CEUR-WS.org/Vol-560/paper24.pdf

Manuzio: An Object Language for Annotated Text
Collections

Marek Maurizio
Universita “Ca Foscari” di Venezia
Via Torino 155
Venezia Mestre, Italy
marek@dsi.unive.it

1. INTRODUCTION

More and more large repositories of texts which must be
automatically processed represent their content through the
use of descriptive markup languages. This method has been
diffused by the availability of widely adopted standards like
SGML and, later, XML, which made possible the defini-
tion of specific formats for many kinds of text, from literary
texts (TEI) to web pages (XHTML). The markup approach
has, however, several noteworthy shortcomings. First, we
can encode easily only texts with a hierarchical structure,
then extra-textual information, like metadata, can be tied
only to the same structure of the text and must be ex-
pressed as strings of the markup language. Third, queries
and programs for the retrieval and processing of text must
be expressed in terms of languages like XQuery [4]. In the
XQuery data model, every document is represented as a
tree of nodes; for this reason, in documents where paral-
lel, overlapping structures exists, the complexity of XQuery
programs becomes significantly higher.

Consider, for instance, a collection of classical lyrics, with
two parallel hierarchies lyric > stanzas > verses > words,
and lyric > sentences > words, with title and information
about the author for each lyric, and where the text is an-
notated both with commentary made by different scholars,
and with grammatical categories in form of tree-structured
data. Such a collection, if represented with markup tech-
niques, would be very complex to create, manage and use,
even with sophisticated tools, requiring the development of
complex ad-hoc software.

To overcome the above limitations due to the use of markup
languages partial solutions exist (see for instance [3]), but
at the expense of greatly increasing the complexity of the
representation. Moreover, markup query languages need to
be extended to take these solutions into consideration [1],
making even more difficult to access and use such textual
collections.

In the project “Musisque deoque II. Un archivio digitale
dinamico di poesia latina, dalle origini al Rinascimento ital-
iano”, sponsored by the Italian MIUR, we have built a model
and a language to represent repositories of literary texts with

Appears in the Proceedings of the 1st Italian Information Retrieval
Workshop (IIR’10), January 27-28, 2010, Padova, Italy.
http://ims.dei.unipd.it/websites/iir10/index.html
Copyright owned by the authors.

Renzo Orsini
Universita “Ca Foscari” di Venezia
Via Torino 155
Venezia Mestre, Italy
orsini@dsi.unive.it

any kind of structure, with multiple and scalable annota-
tions, not limited to textual data, and with a query com-
ponent useful not only for the retrieval of information, but
also for the construction of complex textual analysis applica-
tions. This approach fully departs from the markup princi-
ples, borrowing many ideas from the object-oriented models
currently used in programming languages and database ar-
eas. A comprehensive description of the model, language,
and system can be found in [5, 6]. The language (called
Manuzio) has been developed to be used in a multi-user
system to store persistently digital collections of texts over
which queries and programs are evaluated. This abstract re-
ports mainly the work done on the model and the language,
since the system is still at its early stages of development
with a prototypal implementation.

2. THE MANUZIO MODEL

The Manuzio model considers the textual information in
a dual way: as a formatted sequence of characters, as well
as a composition of logical structures called textual objects,
similar to the content objects described in [2]. A teztual ob-
ject is a software entity with a state and a behavior. The
state defines the precise portion of the text represented by
the object, called the underlying text, and a set of proper-
ties, which are either component textual objects or attributes
that can assume values of arbitrary complexity. The behav-
ior is constituted by a collection of local procedures, called
methods, which define computed properties or perform op-
erations on the object. A textual object T is a component
of a textual object T” if and only if the underlying text of T'
is a subtext of the underlying text of T"!.

The Manuzio model can also represent aggregation of tex-
tual objects called repeated textual objects. Trough repeated
textual objects it is possible to represent complex collections
like “all the first words of each poem” or “all the first sen-
tences of the abstracts of each article” in a simple and clean
way. A repeated textual object is either a special object,
called the empty textual object, or a set of textual objects of
the same type, called its elements. Its underlying text is the
composition of the underlying text of its elements.

Each textual object has a type, which represents a logical
entity of the text, such as a word, a paragraph, a sentence,
and so on. In the Manuzio model types are organized as
a lattice where the greatest element represents the type of

! Differently from a substring, a subtext can comprise non-
contiguous parts of a text.

the whole collection, and the least is the type of the most
basic objects of the schema. Types can also be defined by
inheritance, like in object-oriented languages. For instance,
the types Novel and Poem are both subtypes of Work . An
example of textual schema is given, by the means of a graph-
ical notation, in Figure 1.

Collection
title: String
|
works Novel
subject: String
o [Poem |
author: String |<] —
year: Date meter: String
‘sentences lines
title
Line
meter: String
words words

Figure 1: Example of Manuzio Model.

3. THE MANUZIO LANGUAGE

Manuzio is a functional, type-safe programming language
with specific constructs to interact with persistently stored
textual objects. The language has a type system with which
to describe schemas as that illustrated in Figure 1, and a
set of operators which can retrieve textual objects without
using any external query language. A persistent collection
of documents can be imported in a program and its root
element can be referenced by a special variable collection
of type Collection. From this value all the textual objects
present in the collection can be retrieved through operators
that exploit their type’s structure: the get operator retrieve
a specific component of an object, while the all operator
retrieve recursively all the components and subcomponents
of a certain type of an object. Other operators allow the
creation of expressions similar to SQL or XQuery FLOWR
expressions?. Since the queries are an integrated part of
the language, they are subject to type-checking and can be
used in conjunction with all the other language’s features
transparently.

The program in Source Code 1, for instance, assigns to
a variable the first three sentences of each work of the col-
lection. This portion of text can be subsequently refined or
used in any retrieval context. In Source Code 2 a more com-
plex example is shown, where an analysis of Shakespeare’s
plays extracts the top three “love speaking” characters in
“A Midsummer Night’s Dream”. The results of such code
are reported in Source Code 3.

let most_relevant_ sentences =
select all SENTENCE 1..3 of works of collection;

Source Code 1: Retrieve the most relevant sentences of each
work.

2The full syntax and semantics of the Manuzio language can
be found in [6].

let play =
p in (get plays of collection)
where p.title = ”A Midsummer Night’s Dream”;

let loveSpeeches =
s in (getall Speech of play)
where some w in (getall Word of s)
with (get stem of w) = ”love”;
let love_speech_count__by speaker =
select {speaker = s.speaker, n=(size of s.partition)}
from s in (speeches groupby speaker);
output ”"The top 3 love spekaers are:”;
output love_speech count_ by speaker[1..3];

Source Code 2: Compute a new structure of the most love-
speaking characters.

The top 3 love speakers are:
[{ speaker="LYSANDER” , n=17},
{speaker="OBERON", n=13},
{speaker="HERMIA” , n=12}]

Source Code 3: Results of Source Code 2.

4. CONCLUSIONS AND FUTURE WORK

To evaluate the usefulness of our approach a first proto-
type of the Manuzio language has been developed by map-
ping the textual objects onto a relational database system.
We are aware that a great deal of work on data representa-
tion and query optimization must yet be done to provide a
satisfying performance for large collections of texts. How-
ever, we think that work on modeling and linguistics aspects
of retrieval of texts and computations over them is very im-
portant, and prerequisite to enrich the solutions offered by
research areas such as information retrieval and digital li-
braries. In particular, the possibility of taking into account
structural information when making queries (for instance,
by considering terms in titles, or excluding those in foot-
notes) could improve notably the quality of their results.

5. REFERENCES

[1] Alex Dekhtyar, Ionut E. Iacob, Kevin Kiernan, and
Dorothy C. Porter. Extended xquery for digital
libraries. In JCDL °06: Proceedings of the 6th
ACM/IEEE-CS joint conference on Digital libraries,
pages 378-378, New York, NY, USA, 2006. ACM.

[2] S.J. DeRose, D.G. Durand, E. Mylonas, and A.H.
Renear. What is text, really? ACM SIGDOC' Asterisk
Journal of Computer Documentation, 21(3):1-24, 1997.

[3] Steven J. DeRose. Markup overlap: A review and a
horse. In Eztreme Markup Languages, 2004.

[4] H. Katz and D.D. Chamberlin. XQuery from the
experts: a guide to the W3C XML query language.
Addison-Wesley Professional, 2004.

[5] Renzo Orsini Marek Maurizio. A model and query
language for literary texts. Technical Report
CS-2009-4, Dipartimento di Informatica, Universita Ca’
Foscari di Venezia, 2009.

[6] Marek Maurizio. Manuzio: an Object Language for
Annotated Text Collections. PhD thesis, Dipartimento
di Informatica, Universita Ca’ Foscari di Venezia, 2009.

