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Abstract
In this paper , we present a simulator that replicates a communication channel between terrestrial users using low-altitude
airborne mobile stations (Unmanned Aerial Vehicles). Through a Q-Learning network, the UAVs determine the optimal
position to occupy to improve transmission between users and converge towards these optimal states. This system lends itself
to various applications, including the restoration of the telephone network in areas without coverage or affected by natural
disasters, and the establishment of mobile radio bridges to connect remotely controlled vehicles in conflict scenarios, making
communications difficult to intercept. The results presented were obtained by tailoring the model in different scenarios,
according to a realistic concentration and distribution of buildings in the four analyzed environments
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1. Introduction
Recent developments in international conflicts have
shown how the use of drones has influenced the course
of the most significant war scenarios. Even in this con-
text, machine learning is finding increasing applications,
enhancing the capabilities and precision of drone opera-
tions [1, 2, 3, 4, 5, 6, 7].

This article proposes an application of UAVs in the
field of communications. In particular, a model for radio
communication between users through mobile stations
has been developed.

In accordance with recent studies, future communica-
tio networks are anticipated to integrate non-terrestrial
networks, including Low Earth Orbit (LEO) satellites and
High Altitude Platform Systems (HAPS) utilizing Un-
manned Aerial Vehicles (UAVs) [8, 9, 10, 11, 12]

Among the studies present in the literature, various
systems for managing the movement of UAVs have been
experimented with: centralized and distributed systems.
The centralized system consists of a terrestrial radio
station for estimating channel parameters and control-
ling the telemetry signals of the UAVs [13, 14] while
the distributed system is characterized by independent
drones that autonomously estimate the channel param-
eters [15, 16]. This study focuses on the modeling and
simulation of a centralized system. To achieve maxi-
mum telephone coverage, the system implements a Q-
Learning network for selecting the optimal position of
the drones. The effectiveness of using air-to-ground
telecommunications systems with UAV-type transmitting
stations is estimated by extracting some characteristic
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parameters of wireless communication, including (i) con-
nection throughput and (ii) number of failed connections.

It is worth noting that there are already studies focus-
ing on modeling a telecommunications system with low-
altitude mobile repeaters. These systems aim to find the
optimal altitude of the aircraft given a fixed transmission
power [4], optimize the ratio between power efficiency
and throughput [17], or estimate the maximum ground
coverage area [4, 18].

2. Materials and methods

2.1. Parameters and their description
The descriptive parameters of the simulated model are
divided into the following three macro groups:

1. Channel statistical characteristics
It consists of a set of parameters that describe the
statistical characteristics of the environment in
which the system operates, including:
Environment: It is composed of four categories
(Rural, Suburban, Dense Urban, and Highrise Ur-
ban) that differ in the concentration, density, and
height distribution of buildings. The determina-
tion of the environment establishes the Gaus-
sian distribution parameters of Excessive Path
Loss, a parameter for estimating additional losses
[4, 19, 20, 21, 22, 23].

2. Connection parameters
That is, the specific characteristics of the channel:
Transmission powers: are the power levels of the
repeaters and the transmission devices of the
users.
Transmission band: including the parameters of
occupied bandwidth and carrier frequency.
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Figure 1: Graphic interface where red points represent users and robots represent UAVs.

Modulation: The system, modulated in OFDM,
allows for the selection of the number of subcar-
riers and their respective modulation.
Minimum rate: is the minimum throughput be-
low which the connection fails.

3. Properties of the UAVs and users
That is, those typical quantities of the movement
of users and drones, including:
Velocity: This refers to the speed of the users and
the UAVs.
Number of users served and mobile repeaters:
indicate the number of mobile radio stations and
users present in the simulation.
Simulation area: indicates the simulation area
considered, approximated with the base and
height of the equivalent rectangle.

2.2. Robotarium
Robotarium developed by the Georgia Institute of Tech-
nology in collaboration with Heriot-Watt University in
Edinburgh allows for the simulation of the behavior of
robots and drones in a predefined area. It is possible to
display the movement of users and drones in the envi-
ronment as needed [24].

2.3. Calculation of Throughput and Failed
Messages:

The algorithm for calculating throughput (T) and failed
connections consists of two phases:

Initialization phase

• User and UAV positions are randomized;
• The system precomputes the maximum chan-

nel capacity (C), given the input parameters as
Band(B), Subcarriers(S) and Modulation (M) [25]:

𝐶𝑚𝑎𝑥 = 2 *𝐵 * 𝑙𝑜𝑔2(𝑆 *𝑀) (1)

Estimation phase

1. The system creates a list of connections, so that
each user is assigned one with which to establish
the connection;

2. The system, starting from the first connection,
calculates all sender-drone and drone-receiver
throughputs (2*number of drones), assigning to
each drone the worst of the two values, using the
equation:

𝑇 = 𝐵 * 𝑙𝑜𝑔2(1 +
𝑃𝑜𝑤𝑒𝑟

𝑃𝑛𝑜𝑖𝑠𝑒 * 𝐿𝑜𝑠𝑠
) (2)

3. Since the system is centralized, for each pair of
users, the best UAV to establish the connection is
chosen, and only that throughput value is consid-
ered;
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4. Based on the throughput value:

• if the value is equal to or greater than the
maximum channel capacity (1), this is as-
signed as the result for the connection;

• if the value is below the established thresh-
old, the counter for failed messages is in-
cremented;

• for any other value, the connection is
successful, and the calculated throughput
value is assigned to the connection;

5. The simulator stores the data and starts the itera-
tion counter, assigning each UAV a new position
based on the Q-learning algorithm. 2.4;

6. At each iteration, the system checks if the drones
have reached their final positions, then returns
to the point 1.

2.4. Q-learning
Q-learning is a reinforcement learning algorithm that
helps an agent learn the best actions to take in vari-
ous states to maximize rewards. The Q-Learning al-
gorithm [26] involves associating each drone with a
two-dimensional matrix where rows indicate states and
columns indicate actions. The system states correspond
to the central position of the cells into which the drone’s
operating area is divided. The actions represent the be-
haviors that a UAV can adopt in a given state. In the
context of this article, the environment is divided into 40
states (cells of 400𝑚 * 400𝑚) while the actions available
to the aircraft are 5: one for each cardinal direction and
a fifth action corresponding to no movement. It should
be noted that the aircraft can move a maximum of one
cell per cycle.

The reward function, a parameter for updating the
Q-Table, is as follows:

𝑅𝑒𝑤𝑎𝑟𝑑 = 100 *𝑅𝑎𝑡𝑒− 𝐹𝑎𝑖𝑙𝑒𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠 (3)

3. Experimental results
The experimental results, obtained to demonstrate the
correct functioning of the presented simulator, were
achieved using the following parameters:

The data is presented as the average of throughput
values and failed connections over an entire training
epoch. Below, we can see a training conducted over one
hundred epochs in the four environments 1 using a single
drone:

It’s noticeable that the main issue is the number of con-
nections, which is due to the area to cover. Performing
training over fifty epochs with three UAVs yields:

Table 1
Connection parameters

Parameters Values
Band 20 Mhz

Carrier frequency 2 Ghz
UAV transmission power 1 W
User transmission power 0.3 W
Minimum allowable rate 256 kbps
Number of subcarriers 1200
Subcarrier modulation QPSK

Table 2
UAV and User parameters

Parameters Values
UAV speed 40 km/h
User speed 6 km/h

Number of users 6
UAV number 1-3

Simulation area 3.2 Km x 2 Km

Table 3
Training parameters

Parameters Values
Epochs 40 km/h

Iterations by period 6 km/h
Alpha 6

UAV number 1-3
Gamma 0.8

Table 4
Average over the last 20 epochs of results

Environment Throughput Connections failed
Rural 15,6 Mbps 2.95/6

Suburban 7,0 Mbps 3.96/6
Dense Urban 4,79 Mbps 4.87/6

Highrise Urban 0,58 Mbps 5.86/6

4. Conclusion
In this article, a simulator of a communications system
has been presented, capable of providing metrics on the
quality of the air-to-ground wireless network consisting
of airborne repeaters in different environmental contexts.
Furthermore, the operation of the simulator has been
tested in four environments, evaluating its effectiveness
with one or more UAVs. Through simulation obtained
with real parameters, data reflecting the actual operating
conditions of such a system in various scenarios have
been derived. Further developments of the simulator in-
clude the possibility of modeling the statistical channel
parameters directly from the distribution, density, and
height of buildings. Additionally, a relaying system be-
tween drones can be implemented to expand the system’s
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Figure 2: simulation in a rural environment, on the left throughput x epochs, failed messages on the right x epochs

Figure 3: simulation in a suburban environment, on the left throughput x epochs, failed messages on the right x epochs

Figure 4: simulation in Dense Urban environment, on the left throughput x epochs, failed messages on the right x epochs
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Figure 5: simulation in a highrise urban environment, on the left throughput x epochs, failed messages on the right x epochs

Figure 6: failed messages on the left x epochs in rural environment, failed messages on the right x epochs in suburban
environment

Table 5
Average of failed messages in the last twenty epochs for the
single UAV compared to the average in the last ten epochs for
three UAVs

Environment 1 UAV 3 UAV
Rural 2.95 0.78

Suburban 3.96 3.51

coverage.
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