi et al. [9] to the extension-ranking credulously accepted, i. e. that are contained in at least one semantics of Skiba et al. [11] we generate an argument rank- extension; and the ones that are not contained in any exten- ing such that all skeptically accepted arguments are ranked sion. For this reason, more fine-grained ways of comparing before all credulously accepted arguments, which are, in arguments have been proposed, the so called argument- turn, ranked before all non-accepted arguments. More gen- ranking semantics [1, 2, 3, 4, 5]. However, generally, these erally, we show which axiomatic properties are sufficient argument-ranking semantics are technically quite distinct and necessary for a social ranking operator to give rise to from the extension-based classifications of arguments that such a ranking (Section 4). We conclude by studying the are more commonly used. axiomatic properties of the argument-ranking semantics In this paper, we propose a new way of ranking argu- induced by the lexicographic excellence operator (Section ments which can be seen as a true refinement of the more 5) and conclude that it is a well-behaved argument rank- common classification in skeptically, credulously and not ing semantics even beyond the refinement properties that accepted arguments. To this end, we combine two strands motivated our work (Sections 6 and 7). of literature that have emerged recently, namely extension- ranking semantics and social ranking functions, in a novel way. Intuitively, social ranking functions allow us to rank 2. Preliminaries elements based on the quality of sets they are contained in. These functions were first introduced in the economics lit- In this section, we introduce the basics of abstract argumen- erature [6], in order to judge the performance of individuals tation literature that are necessary for our work. We will based on the success of groups that they were involved in, start with the standard model of abstract argumentation, be- and has received significant attention from economists and fore introducing argument-ranking and extension-ranking computer scientists [7, 8, 9, 10]. Unfortunately, extension semantics. semantics in formal argumentation only distinguish sets of arguments that are accepted and the ones that are not Abstract Argumentation Frameworks An abstract ar- accepted. This approach does not provide enough informa- gumentation framework (๐ด๐น ) is a directed graph ๐น = (๐ด, ๐‘…) where ๐ด is a (finite) set of arguments and ๐‘… โІ ๐ดร—๐ด is an attack relation among them [12]. An argument ๐‘Ž is said 22nd International Workshop on Nonmonotonic Reasoning, November 2-4, 2024, Hanoi, Vietnam to attack an argument ๐‘ if (๐‘Ž, ๐‘) โˆˆ ๐‘…. We say that an argu- โ€  These authors contributed equally. ment ๐‘Ž is defended by a set ๐ธ โІ ๐ด if every argument ๐‘ โˆˆ ๐ด $ lars.bengel@fernuni-hagen.de (L. Bengel); that attacks ๐‘Ž is attacked by some ๐‘ โˆˆ ๐ธ. For ๐‘Ž โˆˆ ๐ด we giovanni.buraglio@tuwien.ac.at (G. Buraglio); jan.maly@tuwien.ac.at define ๐‘Žโˆ’ ๐น = {๐‘ | (๐‘, ๐‘Ž) โˆˆ ๐‘…} and ๐‘Ž๐น = {๐‘ | (๐‘Ž, ๐‘) โˆˆ ๐‘…} + (J. Maly); kenneth.skiba@fernuni-hagen.de (K. Skiba) as the sets of arguments attacking ๐‘Ž and the sets of argu- ยฉ 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR ceur-ws.org Workshop ISSN 1613-0073 Proceedings ๐‘Ž ๐‘ ๐‘ ๐‘‘ Definition 3. An argument-ranking semantics ๐œŒ is a func- tion which maps an AF ๐น = (๐ด, ๐‘…) to a preorder1 โชฐ๐œŒ๐น on ๐ด. Figure 1: Argumentation framework ๐น1 from Example 1. Intuitively ๐‘Ž โชฐ๐œŒ๐น ๐‘ means that ๐‘Ž is at least as strong as ๐‘ in ๐น . We define the usual abbreviations as follows; ๐‘Ž โ‰ป๐œŒ๐น ๐‘ denotes strictly stronger, i. e. ๐‘Ž โชฐ๐œŒ๐น ๐‘ and ๐‘ ฬธโชฐ๐œŒ๐น ๐‘Ž. Moreover, ments that are attacked by ๐‘Ž in ๐น . For a set of arguments ๐‘Ž โ‰ƒ๐œŒ๐น ๐‘ denotes equally strong, i. e. ๐‘Ž โชฐ๐œŒ๐น ๐‘ and ๐‘ โชฐ๐œŒ๐น ๐‘Ž. ๐ธ โІ ๐ด โ‹ƒ๏ธ€ we extend these definitions to ๐ธ๐นโˆ’ and ๐ธ๐น+ via ๐‘Ž โ—โ–ท๐œŒ๐น ๐‘ denotes incomparability so neither ๐‘Ž โชฐ๐œŒ๐น ๐‘ nor ๐ธ๐น = ๐‘Žโˆˆ๐ธ ๐‘Ž๐น and ๐ธ๐น = ๐‘Žโˆˆ๐ธ ๐‘Ž๐น , respectively. If the โˆ’ โˆ’ + + โ‹ƒ๏ธ€ ๐‘ โชฐ๐œŒ๐น ๐‘Ž. AF is clear in the context, we will omit the index. Traditionally the development of argument-ranking se- Most semantics [13] for abstract argumentation are rely- mantics is guided by a principle-based approach [15]. Each ing on two basic concepts: conflict-freeness and admissibility. principle embodies a different property for argument rank- ings. We recall some of the most fundamental principles [4] Definition 1. Given ๐น = (๐ด, ๐‘…), a set ๐ธ โІ ๐ด is: conflict- as well as newer ones, which are closer to the extension- free iff โˆ€๐‘Ž, ๐‘ โˆˆ ๐ธ, (๐‘Ž, ๐‘) ฬธโˆˆ ๐‘…; admissible iff it is conflict-free, based reasoning process [16]. Before we start, we need addi- and every element of ๐ธ is defended by ๐ธ. tional notations. Let ๐น = (๐ด, ๐‘…) be an AF with arguments For an AF ๐น we use ๐‘๐‘“ (๐น ) and ๐‘Ž๐‘‘(๐น ) to denote the sets ๐‘Ž, ๐‘ โˆˆ ๐ด. A path of length ๐‘™๐‘ƒ = ๐‘› between two arguments of conflict-free and admissible sets, respectively. In order ๐‘Ž, ๐‘ is a sequence of arguments ๐‘ƒ (๐‘Ž, ๐‘) = (๐‘Ž0 , ๐‘Ž1 , ..., ๐‘Ž๐‘› ) to define the remaining semantics proposed by Dung [12] with (๐‘Ž๐‘– , ๐‘Ž๐‘–+1 ) โˆˆ ๐‘… for all ๐‘– with ๐‘Ž0 = ๐‘Ž and ๐‘Ž๐‘› = ๐‘. The and in addition the semi-stable semantics [14] we use the connected components ๐‘๐‘(๐น ) of an AF ๐น are the maximal characteristic function. subgraphs ๐น โ€ฒ = (๐ดโ€ฒ , ๐‘…โ€ฒ ), where for every pair of argu- ments ๐‘Ž, ๐‘ โˆˆ ๐ดโ€ฒ there exists an undirected path ๐‘ƒ๐‘ข (๐‘Ž, ๐‘) = Definition 2. For an AF ๐น = (๐ด, ๐‘…) and a set of arguments (๐‘Ž = ๐‘Ž0 , ๐‘Ž1 , ..., ๐‘Ž๐‘›โˆ’1 , ๐‘Ž๐‘› = ๐‘) s.t. for every ๐‘– there is ๐ธ โІ ๐ด the characteristic function โ„ฑ๐น (๐ธ) : 2๐ด โ†’ 2๐ด is either (๐‘Ž๐‘– , ๐‘Ž๐‘–+1 ) โˆˆ ๐‘… or (๐‘Ž๐‘–+1 , ๐‘Ž๐‘– ) โˆˆ ๐‘…. For an extension- defined via: based semantics ๐œŽ, an argument ๐‘Ž weakly ๐œŽ-supports ๐‘ if ๐‘ โˆˆ ๐‘๐‘Ÿ๐‘’๐‘‘๐œŽ (๐น ) and for all ๐ธ โˆˆ ๐œŽ(๐น ), with ๐‘ โˆˆ ๐ธ then โ„ฑ๐น (๐ธ) = {๐‘Ž โˆˆ ๐ด|๐ธ defends ๐‘Ž} ๐‘Ž โˆˆ ๐ธ and ๐‘Ž strongly ๐œŽ-supports ๐‘ if ๐‘ โˆˆ ๐‘๐‘Ÿ๐‘’๐‘‘๐œŽ (๐น ) and for all ๐ธ โˆˆ ๐œŽ(๐น ), with ๐‘ โˆˆ ๐ธ then there is ๐ธ โ€ฒ โˆˆ ๐œŽ(๐น ) with An admissible set ๐ธ โІ ๐ด is a complete extension (๐‘๐‘œ) iff ๐ธ โ€ฒ โІ ๐ธ, ๐‘Ž โˆˆ ๐ธ โ€ฒ and ๐‘ โˆˆ / ๐ธโ€ฒ. ๐ธ = โ„ฑ๐น (๐ธ); a preferred extension (๐‘๐‘Ÿ) iff it is a โІ-maximal complete extension; the unique grounded extension (๐‘”๐‘Ÿ) iff Definition 4. An argument-ranking semantics ๐œŒ satisfies ๐ธ is the least fixed point of โ„ฑ๐น ; a stable extension (๐‘ ๐‘ก๐‘) iff the respective principle iff for all AFs ๐น = (๐ด, ๐‘…) and any ๐ธ๐น+ = ๐ด โˆ– ๐ธ; a semi-stable extension (๐‘ ๐‘ ๐‘ก) iff it is a complete ๐‘Ž, ๐‘ โˆˆ ๐ด: extension, where ๐ธ โˆช ๐ธ๐น+ is โІ-maximal. Abstraction (Abs). Names of arguments should not be rel- The sets of extensions of an AF ๐น for these five semantics evant. For a pair of AFs ๐น = (๐ด, ๐‘…) and ๐น โ€ฒ = are denoted as (respectively) ๐‘๐‘œ(๐น ), ๐‘๐‘Ÿ(๐น ), ๐‘”๐‘Ÿ(๐น ), ๐‘ ๐‘ก๐‘(๐น ) (๐ดโ€ฒ , ๐‘…โ€ฒ ) and every isomorphism ๐›พ : ๐น โ†’ ๐น โ€ฒ , we and ๐‘ ๐‘ ๐‘ก(๐น ). Based on these semantics, we can define the have ๐‘Ž โชฐ๐œŒ๐น ๐‘ iff ๐›พ(๐‘Ž) โชฐ๐œŒ๐น โ€ฒ ๐›พ(๐‘). status of any argument, namely skeptically accepted (be- longing to each ๐œŽ-extension), credulously accepted (belong- Independence (In). Unconnected arguments should not in- ing to some ๐œŽ-extension) and rejected (belonging to no fluence a ranking. For every ๐น โ€ฒ = (๐ดโ€ฒ , ๐‘…โ€ฒ ) โˆˆ ๐‘๐‘(๐น ) ๐œŽ-extension). Given an AF ๐น and an extension-based se- and for all ๐‘Ž, ๐‘ โˆˆ ๐ดโ€ฒ : ๐‘Ž โชฐ๐œŒ๐น ๐‘ iff ๐‘Ž โชฐ๐œŒ๐น โ€ฒ ๐‘. mantics ๐œŽ, we use (respectively) ๐‘ ๐‘˜๐œŽ (๐น ), ๐‘๐‘Ÿ๐‘’๐‘‘๐œŽ (๐น ) and Void Precedence (VP). Unattacked arguments should be ๐‘Ÿ๐‘’๐‘—๐œŽ (๐น ) to denote these sets of arguments. ranked better then attacked ones. If ๐‘Žโˆ’ ๐น = โˆ… and Example 1. Consider the AF ๐น1 = (๐ด, ๐‘…) depicted as a ๐‘โˆ’ ๐น ฬธ = โˆ… then ๐‘Ž โ‰ป ๐œŒ ๐น ๐‘. directed graph in Figure 1, with the nodes corresponding to Self-Contradiction (SC). Self-attacking arguments arguments ๐ด = {๐‘Ž, ๐‘, ๐‘, ๐‘‘}, and the edges corresponding to should be ranked worse than any other argument. If attacks ๐‘… = {(๐‘Ž, ๐‘), (๐‘, ๐‘), (๐‘, ๐‘‘), (๐‘‘, ๐‘)}. We see that ๐น1 / ๐‘… and (๐‘, ๐‘) โˆˆ ๐‘… then ๐‘Ž โ‰ป๐œŒ๐น ๐‘. (๐‘Ž, ๐‘Ž) โˆˆ has three complete extensions {๐‘Ž}, {๐‘Ž, ๐‘} and {๐‘Ž, ๐‘‘} only the last two are preferred in addition. Also, we see that, ๐‘Ž โˆˆ Cardinality Precedence (CP). Two arguments are com- ๐‘ ๐‘˜๐‘๐‘œ (๐น1 ), ๐‘, ๐‘‘ โˆˆ ๐‘๐‘Ÿ๐‘’๐‘‘๐‘๐‘œ (๐น1 ), and ๐‘ โˆˆ ๐‘Ÿ๐‘’๐‘—๐‘๐‘œ (๐น1 ). pared based on the number of attackers. If |๐‘Žโˆ’ ๐น| < |๐‘โˆ’ ๐œŒ ๐น | then ๐‘Ž โ‰ป๐น ๐‘. An isomorphism ๐›พ between two AFs ๐น = (๐ด, ๐‘…) and ๐น โ€ฒ = (๐ดโ€ฒ , ๐‘…โ€ฒ ) is a bijective function ๐›พ : ๐น โ†’ ๐น โ€ฒ such that Quality Precedence (QP). Two arguments are compared (๐‘Ž, ๐‘) โˆˆ ๐‘… iff (๐›พ(๐‘Ž), ๐›พ(๐‘)) โˆˆ ๐‘…โ€ฒ for all ๐‘Ž, ๐‘ โˆˆ ๐ด. based on the strength of their attackers. If there is ๐‘ โˆˆ ๐‘โˆ’ โˆ’ ๐œŒ ๐น s.t. for all ๐‘‘ โˆˆ ๐‘Ž๐น it holds that ๐‘ โ‰ป๐น ๐‘‘ then ๐œŒ Argument-ranking Semantics Instead of reasoning ๐‘Ž โ‰ป๐น ๐‘. based on the acceptance of sets of arguments, argument- ranking semantics (also know as ranking-based semantics) [2] Counter-Transitivity (CT). Two arguments are compared were introduced to focus on the strength of a single argu- based on the number and quality of their attackers. If ment. Note that the order returned by an argument-ranking some injective ๐‘“ : ๐‘Žโˆ’ โˆ’ ๐œŒ ๐น โ†’ ๐‘๐น exists s.t. ๐‘“ (๐‘ฅ) โชฐ๐น ๐‘ฅ โˆ’ ๐œŒ semantics is not necessarily total, i. e. not every pair of for all ๐‘ฅ โˆˆ ๐‘Ž๐น then ๐‘Ž โชฐ๐น ๐‘. arguments is comparable. 1 A preorder is a (binary) relation that is reflexive and transitive. Strict Counter-Transitivity (SCT). Strict version of CT. ๐ธ โ€ฒ โŠ’๐œ๐น ๐ธ; ๐ธ and ๐ธ โ€ฒ are incomparable (denoted ๐ธ โ‰๐œ๐น ๐ธ โ€ฒ ) If some injecitve ๐‘“ : ๐‘Žโˆ’ โˆ’ ๐œŒ ๐น โ†’ ๐‘๐น exists s.t. ๐‘“ (๐‘ฅ) โชฐ๐น ๐‘ฅ if neither ๐ธ โŠ’๐œ๐น ๐ธ โ€ฒ nor ๐ธ โ€ฒ โŠ’๐œ๐น ๐ธ. โˆ’ โˆ’ โˆ’ for all ๐‘ฅ โˆˆ ๐‘Ž๐น and either |๐‘Ž๐น | < |๐‘๐น | or there exists Skiba et al. [11] defined a family of approaches to de- some ๐‘ฅ โˆˆ ๐‘Žโˆ’ ๐œŒ ๐น with ๐‘“ (๐‘ฅ) โ‰ป๐น ๐‘ฅ, then ๐‘Ž โ‰ป๐น ๐‘. ๐œŒ fine such extension-ranking semantics. Their semantics are generalisations of the classical extension-based semantics. Defense Precedence (DP). For two arguments with the Using these semantics we can state that a set is โ€œcloserโ€ to same number of attackers, a defended argument is being admissible, than another set. Before we define the ranked better than a non-defended argument. If semantics, we recall the base relations, each of them gener- |๐‘Žโˆ’ โˆ’ โˆ’ โˆ’ โˆ’ โˆ’ ๐น | = |๐‘๐น |, (๐‘Ž๐น )๐น ฬธ= โˆ… and (๐‘๐น )๐น = โˆ…, then alises one aspect of extension-based reasoning. ๐œŒ ๐‘Ž โ‰ป๐น ๐‘. Definition 6 (Base Relations [11]). Let ๐น = (๐ด, ๐‘…) be Distributed Defense precedence (DDP). The best de- an AF and ๐ธ โІ ๐ด where the โ‹ƒ๏ธ€ function โ„ฑ๐น* : ๐’ซ(๐ด) โ†’ fender attacks exactly one attacker. If |๐‘Žโˆ’ โˆ’ ๐น | = |๐‘๐น | ๐’ซ(๐ด) is defined as โ„ฑ๐น* (๐ธ) = โˆž โ„ฑ ๐‘–=1 ๐‘–,๐น * (๐ธ) over the pow- โˆ’ โˆ’ โˆ’ โˆ’ * * and |(๐‘Ž๐น )๐น | = |(๐‘๐น )๐น |, and if defense of ๐‘Ž is simple erset ๐’ซ(๐ด) of ๐ด with โ„ฑ1,๐น (๐ธ) = ๐ธ and โ„ฑ๐‘–,๐น (๐ธ) = - every direct defender of ๐‘Ž directly attacks exactly โ„ฑ๐‘–โˆ’1,๐น (๐ธ) โˆช (โ„ฑ๐น (โ„ฑ๐‘–โˆ’1,๐น (๐ธ)) โˆ– ๐ธ๐น ). Each base relation * * โˆ’ one direct attacker of ๐‘Ž - and distributed - every direct ๐›ผ โˆˆ {๐ถ๐น, ๐‘ˆ ๐ท, ๐ท๐‘, ๐‘ˆ ๐ด} is defined via: attacker of ๐‘Ž is attacked by at most one argument - โ€ข ๐ถ๐น๐น (๐ธ) = {(๐‘Ž, ๐‘) โˆˆ ๐‘…|๐‘Ž, ๐‘ โˆˆ ๐ธ}; and defense of ๐‘ is simple but not distributed, then โ€ข ๐‘ˆ ๐ท๐น (๐ธ) = ๐ธ โˆ– โ„ฑ๐น (๐ธ); ๐‘Ž โ‰ป๐œŒ๐น ๐‘. โ€ข ๐ท๐‘๐น (๐ธ) = โ„ฑ๐น* (๐ธ) โˆ– ๐ธ; Non-attacked Equivalence (NaE) Two unattacked argu- โ€ข ๐‘ˆ ๐ด๐น (๐ธ) = {๐‘Ž โˆˆ ๐ด โˆ– ๐ธ|ยฌโˆƒ๐‘ โˆˆ ๐ธ : (๐‘, ๐‘Ž) โˆˆ ๐‘…}; ments should be equally ranked. If ๐‘Žโˆ’ โˆ’ ๐น = ๐‘๐น = โˆ… For every base relation, the corresponding ๐›ผ base exten- ๐œŒ then ๐‘Ž โ‰ƒ๐น ๐‘. ๐น for ๐ธ, ๐ธ โˆˆ ๐ด is given by: โ€ฒ sion ranking โŠ’๐›ผ Attack vs. Full Defense (AvsFD). Arguments with- โ€ฒ โ€ฒ out any unattacked indirect attackers should be ๐น ๐ธ iff ๐›ผ๐น (๐ธ) โІ ๐›ผ๐น (๐ธ ) ๐ธ โŠ’๐›ผ ranked better than arguments only attacked by By combining these base relations, we denote the one unattacked argument. If ๐น acyclic and every extension-ranking semantics. path ๐‘ƒ (๐‘ข, ๐‘Ž) in ๐น from unattacked ๐‘ข to ๐‘Ž has Definition 7. Let ๐น = (๐ด, ๐‘…) be an AF and ๐ธ, ๐ธ โ€ฒ โІ ๐ด. ๐‘™๐‘ = 0 mod 2 and there exists unattacked ๐‘ฃ โˆˆ ๐‘โˆ’ ๐น, We define: Admissible extension-ranking semantics ๐‘Ÿ-๐‘Ž๐‘‘ then ๐‘Ž โ‰ป๐œŒ๐น ๐‘. via ๐ธ โŠ’๐‘Ÿ-๐‘Ž๐‘‘ ๐น ๐ธ โ€ฒ iff ๐ธ โА๐ถ๐น๐น ๐ธ โ€ฒ or (๐ธ โ‰ก๐ถ๐น ๐น ๐ธ โ€ฒ and ๐œŽ-Compatibility (๐œŽ-C). Credulously accepted arguments ๐ธ โŠ’๐น ๐ธ ). Complete extension-ranking semantics ๐‘Ÿ-๐‘๐‘œ ๐‘ˆ๐ท โ€ฒ should be ranked better than rejected arguments. For via ๐ธ โŠ’๐‘Ÿ-๐‘๐‘œ ๐น ๐ธ โ€ฒ iff ๐ธ โА๐‘Ÿ-๐‘Ž๐‘‘ ๐น ๐ธ โ€ฒ or (๐ธ โ‰ก๐‘Ÿ-๐‘Ž๐‘‘ ๐น ๐ธ โ€ฒ and an extension-based semantics ๐œŽ it holds that if ๐‘Ž โˆˆ ๐ธ โŠ’๐ท๐‘ ๐น ๐ธ โ€ฒ ). Preferred extension-ranking semantics ๐‘Ÿ-๐‘๐‘Ÿ ๐‘๐‘Ÿ๐‘’๐‘‘๐œŽ (๐น ) and ๐‘ โˆˆ ๐‘Ÿ๐‘’๐‘—๐œŽ (๐น ), then ๐‘Ž โ‰ป๐œŒ๐น ๐‘. via ๐ธ โŠ’๐‘Ÿ-๐‘๐‘Ÿ ๐น ๐ธ โ€ฒ iff ๐ธ โА๐‘Ÿ-๐‘Ž๐‘‘ ๐น ๐ธ โ€ฒ or (๐ธ โ‰ก๐‘Ÿ-๐‘Ž๐‘‘ ๐น ๐ธ โ€ฒ and ๐ธ โ€ฒ โІ ๐ธ). Grounded extension-ranking semantics ๐‘Ÿ-๐‘”๐‘Ÿ weak ๐œŽ-Support (w๐œŽ-S). If an argument ๐‘Ž is an unavoid- via ๐ธ โŠ’๐‘Ÿ-๐‘”๐‘Ÿ ๐น ๐ธ โ€ฒ iff ๐ธ โА๐‘Ÿ-๐‘๐‘œ ๐น ๐ธ โ€ฒ or (๐ธ โ‰ก๐‘Ÿ-๐‘๐‘œ ๐น ๐ธ โ€ฒ and able side-effect of accepting another argument ๐‘, then ๐ธ โІ ๐ธ ). Semi-stable extension-ranking semantics ๐‘Ÿ-๐‘ ๐‘ ๐‘ก โ€ฒ ๐‘Ž should be at least as acceptable as ๐‘. If ๐‘Ž weakly via ๐ธ โŠ’๐‘Ÿ-๐‘ ๐‘ ๐‘ก ๐น ๐ธ โ€ฒ iff ๐ธ โА๐‘Ÿ-๐‘๐‘œ ๐น ๐ธ โ€ฒ or (๐ธ โ‰ก๐‘Ÿ-๐‘๐‘œ ๐น ๐ธ โ€ฒ and ๐œŽ-supports ๐‘, then ๐‘Ž โชฐ๐œŒ๐น ๐‘. ๐ธ โŠ’๐‘ˆ๐น ๐ด ๐ธ โ€ฒ ). strong ๐œŽ-Support (s๐œŽ-S). If an argument ๐‘Ž is a prerequi- In words, one set ๐ธ is at least as plausible to be accepted site for accepting another argument ๐‘ and ๐‘ is irrele- as ๐ธ โ€ฒ with respect to the admissible extension-ranking se- vant for accepting ๐‘Ž, then ๐‘Ž should be ranked better mantics, if ๐ธ has less conflicts than ๐ธ โ€ฒ or if they have the then ๐‘. If ๐‘Ž strongly ๐œŽ-supports ๐‘, then ๐‘Ž โ‰ป๐œŒ๐น ๐‘. same conflicts, then we look at the undefended arguments. Note that these principles are not always compatible with Example 2. Continuing Example 1. Consider for instance the each other, especially SC and CP are not compatible [2]. sets ๐ธ1 = {๐‘}, ๐ธ2 = {๐‘, ๐‘‘} and ๐ธ3 = {๐‘‘}. For the complete extension-ranking semantics, we first of all have that all three Extension-ranking Semantics Extension-ranking se- sets contain no conflicts. However, both ๐ธ1 and ๐ธ2 contain mantics defined in Skiba et al. [11] are a generalisation of the argument ๐‘ which they do not defend against ๐‘Ž. It follows extension-based semantics. These semantics are used to that ๐ธ3 โА๐‘Ÿ-๐‘๐‘œ ๐‘Ÿ-๐‘๐‘œ ๐น1 ๐ธ1 and ๐ธ3 โА๐น1 ๐ธ2 . Furthermore, both ๐ธ1 formalise whether a set ๐ธ is more plausible to be accepted and ๐ธ2 defend ๐‘‘ from ๐‘, but ๐‘‘ is not contained in ๐ธ1 . Thus, than another set ๐ธ โ€ฒ . we have that ๐ธ2 โА๐‘Ÿ-๐‘๐‘œ ๐น1 ๐ธ 1 . The relevant excerpt of the extension-ranking for ๐‘Ÿ-๐‘๐‘œ can Definition 5. Let ๐น = (๐ด, ๐‘…) be an AF. An extension be found in Figure 2. ranking on ๐น is a preorder over the powerset of arguments Extension-ranking semantics also follow a principle- 2๐ด . An extension-ranking semantics ๐œ is a function that based approach. Before we recall the principles defined maps each ๐น to an extension ranking โŠ’๐œ๐น on ๐น . in Skiba et al. [11], we need to introduce the notion of most For an AF ๐น = (๐ด, ๐‘…), an extension-ranking semantics plausible sets, i. e. sets for which we cannot find any other ๐œ and two sets ๐ธ, ๐ธ โ€ฒ โІ ๐ด we say ๐ธ is at least as plausible sets ranked strictly better. to be accepted as ๐ธ โ€ฒ with respect to ๐œ in ๐น if ๐ธ โŠ’๐œ๐น ๐ธ โ€ฒ . We Definition 8 (Most plausible sets). Let ๐น = (๐ด, ๐‘…) be an define the usual abbreviations as follows: ๐ธ is strictly more AF, ๐ธ, ๐ธ โ€ฒ โІ ๐ด two sets of arguments and ๐œ an extension- plausible to be accepted than ๐ธ โ€ฒ (denoted as ๐ธ โА๐œ๐น ๐ธ โ€ฒ ) if ranking semantics. We denote by ๐‘š๐‘Ž๐‘ฅ๐œ (๐น ) the maximal (or ๐ธ โŠ’๐œ๐น ๐ธ โ€ฒ and not ๐ธ โ€ฒ โŠ’๐œ๐น ๐ธ; ๐ธ and ๐ธ โ€ฒ are equally as plau- most plausible) elements of the extension ranking โŠ’๐œ๐น , i. e. sible to be accepted (denoted as ๐ธ โ‰ก๐œ๐น ๐ธ โ€ฒ ) if ๐ธ โŠ’๐œ๐น ๐ธ โ€ฒ and ๐‘š๐‘Ž๐‘ฅ๐œ (๐น ) = {๐ธ โІ ๐ด | โˆ„๐ธ โ€ฒ โІ ๐ด with ๐ธ โ€ฒ โА๐œ๐น ๐ธ}. .. Definition 11. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† be two elements of ๐‘†. The lex- . cel ranking โชฐ๐‘™๐‘’๐‘ฅ-c๐‘’๐‘™ is defined by ๐‘ฅ โ‰ป๐‘™๐‘’๐‘ฅ-๐‘๐‘’๐‘™ โŠ’ ๐‘ฆ if there exists {๐‘} a ๐‘˜ such that ๐‘ฅ๐‘–,โŠ’ = ๐‘ฆ๐‘–,โŠ’ for all ๐‘– < ๐‘˜ and ๐‘ฅ๐‘˜,โŠ’ > ๐‘ฆ๐‘˜,โŠ’ .. . and ๐‘ฅ โˆผ๐‘™๐‘’๐‘ฅ-๐‘๐‘’๐‘™ โŠ’ ๐‘ฆ if ๐‘ฅ๐‘–,โŠ’ = ๐‘ฆ๐‘–,โŠ’ for all ๐‘–. {๐‘} {๐‘, ๐‘‘} Intuitively, an object ๐‘ฅ is ranked better than ๐‘ฆ by the lexicographic excellence operator if ๐‘ฅ is contained in more โˆ… {๐‘‘} highly ranked sets than ๐‘ฆ. Example 3. We continue Example 2 with the complete {๐‘Ž, ๐‘} {๐‘Ž} {๐‘Ž, ๐‘‘} extension-ranking as depicted in Figure 2. Then, we have three sets with rank 1, namely the complete extensions. The Figure 2: Excerpt of the extension-ranking โŠ’๐‘Ÿ๐น-1๐‘๐‘œ for the com- argument ๐‘Ž is contained in all three sets with rank 1, while ๐‘ plete semantics, where ๐ธ โ†’ ๐ธ โ€ฒ means ๐ธ โ€ฒ โА๐‘Ÿ๐น-1๐‘๐‘œ ๐ธ and ๐ธ โˆ’ ๐ธ โ€ฒ and ๐‘‘ are only contained in one such set each. Consequently means ๐ธ โ€ฒ โ‰ก๐‘Ÿ๐น-1๐‘๐‘œ ๐ธ ๐‘Ž โชฐlex-cel ๐‘ and ๐‘Ž โชฐlex-cel ๐‘‘. Now, the final admissible sets โˆ… and {๐‘‘} are dominated by all three complete extensions under the complete extension-ranking semantics, but dominate all The principle ๐œŽ-generalisation states, that the most plau- non-admissible sets. Therefore, they are the only sets with sible sets should coincide with the ๐œŽ-extensions. rank 2. It follows that ๐‘‘ โชฐlex-cel ๐‘ as both are contained in the same number of sets with rank 1, but ๐‘‘ is contained in more Definition 9 (๐œŽ-Gen). Let ๐œŽ be an extension-based se- sets with rank 2. mantics and ๐œ an extension-ranking semantics. ๐œ satis- fies ๐œŽ-soundness iff for all ๐ด๐น : ๐‘š๐‘Ž๐‘ฅ๐œ (๐ด๐น ) โІ ๐œŽ(๐ด๐น ). Similarly to argument- and extension-ranking semantics, ๐œŽ-completeness iff for all ๐ด๐น : ๐‘š๐‘Ž๐‘ฅ๐œ (๐ด๐น ) โЇ ๐œŽ(๐ด๐น ). social rankings have been studied axiomatically. Let us first ๐œŽ-generalisation iff ๐œ satisfies both ๐œŽ-soundness and ๐œŽ- introduce an axiom that has been part of a characterization completeness. of the lex-cel function under the assumption that the ranking over sets is a total preorder [9]. As we generally do not Additional principles can be found in Skiba et al. [11]. assume the ranking over extensions to be a total preorder, the characterisation does not hold in our setting, but it is straightforward to see that the lex-cel function still satisfies 3. Social Ranking this axiom. Let us now introduce the final piece of our puzzle, social Definition 12 (Independence from the worst set). Let โŠ’ rankings. Let ๐‘† be a set of arbitrary objects like players of a be a preorder on ๐’ซ, let sports team, employees of a company or arguments in an AF and ๐’ซ(๐‘†) its powerset. A social ranking function ๐œ‰, as ๐‘ค = max(rankโŠ’ (๐‘‹)) ๐‘‹โˆˆ๐’ซ introduced by Moretti and ร–ztรผrk [6], maps a preorder โŠ’ on ๐’ซ(๐‘†) to a partial order on ๐‘†. In the context of this work, and assume that โŠ’* is another preorder on ๐’ซ for which it we consider the preorder to be an extension-ranking โŠ’๐‘Ÿ-๐œŽ ๐น holds for some argumentation framework ๐น and a semantics ๐œŽ as defined above. The most prominent social ranking function โ€ข rankโŠ’ (๐‘‹) = rankโŠ’* (๐‘‹) for all ๐‘‹ โˆˆ ๐’ซ such that is the lexicographic excellence operator (lex-cel), which was rankโŠ’ (๐‘‹) < ๐‘ค. first proposed by Bernardi et al. [9]. It ranks elements based โ€ข rankโŠ’* (๐‘‹) โ‰ฅ ๐‘ค for all ๐‘‹ โˆˆ ๐’ซ such that on the best sets they appear in, proceeding lexicographically rankโŠ’ (๐‘‹) = ๐‘ค. if there are ties. However, as proposed by Bernardi et al. [9], the lex-cel operator requires a total order of the sets as Then for any social ranking function that satisfies Indepen- input, while the extension ranking semantics defined above dence from the worst set, we must have that ๐‘ฅ โ‰ปโŠ’ ๐‘ฆ implies only provide a partial ranking. To circumvent this problem, ๐‘ฅ โ‰ปโŠ’* ๐‘ฆ. we make use a measure of the quality of a set that allows us Intuitively, this axiom states that if one element is already to compare any two sets, the rank of a set. strictly worse than another, and we further subdivide the Definition 10. Let ๐‘‹ โІ ๐‘† be a subset of ๐‘† and โŠ’ a pre- worst sets, this strict preference remains. As we will see order on ๐’ซ(๐‘†). Moreover, let ๐‘‹1 , ๐‘‹2 , . . . , ๐‘‹๐‘˜ be the longest later, this axiom will be crucial for satisfying our desired sequence such that ๐‘‹1 โА ๐‘‹2 โА ยท ยท ยท โА ๐‘‹๐‘˜ โА ๐‘‹. Then, we refinement property. Next, we introduce a new, very weak define the rank of ๐‘‹, as rankโŠ’ (๐‘‹) := ๐‘˜ + 1. axiom inspired by the classical Pareto-efficiency concept Moreover, for an element ๐‘ฅ โˆˆ ๐‘†, we define [17], that is satisfied by most reasonable rank-based social ranking functions. ๐‘ฅ๐‘˜,โŠ’ := |{๐‘‹ โˆˆ ๐’ซ(๐‘†) | rankโŠ’ (๐‘‹) = ๐‘˜, ๐‘ฅ โˆˆ ๐‘‹}|, Definition 13 (Pareto-efficiency). Let โŠ’ be a preorder on as the number of rank ๐‘˜ subsets that contain ๐‘ฅ. ๐’ซ and let ๐‘ฅ, ๐‘ฆ be elements such that As we will see later, a rank-based approach to social rank- โ€ข rankโŠ’ (๐‘ โˆช {๐‘ฅ}) โ‰ค rankโŠ’ (๐‘ โˆช {๐‘ฆ}) for all ๐‘ โˆˆ ๐’ซ ing provides many desirable properties, at least in our con- with ๐‘ฅ, ๐‘ฆ โˆˆ / ๐‘; text of ranking arguments. With the definition of a rank โ€ข rankโŠ’ (๐‘ โˆช {๐‘ฅ}) < rankโŠ’ (๐‘ โˆช {๐‘ฆ}) for at least one at hand, we can now define our rank-based version of the ๐‘ โˆˆ ๐’ซ with ๐‘ฅ, ๐‘ฆ โˆˆ / ๐‘. lex-cel social ranking function. A social ranking function ๐œ‰ satisfies Pareto-efficiency, iff ๐‘ฅ โ‰ป๐œ‰โŠ’ ๐‘ฆ. Furthermore, we establish the novel Dominating set ax- define argument-ranking semantics based on an extension- iom which captures the intuition that if there exists a set ranking. containing the object ๐‘ฅ that is ranked better than every set that contains some other object ๐‘ฆ, then ๐‘ฅ must be ranked 4.1. The Singleton Approach better than ๐‘ฆ by the social ranking function. The most immediate way of ranking objects based on a Definition 14 (Dominating set). Let โŠ’ be a preorder on ๐’ซ ranking over sets of objects is to restrict the ranking over and let ๐‘ฅ, ๐‘ฆ be elements such that โˆƒ๐‘‹ โІ ๐’ซ with ๐‘ฅ โˆˆ ๐‘‹ such sets of objects to the singleton sets. The behaviour of these that โˆ€๐‘Œ with ๐‘ฆ โˆˆ ๐‘Œ then ๐‘‹ โА ๐‘Œ . A social ranking function singleton sets then gives us insight into the relationship ๐œ‰ satisfies Dominating set iff ๐‘ฅ โ‰ป๐œ‰โŠ’ ๐‘ฆ. between the objects. If {๐‘Ž} is ranked better than {๐‘} then Crucially, Independence from the Worst Set and Pareto- ๐‘Ž is also ranked better than ๐‘ in the restricted ranking. efficiency together imply Dominating set. Definition 15. Let ๐น = (๐ด, ๐‘…) be an AF and ๐œ any Theorem 1. Any social ranking function that satisfies Inde- extension-ranking semantics. For any two arguments ๐‘Ž, ๐‘ โˆˆ pendence from the worst set and Pareto-efficiency also satisfies ๐ด, the singleton argument-ranking semantics ๐’ฎ๐’ฏ ๐œ is de- Dominating set. fined via ๐‘Ž โชฐ๐’ฎ๐’ฏ ๐น ๐œ ๐‘ iff {๐‘Ž} โŠ’๐œ๐น {๐‘}. Proof. Let โŠ’ be a preorder on ๐’ซ and let ๐‘ฅ, ๐‘ฆ be elements Bernardi et al. [9] have already discussed that a rank- such that โˆƒ๐‘‹ ๐‘‘ โІ ๐’ซ with ๐‘ฅ โˆˆ ๐‘‹ ๐‘‘ such that โˆ€๐‘‹ โ€ฒ with ๐‘ฆ โˆˆ ing based solely on singleton sets is too simplistic, as it ๐‘‹ โ€ฒ then ๐‘‹ ๐‘‘ โА ๐‘‹ โ€ฒ . Furthermore, let ๐‘ค := rankโŠ’ (๐‘‹ ๐‘‘ ) + 1. ignores all the information provided by rankings over sets We consider the preorder โŠ’* that is defined as follows: For with cardinality larger than one. In the context of abstract any two sets ๐‘‹, ๐‘Œ โˆˆ ๐’ซ we have ๐‘‹ โŠ’* ๐‘Œ if and only if argumentation, this is also the case. ๐‘‹ โŠ’ ๐‘Œ and either rankโŠ’ (๐‘‹) < ๐‘ค or rankโŠ’ (๐‘Œ ) < ๐‘ค. We claim that Example 4. Consider the AF ๐น1 from Example 1. We use ๐‘Ÿ- max(rankโŠ’* (๐‘‹)) = ๐‘ค. ๐‘Ž๐‘‘ as the underlying extension-ranking semantics, then since ๐’ฎ๐’ฏ ๐‘‹โˆˆ๐’ซ {๐‘Ž} and {๐‘‘} are admissible we have ๐‘Ž =๐น1 ๐‘Ÿ-๐‘Ž๐‘‘ ๐‘‘ and both First, to see that max๐‘‹โˆˆ๐’ซ (rankโŠ’* (๐‘‹)) โ‰ค ๐‘ค we assume {๐‘} and {๐‘} are conflict-free and not defended, so for the sake of a contradiction that there is a set ๐‘‹ with ๐’ฎ๐’ฏ ๐’ฎ๐’ฏ ๐’ฎ๐’ฏ rankโŠ’* (๐‘‹) = ๐‘ค* > ๐‘ค. Then, by definition, there is a ๐‘Ž =๐น1 ๐‘Ÿ-๐‘Ž๐‘‘ ๐‘‘ โ‰ป๐น1 ๐‘Ÿ-๐‘Ž๐‘‘ ๐‘ =๐น1 ๐‘Ÿ-๐‘Ž๐‘‘ ๐‘ sequence ๐‘‹1 โŠ’* ๐‘‹2 โŠ’* ยท ยท ยท โŠ’* ๐‘‹๐‘ค* โŠ’* ๐‘‹. As every preference in โŠ’* is also valid in โŠ’, the same sequence exists The example shows that ๐’ฎ๐’ฏ ๐‘Ÿ-๐‘Ž๐‘‘ has a limited expressive- for โŠ’, i. e. ๐‘‹1 โŠ’ ๐‘‹2 โŠ’ ยท ยท ยท โŠ’ ๐‘‹๐‘ค* โŠ’ ๐‘‹. However, this ness, since ๐’ฎ๐’ฏ ๐‘Ÿ-๐‘Ž๐‘‘ has at most three ranks. The first rank means rankโŠ’ (๐‘‹๐‘ค* ) โ‰ฅ ๐‘ค* โˆ’ 1 โ‰ฅ ๐‘ค and rankโŠ’ (๐‘‹) โ‰ฅ contains arguments for which the singleton set is admissi- ๐‘ค* > ๐‘ค, which contradicts ๐‘‹๐‘ค* โŠ’* ๐‘‹. ble and the lowest rank are all self-attacking arguments, in To see that max๐‘‹โˆˆ๐’ซ (rankโŠ’* (๐‘‹)) โ‰ฅ ๐‘ค we first ob- between are the non-admissible sets, but conflict-free single- serve that as rankโŠ’ (๐‘‹ ๐‘‘ ) = ๐‘ค โˆ’ 1 there is a sequence ton sets. Observe also that this approach does not refine the ๐‘‹1 โŠ’ ๐‘‹2 โŠ’ ยท ยท ยท โŠ’ ๐‘‹๐‘คโˆ’1 โŠ’ ๐‘‹. As this sequence is classical skeptical/credulous acceptance classification, as in maximal, rankโŠ’ (๐‘‹๐‘– ) < ๐‘ค for all elements ๐‘‹๐‘– of the se- Example 4 the credulously accepted argument ๐‘ is ranked quence. Hence the same sequence exists in โŠ’* . Finally, the same as the rejected argument ๐‘. as ๐‘‹ ๐‘‘ is a dominating set, we know ๐‘‹ ๐‘‘ โŠ’ {๐‘ฆ} and as rankโŠ’ (๐‘‹ ๐‘‘ ) < ๐‘ค, we also have ๐‘‹ ๐‘‘ โŠ’* {๐‘ฆ}. Therefore, 4.2. Generalised Social Ranking ๐‘‹1 โŠ’* ๐‘‹2 โŠ’* ยท ยท ยท โŠ’* ๐‘‹๐‘คโˆ’1 โŠ’* ๐‘‹ โŠ’* {๐‘ฆ} witnesses Argument-ranking Semantics that rankโŠ’* ({๐‘ฆ}) โ‰ฅ ๐‘ค. * Next, we claim that ๐‘ฅ โ‰ปโŠ’ ๐‘ฆ for all social rank- In the literature, a number of different social ranking func- ing functions that satisfy Pareto-efficiency: By definition, tions that are more complex than the singleton approach rankโŠ’* (๐‘‹ ๐‘‘ ) = ๐‘ค โˆ’ 1. Furthermore, we have ๐‘‹ ๐‘‘ = can be found [18, 9, 8, 7]. To understand what constitutes (๐‘‹ ๐‘‘ โˆ– {๐‘ฅ}) โˆช {๐‘ฅ} โŠ’* (๐‘‹ ๐‘‘ โˆ– {๐‘ฅ}) โˆช {๐‘ฆ}, and thus a good social ranking function in this context, we define a rankโŠ’* ((๐‘‹ ๐‘‘ โˆ– {๐‘ฅ}) โˆช {๐‘ฆ}) > ๐‘ค โˆ’ 1. This shows that general argument-ranking semantics using social ranking rankโŠ’* (๐‘‹ ๐‘‘ ) < rankโŠ’* ((๐‘‹ ๐‘‘ โˆ– {๐‘ฅ}) โˆช {๐‘ฆ}). On the other solutions with respect to an extension ranking. hand, there can be no ๐‘ such that rankโŠ’* (๐‘ โˆช {๐‘ฆ}) < Definition 16. Let ๐น = (๐ด, ๐‘…) be an AF and ๐œ‰ a social rankโŠ’* (๐‘ โˆช{๐‘ฅ}): As ๐‘ โˆช{๐‘ฆ} is dominated by ๐‘‹ ๐‘‘ , we know ranking function with respect to extension ranking ๐œ . For any rankโŠ’ (๐‘ โˆช{๐‘ฆ}) โ‰ฅ ๐‘ค and thus rank*โŠ’ (๐‘ โˆช{๐‘ฆ}) โ‰ฅ ๐‘ค. Thus, ๐‘Ž, ๐‘ โˆˆ ๐ด we call ๐œ‰๐œ the Social ranking argument-ranking the claim follows directly from max๐‘‹โˆˆ๐’ซ (rankโŠ’* (๐‘‹)) = ๐‘ค semantics such that: Finally, if โชฐ also satisfies Independence from the worst set, if follows that also ๐‘ฅ โ‰ปโŠ’ ๐‘ฆ, as โŠ’ is just a refinement of ๐‘Ž โชฐ๐œ‰๐น๐œ ๐‘ iff ๐‘Ž โชฐ๐œ‰๐œ ๐‘ the worst set of โŠ’* . In words, an argument ๐‘Ž is at least as strong as argument ๐‘ if the social ranking function ๐œ‰ applied to the extension 4. Defining Argument-ranking ranking โŠ’๐œ returns that ๐‘Ž is at least as strong as ๐‘. Semantics via Social Rankings Example 5. In Example 3 the social ranking argument rank- The idea of combining extension-ranking semantics with ing lex-celr-co was applied to the AF ๐น1 from Example 1 where argument-ranking semantics was briefly discussed by Skiba lex-cel is used and the underlying extension-ranking semantics et al. [11], where, based on a ranking over sets of argu- is r-co. Thus, the resulting argument ranking is: ments, a ranking over arguments was defined. In this sec- tion, we take a more general view on this approach and ๐‘Ž โ‰ปlex-cel ๐น1 r-co ๐‘‘ โ‰ปlex-cel ๐น1 r-co ๐‘ โ‰ปlex-cel ๐น1 r-co ๐‘ Any social ranking function can be used to rank argu- Next, we investigate principles for social ranking based ments. Skiba et al. [11] have used a variation of the lex-cel argument-ranking semantics from a general point of view. social ranking function in their definitions, where an argu- In particular, we are interested in understanding which com- ment ๐‘Ž is ranked better than another argument ๐‘ if we can binations of axioms for extension-ranking semantics ๐œ and find a set ๐ธ containing ๐‘Ž which is ranked better than any social ranking functions ๐œ‰ represent necessary and sufficient set containing ๐‘. conditions for the corresponding social ranking argument- ranking semantics ๐œ‰๐œ to satisfy fundamental principles of Definition 17 ([11]). Let ๐น = (๐ด, ๐‘…) be an AF, ๐‘Ž, ๐‘ โˆˆ argument rankings, chiefly among them our desired refine- ๐ด, and ๐œ be an extension-ranking semantics. We define an ment property. This translates to the following research argument-ranking semantics โชฐ๐œ๐น via ๐‘Ž โชฐ๐œ๐น ๐‘ iff there is a questions: set ๐ธ with ๐‘Ž โˆˆ ๐ธ s.t. for all sets ๐ธ โ€ฒ with ๐‘ โˆˆ ๐ธ โ€ฒ we have ๐ธ โŠ’๐œ๐น ๐ธ โ€ฒ . RQ1 What properties of ๐œ‰ and ๐œ are adequate to ensure Example 6. Continuing with Example 1. Using ๐‘Ÿ-๐‘Ž๐‘‘ as the that ๐œ‰๐œ satisfies a specific principle for argument- underlying extension-ranking semantics, we see that {๐‘Ž, ๐‘} ranking semantics? and {๐‘Ž, ๐‘‘} are admissible sets, hence also among the most RQ2 What properties of ๐œ‰๐œ are adequate to ensure that plausible sets. Since ๐‘Ÿ-๐‘Ž๐‘‘ satisfies ๐‘Ž๐‘‘-generalisation there ๐œ‰ satisfies a specific principle for social ranking cannot be any set containing ๐‘ ranked strictly better, than functions when combined with a certain extension- these two sets. This observation result in the ranking ๐‘Ž โ‰ƒ๐‘Ÿ-๐‘Ž๐‘‘ ๐น1 ranking semantics ๐œ ? ๐‘ โ‰ƒ๐‘Ÿ-๐‘Ž๐‘‘ ๐น1 ๐‘‘ โ‰ป๐‘Ÿ-๐‘Ž๐‘‘ ๐น1 ๐‘. Since {๐‘Ž, ๐‘}, {๐‘Ž, ๐‘‘} โˆˆ ๐œŽ(๐น1 ) for ๐œŽ โˆˆ {๐‘๐‘œ, ๐‘๐‘Ÿ, ๐‘ ๐‘ก๐‘, ๐‘ ๐‘ ๐‘ก} the ranking is the same for any ๐‘Ÿ-๐œŽ. Only Next, we address RQ1 and RQ2 for a selected number of for ๐‘Ÿ-๐‘”๐‘Ÿ the induced ranking differs: principles for argument ranking semantics. ๐‘Ÿ-๐‘”๐‘Ÿ ๐‘Ž โ‰ป๐น1 ๐‘ โ‰ƒ๐‘Ÿ-๐‘”๐‘Ÿ ๐‘Ÿ-๐‘”๐‘Ÿ ๐น1 ๐‘‘ โ‰ป๐น1 ๐‘ 4.2.1. Sufficient Conditions for Social Ranking The previous examples show that where lex-celr-co can Argument-ranking semantics differentiate ๐‘Ž, ๐‘, ๐‘, and ๐‘‘, the argument ranking of Defini- We start by considering ๐œŽ-Compatibility. For this we show tion 17 under ๐‘Ÿ-๐‘๐‘œ does not allow to distinguish among ๐‘Ž, ๐‘ that Independence from the worst set together with the quite and ๐‘‘. Indeed, lex-cel is more informative than the operator weak condition Pareto-efficiency, is sufficient for satisfying of Skiba et al. [11]. ๐œŽ-C. Proposition 1. Let ๐น = (๐ด, ๐‘…) be an AF, ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐œ Theorem 2. Let ๐น = (๐ด, ๐‘…) be an argumentation frame- an extension ranking. If ๐‘Ž โชฐlex-cel ๐น ๐œ ๐‘, then ๐‘Ž โชฐ๐œ๐น ๐‘. work, ๐œ an extension-ranking semantics, satisfying ๐œŽ- gen- Proof. Let ๐น = (๐ด, ๐‘…) be an AF, ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐œ an exten- eralisation for extension semantics ๐œŽ and ๐œ‰ a social ranking sion ranking. Assume ๐‘Ž โชฐlex-cel ๐œ ๐‘, then there is an ๐‘˜ s.t for function that satisfies Independence from the worst set and ๐น all ๐‘– < ๐‘˜ we have ๐‘Ž๐‘–,๐œ = ๐‘๐‘–,๐œ and ๐‘Ž๐‘˜,๐œ โ‰ฅ ๐‘๐‘˜,๐œ . Pareto-efficiency. Then ๐œ‰๐œ satisfies ๐œŽ-C. If ๐‘๐‘—,๐œ ฬธ= 0 for 1 โ‰ค ๐‘— โ‰ค ๐‘˜, then there is one ๐‘Œ โІ ๐ด with Proof. Consider first the extension ranking โŠ’๐œŽ defined by ๐‘Ÿ๐‘Ž๐‘›๐‘˜๐œ (๐‘Œ ) = ๐‘— and ๐‘ โˆˆ ๐‘Œ . W.l.o.g. let ๐‘— be the smallest ๐‘‹ โŠ’๐œŽ๐น ๐‘Œ if and only if ๐‘‹ โˆˆ ๐œŽ(๐น ) and ๐‘Œ ฬธโˆˆ ๐œŽ(๐น ). Fur- number s.t. ๐‘๐‘—,๐œ ฬธ= 0. Then ๐‘Œ โŠ’๐œ๐น ๐‘‹ for all ๐‘‹ โІ ๐ด with thermore, let ๐‘ฅ โˆˆ ๐‘๐‘Ÿ๐‘’๐‘‘ ๐œŽ (๐น ) and ๐‘ฆ โˆˆ ๐‘Ÿ๐‘’๐‘—๐œŽ (๐น ). Then, ๐‘Ž โˆˆ ๐‘‹, therefore ๐‘ โชฐ๐œ๐น ๐‘Ž. Since, ๐‘๐‘—,๐œ โ‰ค ๐‘Ž๐‘—,๐œ , there has ๐œŽ we claim that ๐‘ฅ โ‰ปโŠ’ ๐‘ฆ for any social ranking function to be an ๐‘‹ โ€ฒ โІ ๐ด with ๐‘Ÿ๐‘Ž๐‘›๐‘˜๐œ (๐‘‹ โ€ฒ ) = ๐‘— and ๐‘Ž โˆˆ ๐‘‹ โ€ฒ s.t. ๐œ‰ that satisfies Pareto-efficiency: As ๐‘ฅ is credulously ac- ๐‘‹ โ€ฒ โ‰ก๐œ๐น ๐‘Œ , so ๐‘Ž โชฐ๐œ๐น ๐‘. cepted, there exists a ๐‘‹ โˆˆ ๐œŽ(๐น ) with ๐‘ฅ โˆˆ ๐‘‹ and as If ๐‘๐‘—,๐œ = 0 for all ๐‘— โˆˆ {1, . . . , ๐‘˜} and ๐‘Ž๐‘˜,๐œ > 0, then ๐‘ฆ is rejected, we have ๐‘Œ ฬธโˆˆ ๐œŽ(๐น ) for all ๐‘ฆ โˆˆ ๐‘Œ . It fol- there is at least one ๐‘‹ โІ ๐ด with ๐‘Ž โˆˆ ๐‘‹ and ๐‘Ÿ๐‘Ž๐‘›๐‘˜๐œ (๐‘‹) = ๐‘˜ lows that rankโŠ’๐œŽ (๐‘‹ โˆ– {๐‘ฅ}) โˆช {๐‘ฅ}) = 1 < rankโŠ’๐œŽ ((๐‘‹ โˆ– s.t. ๐‘‹ โА๐œ๐น ๐‘Œ for all ๐‘Œ โІ ๐ด with ๐‘ โˆˆ ๐‘Œ , and therefore {๐‘ฅ}) โˆช {๐‘ฆ}). On the other hand, there can be no ๐‘† such that ๐‘Ž โ‰ป๐œ๐น ๐‘. rankโŠ’๐œŽ (๐‘† โˆช {๐‘ฆ}) < rankโŠ’๐œŽ (๐‘† โˆช {๐‘ฅ}) as, due to the fact In particular, lex-celr-co allows us to distinguish among that ๐‘ค = max๐‘‹โІ๐ด (rankโŠ’๐œŽ๐น (๐‘‹)) = 2, this would imply skeptically and credulously accepted arguments (๐‘Ž is ranked rankโŠ’๐œŽ (๐‘† โˆช {๐‘ฆ}) = 1 and therefore ๐‘† โˆช {๐‘ฆ} โˆˆ ๐œŽ(๐น ). before ๐‘ and ๐‘‘). To capture this, we define a skeptical varia- Furthermore, as ๐œ satisfies ๐œŽ-generalisation, we know that tion of ๐œŽ-Compatibility. Skeptical accepted arguments are rankโŠ’๐œŽ๐น (๐‘‹) = 1 if and only if rankโŠ’๐œ๐น (๐‘‹) = 1. There- part of every ๐œŽ-extension, therefore they should be ranked fore, it follows from Independence from the worst set that ๐œ‰ better than any other argument. ๐‘ฅ โ‰ป๐นโŠ’๐œŽ ๐‘ฆ implies ๐‘ฅ โ‰ป๐œ‰๐น๐œ ๐‘ฆ. Consequently, we know that ๐œ‰๐œ satisfies ๐œŽ-C. Definition 18. Let ๐น = (๐ด, ๐‘…) be an AF, ๐‘Ž, ๐‘ โˆˆ ๐ด, and let ๐œŽ be a extension-based semantics. Argument-ranking semantics Next, we show that Independence from the worst set and ๐œŒ satisfies ๐œŽ-skeptical-Compatibility (๐œŽ-sk-C) iff ๐‘Ž โˆˆ ๐‘ ๐‘˜๐œŽ (๐น ) Pareto-efficiency together also imply that every skeptically and ๐‘ โˆˆ/ ๐‘ ๐‘˜๐œŽ (๐น ) then ๐‘Ž โ‰ป๐œŒ๐น ๐‘. accepted argument is ranked before any argument that is Crucially, a well-behaved argument ranking semantics not skeptically accepted. should be able to rank skeptically accepted arguments before Theorem 3. Let ๐น = (๐ด, ๐‘…) be an AF, ๐œ an all credulously accepted ones, which should be, in turn, extension-ranking semantics satisfying ๐œŽ-generalisation for ranked before all non-accepted arguments. This translated an extension-based semantics ๐œŽ, then if social ranking func- to the following refinement property. tion ๐œ‰ satisfies Pareto-efficiency and Independence from the Definition 19 (๐œŽ-Refinement). Argument-ranking seman- worst set then ๐œ‰๐œ satisfies ๐œŽ-sk-C. tics ๐œŒ satisfies ๐œŽ-Refinement if ๐œŒ satisfies ๐œŽ-C and ๐œŽ-sk-C for extension-based semantics ๐œŽ for all AFs ๐น . Proof. Let ๐น = (๐ด, ๐‘…) be an AF, ๐œ an extension-ranking se- However, then, by our choice of โ„“ we know mantics satisfying ๐œŽ-generalisation for an extension-based |{๐‘ โˆˆ ๐’ซ | ๐‘ฅ, ๐‘ฆ ฬธโˆˆ ๐‘ โˆง |๐‘| โ‰ฅ 2}| > ๐‘˜ = ๐‘˜ ยท |{โˆ…}|. semantics ๐œŽ, and ๐œ‰ a social ranking function satisfying Pareto-efficiency and Independence from the worst set. It follows that rank ๐‘˜-super majority is violated. Since ๐œŽ-generalisation is satisfied by ๐œ we can view ๐œ as a Next, consider the axiom SC. Here, we can find a property refinement of the extension-ranking semantics ๐œ โ€ฒ defined โ€ฒ of social ranking functions that guarantees that ๐œ‰๐œ satis- by ๐‘‹ โŠ’๐œ๐น ๐‘Œ iff ๐‘‹ โˆˆ ๐œŽ(๐น ) and ๐‘Œ โˆˆ / ๐œŽ(๐น ) for ๐‘‹, ๐‘Œ โІ ๐ด. fies SC under the assumption that ๐œ satisfies the following Now consider two arguments, ๐‘Ž, ๐‘ โˆˆ ๐ด, such that ๐‘Ž โˆˆ principle: ๐‘ ๐‘˜๐œŽ (๐น ) and ๐‘ โˆˆ/ ๐‘ ๐‘˜๐œŽ (๐น ). Assume there exists a ๐‘ โІ ๐ด โˆ– {๐‘Ž, ๐‘} s.t. rankโŠ’๐œ โ€ฒ (๐‘ โˆช {๐‘}) < rankโŠ’๐œ โ€ฒ (๐‘ โˆช {๐‘Ž}). Since Definition 21 (Respects Conflicts). For AF ๐น = (๐ด, ๐‘…) and ๐น ๐น ๐ธ, ๐ธ โ€ฒ โІ ๐ด extension-ranking semantics ๐œ satisfies respects ๐œ only has two levels, this implies ๐‘ โˆช {๐‘} โˆˆ ๐‘š๐‘Ž๐‘ฅ๐œ โ€ฒ (๐น ) โ€ฒ conflicts if ๐ธ โˆˆ ๐‘๐‘“ (๐น ) and ๐ธ โ€ฒ โˆˆ / ๐‘๐‘“ (๐น ), then ๐ธ โА๐œ๐น ๐ธ โ€ฒ . and thus ๐‘ โˆช {๐‘} โˆˆ ๐œŽ(๐น ). As ๐‘Ž โˆˆ ๐‘ ๐‘˜๐œŽ (๐น ), we must have ๐‘Ž โˆˆ ๐‘ โˆช {๐‘}. However, as ๐‘Ž โˆˆ / ๐‘ we know that also To show that ๐œ‰๐œ satisfies SC we also need the Dominating ๐‘Žโˆˆ / ๐‘ โˆช {๐‘}. This is a contradiction and hence such a ๐‘ set property from Definition 14. With these two properties cannot exist. we can then show when SC is satisfied. Since ๐‘ โˆˆ / ๐‘ ๐‘˜๐œŽ (๐น ) we know there has to exists ๐‘Œยฏ โІ ๐ด s.t. Theorem 4. For AF ๐น = (๐ด, ๐‘…) if extension-ranking seman- ๐‘Œยฏ โˆˆ ๐‘š๐‘Ž๐‘ฅ๐œ โ€ฒ (๐น ) and ๐‘ฆ โˆˆ / ๐‘Œยฏ . Then because ๐‘Ž โˆˆ ๐‘ ๐‘˜๐œŽ (๐น ) we tics ๐œ satisfies respects conflicts and social ranking function ๐œ‰ know that (๐‘Œยฏ โˆ– {๐‘Ž}) โˆช {๐‘} โˆˆ / ๐‘š๐‘Ž๐‘ฅ๐œ โ€ฒ (๐น ). Consequently, satisfies Dominating set, then ๐œ‰๐œ satisfies SC. ๐œ‰๐œ โ€ฒ Pareto-efficiency implies ๐‘Ž โ‰ป๐น ๐‘. ๐œ‰ โ€ฒ As ๐‘Ž โ‰ป๐น๐œ ๐‘ holds for ๐œ โ€ฒ , and ๐œ is a refinement of ๐œ โ€ฒ such Proof. For AF ๐น = (๐ด, ๐‘…), let ๐‘Ž, ๐‘ โˆˆ ๐ด, (๐‘, ๐‘) โˆˆ ๐‘… and that ๐‘š๐‘Ž๐‘ฅ๐œ โ€ฒ (๐น ) = ๐‘š๐‘Ž๐‘ฅ๐œ (๐น ) it follows from Independence / ๐‘…, then {๐‘Ž} โˆˆ ๐‘๐‘“ (๐น ) and for all ๐ธ โ€ฒ with ๐‘ โˆˆ ๐ธ โ€ฒ (๐‘Ž, ๐‘Ž) โˆˆ for the worst set that the same holds for ๐œ , i. e. ๐‘Ž โ‰ป๐œ‰๐น๐œ ๐‘. it holds that ๐ธ โ€ฒ โˆˆ / ๐‘๐‘“ (๐น ). Because of respects conflicts we have {๐‘Ž} โА ๐ธ โ€ฒ and therefore because of Dominating set Additionally, observe that Independence from the worst we have ๐‘Ž โ‰ป๐œ‰๐น๐œ ๐‘. set means that we might have to ignore most of the infor- mation that is available to us. The following result shows 4.2.2. Necessary Conditions for Social Ranking that, at least for the rank information, this is essentially Argument-ranking semantics unavoidable if we want to satisfy ๐‘๐‘“ -C. Let us first intro- Let us try to go the other way, that is finding necessary con- duce an axiom that encodes the idea that we cannot ignore ditions for the social ranking functions to satisfy desirable overwhelming, rank based evidence. properties. First observe it is not possible to formulate any Definition 20 (Rank ๐‘˜-super majority). Let ๐‘˜ โˆˆ N be a necessary conditions that also hold for any ranking that natural number. Then we say a social ranking function ๐œ‰ cannot be realised by any AF, i. e., we cannot find an AF that satisfies rank ๐‘˜-super majority if for all ๐‘ฅ and ๐‘ฆ such that induces this ranking. This is because any property of the argument-ranking only restricts the social ranking function |{๐‘ โˆˆ ๐’ซ | ๐‘ฅ, ๐‘ฆ ฬธโˆˆ ๐‘โˆงrank(๐‘โˆช{๐‘ฅ}) < rank(๐‘โˆช{๐‘ฆ})}| > on realisable rankings. Therefore, we need to define the following concept in a similar vain to Dunne et al. [19]. ๐‘˜ยท|{๐‘ โˆˆ ๐’ซ | ๐‘ฅ, ๐‘ฆ ฬธโˆˆ ๐‘โˆงrank(๐‘โˆช{๐‘ฆ}) < rank(๐‘โˆช{๐‘ฅ})}|. Definition 22. Let ๐‘‹ be a set and let โŠ’ be a preorder on we have ๐‘ฅ โชฐ ๐‘ฆ. ๐’ซ(๐‘‹). Then, we say that โŠ’ is ๐œ -realisable for a extension- In words, if there are ๐‘˜-times as many sets ๐‘ such that the ranking semantics ๐œ if there is an AF ๐น with ๐ด = ๐‘‹ such rank of ๐‘ โˆช {๐‘ฅ} is strictly better than the rank of ๐‘ โˆช {๐‘ฆ}, that โŠ’๐œ๐น =โŠ’. than the other way round, then ๐‘ฅ must be (weakly) preferred For example, for a set {๐‘Ž, ๐‘} any preorder containing to ๐‘ฆ. {๐‘Ž, ๐‘} โŠ’ {๐‘Ž} is not ๐‘Ÿ-๐‘๐‘“ -realisable. The conflicts in {๐‘Ž, ๐‘} Proposition 2. Any social ranking function ๐œ‰๐‘Ÿ-๐‘๐‘“ satisfies must be a strict super-set of the conflicts in {๐‘Ž}. On the ๐‘๐‘“ -C and violates rank ๐‘˜-super majority for every ๐‘˜. other hand, the preorder containing exactly the relations {๐‘Ž} โŠ’ {๐‘Ž, ๐‘} and {๐‘} โŠ’ {๐‘Ž, ๐‘} is realised by the AF Proof. Let ๐‘˜ be an arbitrary natural number, โ„“ a natural ({๐‘Ž, ๐‘}, {(๐‘Ž, ๐‘)}). number such that โ„“ โ‰ฅ ๐‘˜ and โ„“ โ‰ฅ 3. Furthermore con- Theorem 5. Let ๐œ‰ be a social ranking function such that sider an argumentation framework ๐น with the arguments ๐œ‰๐‘Ÿ-๐‘๐‘“ satisfies ๐‘๐‘“ -๐ถ. Then, ๐œ‰ satisfies Dominating set for all ๐‘Ž, ๐‘, ๐‘1 , . . . ๐‘โ„“ and the attacks (๐‘, ๐‘) and (๐‘๐‘– , ๐‘Ž) for all ๐‘– โ‰ค โ„“. ๐‘Ÿ-๐‘๐‘“ -realisable preorders โŠ’. Then, ๐‘Ž โˆˆ ๐‘๐‘Ÿ๐‘’๐‘‘๐‘๐‘“ (๐น ), as witnessed by the conflict free set {๐‘Ž}, but ๐‘ โˆˆ ๐‘Ÿ๐‘’๐‘—๐‘๐‘“ (๐น ), as it is self-attacking. It follows Proof. Let โŠ’ be a ๐‘๐‘“ -realisable preorder and let ๐น be an from the fact that ๐‘Ž โ‰ป ๐‘, because โชฏ satisfies ๐‘๐‘“ -C. However, ๐ด๐น that realises it. Assume further that there are ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด observe that such that there exists a ๐‘‹ with ๐‘ฅ โˆˆ ๐‘‹ for which we have ๐‘‹ โА ๐‘Œ for all ๐‘Œ such that ๐‘ฆ โˆˆ ๐‘Œ . {๐‘ โˆˆ ๐’ซ | ๐‘ฅ, ๐‘ฆ ฬธโˆˆ ๐‘ โˆง rank๐‘Ÿ-cf (๐‘ โˆช {๐‘Ž})} As ๐‘‹ contains ๐‘ฅ, its set of conflicts must be a strict super- < rank๐‘Ÿ-cf (๐‘ โˆช {๐‘}) = {โˆ…} set of the conflicts in {๐‘ฅ}. It follows that {๐‘ฅ} โŠ’ ๐‘‹ โА ๐‘Œ and hence by transitivity also {๐‘ฅ} โА ๐‘Œ for all ๐‘Œ such while that ๐‘ฆ โˆˆ ๐‘Œ . In particular, it follows that {๐‘ฅ} โА {๐‘ฆ}. By definition, this means ๐ถ๐น๐น ({๐‘ฅ}) โŠ‚ ๐ถ๐น๐น ({๐‘ฆ}), which can {๐‘ โˆˆ ๐’ซ | ๐‘ฅ, ๐‘ฆ ฬธโˆˆ ๐‘ only hold if ๐‘ฆ is self-attacking and ๐‘ฅ is not. However, then ๐‘ฅ is credulously accepted in the under conflict-free semantics โˆง rank๐‘Ÿ-cf (๐‘ โˆช {๐‘Ž}) < rank๐‘Ÿ-cf (๐‘ โˆช {๐‘})} while ๐‘ฆ is not. Consequently, it follows from ๐‘๐‘“ -๐ถ that = {๐‘ โˆˆ ๐’ซ | ๐‘ฅ, ๐‘ฆ ฬธโˆˆ ๐‘ โˆง |๐‘| โ‰ฅ 2}. ๐‘ฅ โ‰ป ๐‘ฆ. Hence, dominating set is satisfied. It follows that dominating set is a necessary and sufficient Proof. First, consider sets ๐‘1 , . . . , ๐‘๐‘› โˆˆ ๐’ซ for which condi- condition for a social ranking function to satisfy ๐‘๐‘“ -๐ถ when tion (2) of Pareto-efficiency holds. Among these, take those combined with ๐‘Ÿ-๐‘๐‘“ . ๐‘1 , . . . , ๐‘๐‘š (with ๐‘š โ‰ค ๐‘›) for which rankโŠ’ (๐‘๐‘— โˆช {๐‘ฅ}) = ๐‘˜ A similar result can be found for admissible semantics. (with 1 โ‰ค ๐‘— โ‰ค ๐‘š) is minimal. At this level in the ranking, we have that rankโŠ’ (๐‘ โˆช {๐‘ฅ}) = rankโŠ’ (๐‘ โˆช {๐‘ฆ}) for each Theorem 6. Let ๐œ‰ be a social ranking s.t. ๐œ‰๐‘Ÿ-๐‘Ž๐‘‘ satisfies ๐‘ ฬธ= ๐‘๐‘— . Hence, for every ๐‘ โˆช {๐‘ฅ} there is exactly one ๐‘Ž๐‘‘-๐ถ. Then ๐œ‰ satisfies Dominating set for all ๐‘Ÿ-๐‘Ž๐‘‘-realisable corresponding set ๐‘ โˆช {๐‘ฆ}, except for each ๐‘๐‘— โˆช {๐‘ฅ} (be- preorders โŠ’. cause rankโŠ’ (๐‘๐‘— โˆช {๐‘ฆ}) > ๐‘˜). Thus, for each ๐‘ โˆˆ ๐’ซ with ๐‘ฅ, ๐‘ฆ โˆˆ/ ๐‘: Proof. Let โŠ’ be a ๐‘Ÿ-๐‘Ž๐‘‘-realisable preorder and AF ๐น = (๐ด, ๐‘…) induces โŠ’. Assume ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด such that there exists ๐‘‹ โІ ๐ด with ๐‘ฅ โˆˆ ๐‘‹ for which we have ๐‘‹ โА ๐‘Œ for all ๐‘Œ |{๐‘ โˆช {๐‘ฅ} โˆˆ ๐’ซ | rankโŠ’ (๐‘ โˆช {๐‘ฅ}) = ๐‘˜}| > such that ๐‘ฆ โˆˆ ๐‘Œ . |{๐‘ โˆช {๐‘ฆ} โˆˆ ๐’ซ | rankโŠ’ (๐‘ โˆช {๐‘ฆ}) = ๐‘˜}|. Assume that the set ๐‘‹ is not admissible. That means one of the following two cases must apply At level ๐‘˜, there are more sets containing ๐‘ฅ than those containing ๐‘ฆ, i. e. ๐‘ฅ๐‘˜,โŠ’ > ๐‘ฆ๐‘˜,โŠ’ by Definition 10. To prove (1) ๐ถ๐น๐น (๐‘‹) ฬธ= โˆ… or, (2) ๐‘ˆ ๐ท๐น (๐‘‹) ฬธ= โˆ… ๐‘ฅ โ‰ปlex-cel โŠ’ ๐‘ฆ it remains to show that ๐‘ฅ๐‘–,โŠ’ = ๐‘ฆ๐‘–,โŠ’ for all ๐‘– < ๐‘˜. By construction, for all ๐‘– < ๐‘˜ and ๐‘ โˆˆ ๐’ซ โˆ– {๐‘ฅ, ๐‘ฆ}, we know to (1): Then, there is some attack (๐‘Ž, ๐‘) โˆˆ ๐ถ๐น๐น (๐‘‹) for that rankโŠ’ (๐‘ โˆช {๐‘ฅ}) = rankโŠ’ (๐‘ โˆช {๐‘ฆ}). Hence, for each ๐‘Ž, ๐‘ โˆˆ ๐‘‹. From ๐‘‹ โА ๐‘Œ it follows that ๐ถ๐น๐น (๐‘‹) โІ set containing ๐‘ฅ there is exactly one set containing ๐‘ฆ. By ๐ถ๐น๐น (๐‘Œ ) and thus (๐‘Ž, ๐‘) โˆˆ ๐ถ๐น๐น (๐‘Œ ). Now, if ๐‘ฆ = ๐‘Ž or Definition 10, we obtain ๐‘ฅ๐‘–,โŠ’ = ๐‘ฆ๐‘–,โŠ’ , as desired. ๐‘ฆ = ๐‘ it follows that ๐‘ฆ โˆˆ ๐‘‹ which directly contradicts our assumption because of ๐‘‹ โ‰ก ๐‘Œ โ€ฒ for ๐‘Œ โ€ฒ = ๐‘‹ with Bernardi et al. [9] have shown that lex-cel satisfies Inde- ๐‘ฆ โˆˆ ๐‘Œ โ€ฒ . However, if ๐‘ฆ ฬธ= ๐‘Ž and ๐‘ฆ ฬธ= ๐‘ we can con- pendent from worst set for total orders and it is straightfor- struct ๐‘Œ โ€ฒ = ๐‘Œ โˆ– {๐‘Ž, ๐‘}. Clearly, that means we either ward to see that this also holds for our setting. By Theorem 1 have ๐ถ๐น๐น (๐‘Œ โ€ฒ ) = โˆ… which means ๐‘Œ โА ๐‘‹ or we have this means lex-cel also satisfies Dominating set, which im- ๐ถ๐น๐น (๐‘Œ โ€ฒ ) ฬธ= โˆ… which implies ๐‘‹ โ‰ ๐‘Œ โ€ฒ . Because of ๐‘ฆ โˆˆ ๐‘Œ โ€ฒ plies that lex-cel๐œ satisfies ๐œŽ-C and ๐œŽ-sk-C if ๐œ satisfies both cases contradict the initial assumption, hence we must ๐œŽ-generalisation. Since both ๐œŽ-C and ๐œŽ-sk-C are satisfied have that ๐ถ๐น๐น (๐‘‹) = โˆ…, i. e. the set ๐‘‹ is conflict-free. the resulting argument ranking has a quite interesting pat- to (2): Then, there exists an argument ๐‘Ž โˆˆ ๐‘ˆ ๐ท๐น (๐‘‹) tern. The argument ranking can be split into three groups, which is not defended by ๐‘‹. Consider now the set ๐‘Œ โ€ฒ = first the skeptically accepted arguments wrt. ๐œŽ then the {๐‘ฆ} for which we either have that ๐‘ˆ ๐ท๐น (๐‘Œ โ€ฒ ) = โˆ… or credulously accepted wrt. ๐œŽ and finally the rejected argu- ๐‘ˆ ๐ท๐น (๐‘Œ โ€ฒ ) = {๐‘ฆ}. If ๐‘ˆ ๐ท๐น (๐‘Œ โ€ฒ ) = โˆ…, it follows directly ments wrt. ๐œŽ. Inside all these groups the arguments can still that ๐‘Œ โ€ฒ โА ๐‘‹, contradicting our initial assumption. On the be differentiated, so the resulting ranking is a generalisation other hand, for ๐‘ˆ ๐ท๐น (๐‘Œ โ€ฒ ) = {๐‘ฆ} we distinguish between of the acceptance problems for abstract argumentation. two cases: The following result summarises the compliance of lex- cel๐œ with the argument-ranking principles. (2.1) ๐‘ฆ = ๐‘ฅ, (2.2) ๐‘ฆ ฬธ= ๐‘ฅ Theorem 8. lex-cel๐œ satisfies the respective principles as Clearly, if ๐‘ฅ = ๐‘ฆ we contradict our initial assumption be- stated in Table 1 for ๐œ โˆˆ {๐‘Ÿ-๐‘Ž๐‘‘, ๐‘Ÿ-๐‘๐‘œ, ๐‘Ÿ-๐‘”๐‘Ÿ, ๐‘Ÿ-๐‘๐‘Ÿ, ๐‘Ÿ-๐‘ ๐‘ ๐‘ก}. cause ๐‘‹ โ‰ก ๐‘Œ โ€ฒโ€ฒ for ๐‘Œ โ€ฒโ€ฒ = ๐‘‹. Consider now the case ๐‘ฆ ฬธ= ๐‘ฅ. We want to discuss the following counterexample show- That means, we have that ๐‘ˆ ๐ท๐น (๐‘‹) โ‰ ๐‘ˆ ๐ท๐น (๐‘Œ โ€ฒ ) and ing that VP is violated by lex-cel๐œ in particular. thus ๐‘‹ โ‰ ๐‘Œ โ€ฒ . Therefore, it follows that we must have ๐‘ˆ ๐ท๐น (๐‘‹) = โˆ…, i. e. ๐‘‹ defends all its elements. Example 7. We examine the following AF ๐น = That means ๐‘‹ is admissible and thus it follows directly ({๐‘Ž, ๐‘, ๐‘, ๐‘‘, }, {(๐‘Ž, ๐‘), (๐‘Ž, ๐‘‘), (๐‘, ๐‘), (๐‘, ๐‘)}). Consider, for in- that ๐‘ฅ โˆˆ ๐‘๐‘Ÿ๐‘’๐‘‘๐‘Ž๐‘‘ (๐น ). stance, the ๐‘Ÿ-๐‘Ž๐‘‘ extension-ranking for ๐น : From ๐‘ˆ ๐ท๐น (๐‘‹) = โˆ… and ๐‘‹ โА๐‘ˆ ๐น ๐ท ๐‘Œ for all ๐‘Œ it follows that ๐‘ˆ ๐ท๐น (๐‘Œ ) ฬธ= โˆ…. Since โŠ’ satisfies ad-generalisation it fol- 0 : {๐‘Ž, ๐‘}, {๐‘Ž}, {๐‘}, โˆ… 1 : {๐‘, ๐‘‘} lows that ๐‘Œ โˆˆ / ๐‘Ž๐‘‘(๐น ) for all ๐‘Œ and thus also ๐‘ฆ โˆˆ ๐‘Ÿ๐‘’๐‘—๐‘Ž๐‘‘ (๐น ). Consequently, it follows from ๐‘Ž๐‘‘-๐ถ that ๐‘ฅ โ‰ป ๐‘ฆ. Hence, The lex-cel๐‘Ÿ-๐‘Ž๐‘‘ argument-ranking is then: Dominating set is satisfied. lex-cel๐‘Ÿ-๐‘Ž๐‘‘ lex-cel๐‘Ÿ-๐‘Ž๐‘‘ lex-cel๐‘Ÿ-๐‘Ž๐‘‘ ๐‘ โ‰ป๐น ๐‘Ž โ‰ป๐น ๐‘‘ โ‰ป๐น ๐‘ 5. Investigating Principles for However, ๐‘Ž is unattacked, while ๐‘ is attacked and therefore VP is violated. Since all other sets that contain ๐‘Ž are not conflict- lex-cel๐œ free, that means that {๐‘, ๐‘‘} is always ranked better than these In the previous section, we looked at social ranking solutions sets. Therefore ๐‘ is ranked better than ๐‘Ž wrt. lex-cel๐œ for all from a general perspective and were able to characterise other ๐œ โˆˆ {๐‘Ÿ-๐‘๐‘œ, ๐‘Ÿ-๐‘”๐‘Ÿ, ๐‘Ÿ-๐‘๐‘Ÿ, ๐‘Ÿ-๐‘ ๐‘ ๐‘ก} ๐œŽ-C and present sufficient conditions for ๐‘†๐ถ and ๐œŽ-sk-C, At first glance it might seem unintuitive that VP is vio- however a number of principles are still to be investigated. lated. Both arguments ๐‘Ž and ๐‘ are skeptically accepted wrt. In this section, we take a closer look at lex-cel๐œ and analyse complete semantics, so there is no reason to reject either ar- which principles it satisfies. gument. However, argument ๐‘Ž is involved in more conflicts As the results from the previous section suggest we should than ๐‘ and thus ๐‘ is compatible with more arguments than start with checking if lex-cel satisfies Pareto-efficiency. ๐‘Ž. Therefore we reason that ๐‘ should be ranked better than Theorem 7. lex-cel satisfies Pareto-efficiency. ๐‘Ž. In general, if we think back to the motivation of social ranking functions then employees who can work together Abs In VP SC CP QP CT SCT DP DDP NaE AvsFD w๐œŽ -S s๐œŽ -S ๐œŽ -C ๐œŽ -sk-C lex-cel๐œ โœ“ โœ“ X โœ“ X X X X X X X โœ“ X โœ“ โœ“ โœ“ Cat โœ“ โœ“ โœ“ X X X โœ“ โœ“ โœ“ X โœ“ X X X X X ser โœ“ โœ“ X X X X X X X X โœ“ โœ“ ad ad ad X Table 1 Principles satisfied by lex-cel๐œ for ๐œ โˆˆ {๐‘Ÿ-๐‘Ž๐‘‘, ๐‘Ÿ-๐‘๐‘œ, ๐‘Ÿ-๐‘”๐‘Ÿ, ๐‘Ÿ-๐‘๐‘Ÿ, ๐‘Ÿ-๐‘ ๐‘ ๐‘ก} and other ranking semantics from the literature. Existing results for Cat and ser are taken from Bonzon et al. [4] and Blรผmel and Thimm [16]. with more employees are considered better, so this ranking of ๐‘Ž and ๐‘ is in line with the idea behind social ranking ๐‘Ž ๐‘ ๐‘ functions. The remaining proofs and counterexamples can be found in the supplementary material2 . Figure 3: The AF ๐น2 from Example 8. 6. Related Work A number of social ranking functions are discussed in the ๐‘Ž ๐‘ literature. In the following, let ๐ด be an arbitrary set of objects and โŠ’ is a preorder on the powerset ๐’ซ(๐ด). A prominent social ranking function is the Ceteris Paribus Figure 4: The AF ๐น3 from Example 9. Majority Solution (CP), which was defined by Haret et al. [8] as follows. ๐‘Ž Definition 23. For the preorder โŠ’ and for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด, we ๐‘ ๐‘‘ have that ๐‘ฅ โชฐ๐ถ๐‘ƒโŠ’ ๐‘ฆ if and only if ๐‘ |{๐‘† โˆˆ ๐’ซ(๐ด โˆ– {๐‘ฅ, ๐‘ฆ})|๐‘† โˆช {๐‘ฅ} โА ๐‘† โˆช {๐‘ฆ}}| โ‰ฅ |{๐‘† โˆˆ ๐’ซ(๐ด โˆ– {๐‘ฅ, ๐‘ฆ})|๐‘† โˆช {๐‘ฆ} โА ๐‘† โˆช {๐‘ฅ}}| Figure 5: The AF ๐น4 from Example 10. Another relevant social ranking function is the Ordinal Banzhaf Index Solution (BI) of Khani et al. [7]. For that, we denote with ๐‘ˆ๐‘– = {๐‘† โˆˆ ๐’ซ | ๐‘– โˆˆ / ๐‘†} the set of subsets that Example 8. The argument ranking โชฐCP๐œ violates SC for do not contain ๐‘– and with ๐‘ˆ๐‘–๐‘— = {๐‘† โˆˆ ๐’ซ | ๐‘–, ๐‘— โˆˆ / ๐‘†} the ๐œ โˆˆ {๐‘Ÿ-๐‘Ž๐‘‘, ๐‘Ÿ-๐‘๐‘œ, ๐‘Ÿ-๐‘”๐‘Ÿ, ๐‘Ÿ-๐‘๐‘Ÿ, ๐‘Ÿ-๐‘ ๐‘ ๐‘ก}. Consider the AF ๐น2 in set of subsets that contain neither ๐‘– nor ๐‘—. Figure 3. Then we have that ๐‘ โชฐCP ๐œ ๐น2 ๐‘Ž, which contradicts SC. First, we define the notion of ordinal marginal contribution as follows. Example 9. The argument ranking โชฐBI๐œ violates SC for ๐œ โˆˆ {๐‘Ÿ-๐‘Ž๐‘‘, ๐‘Ÿ-๐‘๐‘œ, ๐‘Ÿ-๐‘”๐‘Ÿ, ๐‘Ÿ-๐‘๐‘Ÿ, ๐‘Ÿ-๐‘ ๐‘ ๐‘ก}. Consider the AF ๐น3 in Definition 24. Let โŠ’ be a preorder on ๐’ซ(๐ด). The ordinal Figure 4. Then we have that ๐‘Ž โชฐBI๐œ ๐น3 ๐‘, which contradicts SC. marginal contribution ๐‘š๐‘† ๐‘– (โŠ’) of element ๐‘– wrt. the set ๐‘† with ๐‘– โˆˆ / ๐‘†, for the preorder โŠ’ is defined as: So, self-contradicting arguments are not necessarily the worst ranked arguments. Thus, these two social ranking functions are not suitable to rank arguments in the context โŽง โŽจ 1 if ๐‘† โˆช {๐‘–} โА ๐‘†, ๐‘† ๐‘š๐‘– (โŠ’) = โˆ’1 if ๐‘† โА ๐‘† โˆช {๐‘–}, (1) of abstract argumentation and therefore we do not discuss โŽฉ 0 otherwise. them further. A number of other argument-ranking semantics were in- We denote with ๐‘ข+,โŠ’ (๐‘ขโˆ’,โŠ’ ) the set of subsets ๐‘† โˆˆ ๐‘ˆ๐‘– troduced in the literature (for an overview see Bonzon et al. ๐‘– ๐‘– such that ๐‘š๐‘– (โŠ’) = 1 (๐‘š๐‘† ๐‘† ๐‘– (โŠ’) = โˆ’1) respectively. Fur- [4]). However, the only known argument-ranking seman- thermore, we refer to the difference ๐‘ โŠ’ +,โŠ’ โˆ’ ๐‘ขโˆ’,โŠ’ as tics satisfying ๐‘Ž๐‘‘-Compatibility is the serialisability-based ๐‘– = ๐‘ข๐‘– ๐‘– the ordinal Banzhaf score of ๐‘– wrt. โŠ’. argument-ranking semantics (ser) by Blรผmel and Thimm [16]. Finally, we define the social ranking solution based on The serialisability-based argument ranking semantics ranks the ordinal Banzhaf score as follows. arguments according to the number of conflicts that need to be resolved to include these arguments in an admissible Definition 25. For the preorder โŠ’ and for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด, we set. However, this semantics violates ๐‘๐‘œ-sk-C. define that ๐‘ฅ โชฐ๐ต๐ผโŠ’ ๐‘ฆ if and only if Example 10. Let ๐น4 be the AF as depicted in Figure 5. Then ๐‘ โŠ’ โŠ’ ๐‘– โ‰ฅ ๐‘ ๐‘— argument ๐‘‘ โˆˆ ๐‘ ๐‘˜๐‘๐‘œ (๐น4 ). So, according to ๐‘๐‘œ-sk-C it should hold that ๐‘‘ โ‰ป๐น4 ๐‘Ž, however this is not the case for ๐‘ ๐‘’๐‘Ÿ, i. e. However, the corresponding Social ranking argument- ๐‘Ž โ‰ป๐‘ ๐‘’๐‘Ÿ ๐น4 ๐‘‘. Thus ๐‘๐‘œ-sk-C is violated. ranking semantics ๐ต๐ผ๐œ and ๐ถ๐‘ƒ๐œ do not generalise credu- lous acceptance, because these two argument-ranking se- Similarly, we have that the categorizer ranking semantics mantics do not satisfy the principle SC, as shown by the (Cat) violates ๐œŽ-sk-C. following examples. 2 https://fernuni-hagen.sciebo.de/s/eTCZyHVIOzRtIsE ๐‘ References ๐‘Ž ๐‘‘ [1] C. Cayrol, M. Lagasquie-Schiex, Graduality in argu- ๐‘ mentation, J. Artif. Intell. Res. 23 (2005) 245โ€“297. [2] L. Amgoud, J. Ben-Naim, Ranking-based semantics for argumentation frameworks, in: Scalable Uncer- Figure 6: The AF ๐น5 from Example 11. tainty Management - 7th International Conference, SUM 2013, Springer, 2013, pp. 134โ€“147. [3] L. Amgoud, J. Ben-Naim, D. Doder, S. Vesic, Ranking Example 11. Let ๐น5 be the AF as depicted in Figure 6. arguments with compensation-based semantics, in: We have that ๐‘ ๐‘˜๐‘๐‘œ (๐น5 ) = {๐‘Ž, ๐‘‘}. However, we have for Principles of Knowledge Representation and Reason- instance ๐‘ โ‰ƒ๐ถ๐‘Ž๐‘ก ๐‘‘. Thus, ๐œŽ-sk-C is violated by ๐ถ๐‘Ž๐‘ก for ing: Proceedings of the Fifteenth International Con- ๐น5 ๐œŽ โˆˆ {๐‘๐‘œ, ๐‘”๐‘Ÿ, ๐‘๐‘Ÿ, ๐‘ ๐‘ ๐‘ก, ๐‘ ๐‘ก}. ference, KR 2016, AAAI Press, 2016, pp. 12โ€“21. [4] E. Bonzon, J. Delobelle, S. Konieczny, N. Maudet, A So lex-cel๐œ is the only known argument-ranking seman- comparative study of ranking-based semantics for ab- tics that satisfies ๐œŽ-C and ๐œŽ-sk-C and thus satisfies ๐œŽ- stract argumentation, in: Proceedings of the Thirtieth Refinement for extension-based semantics ๐œŽ. Thus, lex- AAAI Conference on Artificial Intelligence 2016, AAAI cel๐œ is part of none of the equivalence classes of argument- Press, 2016, pp. 914โ€“920. ranking semantics defined by Amgoud and Beuselinck [20]. [5] J. Heyninck, B. Raddaoui, C. StraรŸer, Ranking-based argumentation semantics applied to logical argumen- tation, in: Proceedings of the Thirty-Second Inter- 7. Conclusion national Joint Conference on Artificial Intelligence, IJCAI 2023, ijcai.org, 2023, pp. 3268โ€“3276. In this paper we have combined well-known approaches [6] S. Moretti, M. ร–ztรผrk, Some axiomatic and algorith- from abstract argumentation and social ranking functions mic perspectives on the social ranking problem, in: to define a new family of argument-ranking semantics. The Algorithmic Decision Theory - 5th International Con- resulting semantics are generalisations of the acceptance ference, ADT 2017, Springer, 2017, pp. 166โ€“181. classifications for abstract argumentation. Thus, the skep- [7] H. Khani, S. Moretti, M. ร–ztรผrk, An ordinal banzhaf in- tically accepted arguments are ranked before credulously dex for social ranking, in: Proceedings of the Twenty- accepted arguments and those are ranked before rejected ar- Eighth International Joint Conference on Artificial guments, and within each of these groupings the arguments Intelligence, IJCAI 2019, ijcai.org, 2019, pp. 378โ€“384. are also ranked. While the extension ranking methods used [8] A. Haret, H. Khani, S. Moretti, M. ร–ztรผrk, Ceteris are off the shelf approaches and already discussed in the lit- paribus majority for social ranking, in: Proceedings erature, we needed to slightly generalise the existing social of the Twenty-Seventh International Joint Conference ranking functions in order for them to work with partial on Artificial Intelligence, IJCAI 2018, ijcai.org, 2018, rankings. Here, our rank-based approach proved to be well pp. 303โ€“309. suited for our specific setting. Whether this approach to [9] G. Bernardi, R. Lucchetti, S. Moretti, Ranking objects social ranking also is appealing more generally is a very from a preference relation over their subsets, Social natural and intriguing question, that, unfortunately, is out Choice and Welfare 52 (2019) 589โ€“606. of the scope of this paper and has to be left to future work. [10] T. Suzuki, M. Horita, Consistent social ranking solu- The converse problem to social ranking functions are lift- tions, Social Choice and Welfare (2024). ing operators, i. e. given a ranking over objects, we want to [11] K. Skiba, T. Rienstra, M. Thimm, J. Heyninck, G. Kern- construct a ranking over sets of objects. These operators Isberner, Ranking extensions in abstract argumenta- have been discussed for argumentation in the past by Yun tion, in: Proceedings of the Thirtieth International et al. [21] and Maly and Wallner [22]. However, both theses Joint Conference on Artificial Intelligence, IJCAI 2021, papers do not present a complete picture of lifting opera- ijcai.org, 2021, pp. 2047โ€“2053. tors for abstract argumentation, since they either consider [12] P. M. Dung, On the Acceptability of Arguments and only a subset of sets of arguments (Yun et al. [21]) or only its Fundamental Role in Nonmonotonic Reasoning, discuss lifting operators for ๐ด๐‘†๐‘ƒ ๐ผ๐ถ + (Maly and Wallner Logic Programming and n-Person Games, Artificial [22]). Skiba [23] discussed some shortcomings of lifting Intelligence (1995). operators for argumentation frameworks and discussed the [13] P. Baroni, M. Caminada, M. Giacomin, Abstract argu- need to define lifting operators specifically tailored to ab- mentation frameworks and their semantics, in: Hand- stract argumentation to fully discuss the relationship of book of Formal Argumentation, 2018, pp. 157โ€“234. argument-ranking semantics, extension-ranking semantics [14] M. W. A. Caminada, W. A. Carnielli, P. E. Dunne, Semi- and lifting operators. stable semantics, J. Log. Comput. 22 (2012) 1207โ€“1254. Acknowledgements. The research reported here was [15] L. van der Torre, S. Vesic, The principle-based ap- supported by the Deutsche Forschungsgemeinschaft under proach to abstract argumentation semantics, FLAP 4 grants 375588274 and 506604007, by the European Research (2017). Council (ERC) under the European Unionโ€™s Horizon 2020 [16] L. Blรผmel, M. Thimm, A ranking semantics for abstract research and innovation programme (grant agreement No. argumentation based on serialisability, in: Computa- 101034440) and by the Austrian Science Fund (FWF) under tional Models of Argument - Proceedings of COMMA grant J4581. 2022, IOS Press, 2022, pp. 104โ€“115. [17] H. Moulin, Fair Division and Collective Welfare, MIT Press, 2004. [18] E. Algaba, S. Moretti, E. Rรฉmila, P. Solal, Lexicographic solutions for coalitional rankings, Social Choice and Welfare 57 (2021) 817โ€“849. [19] P. E. Dunne, W. Dvorรกk, T. Linsbichler, S. Woltran, Characteristics of multiple viewpoints in abstract ar- gumentation, Artif. Intell. 228 (2015) 153โ€“178. [20] L. Amgoud, V. Beuselinck, An equivalence class of gradual semantics, in: Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 17th Eu- ropean Conference, ECSQARU 2023, Springer, 2023, pp. 95โ€“108. [21] B. Yun, S. Vesic, M. Croitoru, P. Bisquert, Viewpoints using ranking-based argumentation semantics, in: Computational Models of Argument - Proceedings of COMMA 2018, IOS Press, 2018, pp. 381โ€“392. [22] J. Maly, J. P. Wallner, Ranking sets of defeasible ele- ments in preferential approaches to structured argu- mentation: Postulates, relations, and characterizations, in: Thirty-Fifth AAAI Conference on Artificial Intelli- gence, AAAI 2021, AAAI Press, 2021, pp. 6435โ€“6443. [23] K. Skiba, Bridging the gap between ranking-based semantics and extension-ranking semantics, in: Pro- ceedings of the 9th Workshop on Formal and Cognitive Reasoning co-located with the 46th German Confer- ence on Artificial Intelligence (KI 2023), CEUR-WS.org, 2023, pp. 32โ€“43.