=Paper= {{Paper |id=Vol-423/paper-15 |storemode=property |title=Tractable Reasoning Based on the Fuzzy EL++ Algorithm |pdfUrl=https://ceur-ws.org/Vol-423/pos_paper5.pdf |volume=Vol-423 |dblpUrl=https://dblp.org/rec/conf/semweb/MailisSSS08 }} ==Tractable Reasoning Based on the Fuzzy EL++ Algorithm== https://ceur-ws.org/Vol-423/pos_paper5.pdf
                              EL++




       EL++




             EL                                      EL


                                 EL+
                                             EL++
  +                 ++
EL                EL




                  EL++
                               EL++                       NC
            NR           NI

                                        !        "
EL++                                 I = ∆I , ·I
       ∆I
        ·I                   a ∈ NI                                 aI ∈ ∆I               A ∈ NC
                        A : ∆I → [0, 1]
                                    I
                                                                    r ∈ NR
        rI : ∆I × ∆I → [0, 1]
         EL++


                                                        C $d D
                    r 1 ◦ . . . ◦ rk $ s
                                                   ◦t

C                                              I                             C
         C
              EL++                                                                          A


                                                              I                                 A
                                           A
                                    I                                                 K = {A, C}
                           A                       C                                          A
    C



                                !                                !I (x) = 1
                                                                    I
                                ⊥                                ⊥!    (x) = 0
                                                                       1           x = aI
                                {a}                  {a}I (x) =
                                                                       0
                                                                             "                #
                              C #D               (C # D)I (x) = min C I (x), DI (x)
                                                                        "      "                    ##
                               ∃r.C         (∃r.C)I (x) = sup"  y∈∆I min    #    rI (x, y) , C I (y)
                             C %d D                 $ I min    C I (x)% , d ≤ DI (x)
                        r1 ◦ . . . ◦ rk % s          r1 ◦ . . . ◦t rkI" (x,
                                                         t                          I
                                                                           # y) ≤ s (x, y)
                                                                   I     I
                            C(a) ≥ d                            C" a #≥ d
                           r (a, b) ≥ d                       r I a I , bI ≥ d


                                                            EL++

             EL++




                                                                                                    C
    D                                      C         C $dC D
                                                   {o}                   B                      C! =
C ∪ {{o} $ C, D $ B}                o                                    B
                              BCC
         RC                                           C         C

          S          BCC × BCC          [0, 1]                 R        RC × BCC × BCC
[0, 1]
                                                      S (C, D) = d
C $dC D          R (r, C, D) = d           C $dC ∃r.D
                               S            S (C, D) := 1 D = C    D =(
              S (C, D) = 0           C, D ∈ BCC ∪ {⊥}
R                    R (r, C, D) = 0        r ∈ RC C, D ∈ BCC ∪ {⊥}



                S (C, C " ) = d1 C " %d2 D ∈ C         S (C, D) < min (d1 , d2 )
                   S (C, D) = min (d1 , d2 )
                S (C, C1 ) = d1 S (C, C2 ) = d2 C1 # C2 %d3 D ∈ C
                  S (C, D) < min (d1 , d2 , d3 )
                   S (C) := min (d1 , d2 , d3 )
                S (C, C " ) = d1 C " %d2 ∃r.D ∈ C         R (r, C, D) < min (d1 , d2 )
                   R (r, C, D) := min (d1 , d2 )
                R (r, C, D) = d1 S (D, C " ) = d2 ∃r.C " %d3 E ∈ C
                  S (C, E) < min (d1 , d2 , d3 )
                   S (C, E) = min (d1 , d2 , d3 )
                R (r, C, D) > 0 S (D, ⊥) > 0          S (C, ⊥) = 0
                   S (C, ⊥) = 1
                S (C, {a}) = 1 S (E, {a}) = 1          C !d E
                              D ∈ BCC      S (C, D) < min (d, S (E, D))
              S (C, D) := min (d, S (E, D))
                R (r, C, D) = d r % s ∈ C          R (s, C, D) < d
                   R (s, C, D) := d
                R (r1 , C, D) = d1 R (r2 , D, E) = d2 r1 ◦ r2 % r3 ∈ C
                  R (r3 , C, E) < min (d1 , d2 )
                     (r3 , C, D) := min (d1 , d2 )
                S (C, {a}) > 0                       {a}       S (C, {a}) < 1
                   S (C, {a}) := 1

                                         !d
                                        C !d E                                   C, E ∈ BCC
                                                               C1 , . . . , Ck+1 ∈ BCC
              r1 , . . . , rk ∈ RC                               min (R (r1 , C1 , C2 ) , . . . ,
R (rk , Ck , Ck+1 )) = d           Ck+1 = E                   C1 = C         C1 = {a}
{a}                          BCC
                     S
                                     C         {o}                            B
        C                {o} $dC B          S ({o} , B) ≥ d
{a} ∈ BCC                   S ({a} , ⊥) > 0
EL++     EL++
         EL+

                 EL+

                EL++


  C +D $ ⊥
                       {a} +{ b} $ ⊥