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Abstract. Directed acyclic graphs are commonly used to represent on-
tologies in the biomedical domain. They provide an intuitive means to
formalize relations that hold between ontological categories. However,
their semantics is usually not explicit. We provide a semantics for a part
of the OBO Flatfile Format by extending OWL with a method to express
relational patterns. These patterns are OWL axioms with variables for
classes. The variables can only be filled with named classes. Addition-
ally, we provide a semantics for open patterns in OWL. Our method is
applicable to the OBO Flatfile Format, and provides a means to design
OWL ontologies using complex ontology design patterns. Therefore, it
leads not only to an integration of the OBO Flatfile Format and OWL,
but extends OWL with an intuitive interface for designing ontologies us-
ing complex definition patterns. A prototypic implementation and test
results are available at http://bioonto.de/obo2owl.

1 Introduction

Directed acyclic graphs (DAG) have been a popular representation format for
biomedical ontologies. The original representation of the Gene Ontology (GO)
has been in the form of a DAG [1]. From the DAG representation of the GO,
the OBO Flatfile Format [9], a graph-based knowledge representation language,
was derived. Currently, many ontologies in the biomedical domain are being
developed in the OBO Flatfile Format.

In the OBO Flatfile Format, nodes represent ontological categories and edges
represent relations between these categories. The OBO Relationship Ontology
(RO) provides formal definitions for commonly used relations between ontolog-
ical categories [15]. However, at the moment, there is no explicit semantics for
the OBO Flatfile Format that can accommodate the relation definitions from
the RO.

We developed an extension to the OBO Flatfile Format and to the Manch-
ester OWL Syntax [8] based on the assumption that any statement in OWL in
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which two variables for classes occur, determines a relation between these two
classes. For example, we define the CC-has-part relation as ?X SubclassOf:

has-part some ?Y, where CC-has-part is a relation between classes and has-
part a relation between individuals. Based on this assumption, we provide a
novel implementation of the OBO Relationship Ontology in OWL and a soft-
ware application to convert OBO ontologies to OWL. Furthermore, we provide
another software application which uses OWL reasoning to infer new binary
relations between classes. Our method and software applications lead to an inte-
gration of the OBO Flatfile Format with OWL while maintaining the semantics
for relations provided by the OBO Relationship Ontology.

2 OBO Flatfile Format

The OBO Flatfile Format is a knowledge representation format that has been de-
veloped for biomedical ontologies. The basic elements of the OBO Flatfile Format
are typedef and term statements. Term statements define nodes in the DAG.
A node has an identifier and a name. Additionally, several restrictions can be
asserted for a node. In particular, the edges originating from the node are spec-
ified in the node description. For this purpose, either the is a or relationship
statements are used. Edges represent relations between nodes. An example of a
term definition taken from the Celltype Ontology (CL) [3] is:

[Term]

id: CL:0000028

name: CNS neuron (sensu Nematoda and Protostomia)

is_a: CL:0000540 ! neuron

relationship: develops_from CL:0000338

Typedef statements specify the kinds of edges in the DAG. They represent
the relation that is intended to be established between two nodes when an edge
of a certain kind is used. An edge has an identifier and a name. Additionally,
properties for the edges can be asserted, such as transitivity. A definition of the
develops from edge kind taken from the CL is:

[Typedef]

id: develops_from

is_transitive: true

The intended meaning of the graph representations is that nodes represent
ontological categories and edges represent relations between these categories.
The OBO Relationship Ontology (RO) [15] provides formal definitions in first
order logic for a set of commonly used relations in biomedical ontologies.

However, the semantics of the OBO Flatfile Format is not explicit, and several
competing solutions have been proposed. One type of semantics is provided by
the RO, which uses a first order semantics tailored to each relation type. Another
type of semantics uses a fixed semantics for relations and relational statements
[9]. An edge of type R between nodes A and B is usually given the semantics of
the OWL statement
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A SubclassOf: R some B

The latter kind provides a semantics for intersection, union and disjointness
statements as well, using the corresponding operations for classes in description
logics.

Although the rigid semantics for relational statements in the OBO Flatfile
Format is adequate for many relation types, it fails in several cases. For example,
the relation lacks-part must not be translated using an existential assertion.
Similarily, the relation realized-by must use a universal quantification instead of
an existential one [14]: an existential quantifier would entail the false assertion
that every function or disposition is actually realized by some process, while
dispositions and functions serve to express potentials for realizations.

Both kinds of semantics are incompatible, and each has drawbacks. The
first does not provide a semantics for the OBO Flatfile Format as a knowledge
representation language, because it only provides a semantics for parts of the
OBO Flatfile Format, and this semantics depends on the used relations. New
relations cannot easily be introduced or defined. On the other hand, using a
rigid semantics for relations does not correspond to the intuitions of ontology
designers and often leads to assertions which are false within a domain.

This observation motivated us to develop and implement an extension to
OWL that can be applied to solve the problems with the OBO Flatfile Format,
and is general enough to be applicable in other domains of knowledge represen-
tation using OWL.

3 Pattern definitions in OWL

To provide compatibility with the OBO Flatfile Format, we focus on binary
relations between classes first and extend our method later. We introduce a new
type in OWL which represents relational pattern specifications.

To specify the intensions of binary relations between classes, we have ex-
tended the Manchester OWL Syntax [8] with the variable symbols ?X and ?Y.
Both are symbols that are intended to represent classes. Any OWL class axiom
in the extended Manchester OWL syntax represents a relational pattern defini-
tion. We permit degenerate patterns in which only one or no variable symbol
occurs. Similarily, both ?X and ?Y can be filled by the same class name. Any
pattern can be applied to two OWL class descriptions to yield an OWL axiom.
The OWL axiom is derived by substituting ?X with the first and ?Y with the
second OWL class description.

For example, we can define the pattern CC-part-of as ?X SubclassOf:

part-of some ?Y where part-of is an OWL object property. Then we can apply
the CC-part-of pattern to the primitive classes A and B, CC-part-of(A,B).
The resulting OWL axiom is derived by substituting ?X with A and ?Y with
B: A SubclassOf: part-of some B. In such a scenario, the patterns are never
directly used within OWL for reasoning. Instead, the patterns provide a template
for asserting OWL axioms.



4

More complex ontology design patterns5 can be asserting using different re-
lational pattern definitions. Table 1 lists a translation of the relational patterns
in the RO to relational pattern definitions.

The approach can be restricted to unary or extended to n-ary relational
patterns. Unary patterns require a single variable symbol, while n-ary relational
patterns use the variable symbols ?X1, ?X2, ?X3, etc. For such an application, the
OBO Flatfile Format would have to be extended to accommodate n-ary relation.

4 Open patterns and meta-properties

The patterns themselves contain the free variables ?X1,...,?XN. In some cases, it
may be useful to use open patterns themselves as meta-properties of an OWL
ontology. In such a case, the open variables are universally quantified. However,
the common interpretation of quantification over classes is second order, where
the quantifier ranges over the powerset of the universe. This results in undecid-
ability of class satisfiability. We provide a decidable semantics for open relational
pattern definitions, where the quantifier ranges only over named classes in the
signature of the OWL ontology. We use description logic syntax [2] to formalize
this approach.

The semantics of a description logic theory over a signature Σ = (C,R,A),
with C a set of concept symbols (including > and ⊥), R a set of relation symbols
and A a set of individual symbols, is given by an interpretation I. The interpre-
tation I consists of a non-empty set UI and an interpretation function δ, such
that for every Ci ∈ C, δ(Ci) ⊆ UI , δ(Ri) ⊆ UI × UI for every Ri ∈ R and
δ(a) ∈ UI for every a ∈ A. The interpretation function is inductively extended
in the usual way. Using standard description logic notation [2], examples of these
inductive definitions include:

>δ = UI

(C uD)δ = Cδ ∩Dδ

(∃R.C)δ = {a ∈ UI |∃b.(a, b) ∈ Rδ ∧ b ∈ Cδ}

Using a higher-order logic, the interpretation of free class variables such as
?X and ?Y will map to a subset of the powerset of UI : δ(?X) ∈ P(UI). Universal
quantification over these free variables would then range over the full powerset
of UI . In particular, satisfiability of terminological axioms6 that contain class
expressions involving ?X or ?Y would have to consider the powerset of UI .

For the relational pattern definitions, we adopt a different approach where
it is not necessary to use the full powerset in the interpretations of the class
variables. Instead, the variable symbols ?X1,..., ?XN are interpreted with an ex-
tension of one of the atomar classes from the signature Σ. If Σ is finite, then

5 http://ontologydesignpatterns.org
6 Terminological axioms in description logics are of the form C v D or C ≡ D with C

and D being concept expressions, or R ≡ S with R and S being relationship (role)
expressions.
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satisfiability of terminological axioms in OWL extended with ?X and ?Y will be
trivially decidable.

Formally, let T be a description logic theory over the signature Σ = (C ∪
{?X1, ..., ?XN}, R,A) and I be an interpretation with the interpretation func-
tion δ and a domain UI , and P−(UI) = {Cδi |Ci ∈ C}. Then δ(?X1) ∈ P−(UI),...,
δ(?XN) ∈ P−(UI).

This restriction leads to decidability of the satisfiability problem for termi-
nological axioms (if Σ is finite): satisfiability of a terminological axiom involving
?X1,..., ?XN can be decided by verifying the satisfiability of the terminological
axioms that arise through substituting ?X,..., ?XN with all atomar concept sym-
bols in Σ. Since the signature Σ = (C,R,A) is finite, |C|N terminological axioms
must be verified for satisfiability to decide the satisfiability of one open relational
pattern definition involving ?X1,..., ?XN.

5 Application to the OBO Flatfile Format

5.1 OWLDEF method

Due to the decidability of satisfiability of terminological axioms, the definition
schema for relations in the OBO Flatfile Format can be employed in two direc-
tions: from OBO to OWL and from OWL to OBO. We have already described
how relations can be defined and translated to OWL using a relational pattern
definition. Based on these definitions, new relations between categories in the
OBO Flatfile Format can be extracted from an OWL knowledge base. Therefore,
these definitions can also serve as a method for an extended form of reasoning
using the OBO Flatfile Format.

The OBO Flatfile Format provides a means to express relations between
classes, yet it does not provide a way to define the relations themselves. We use
relational pattern definitions in our extended syntax to define relations between
classes in the OBO Flatfile Format. For this purpose, we extend the Typedef

environment in the OBO Flatfile Format to include the definition of relations.
For example, to define the relation CC-has-part, we would use the following
Typedef statement in the OBO Flatfile Format:

[Typedef]

id: CC-has-part

name: has-part

owldef: ?X SubClassOf: has-part some ?Y

According to our semantics, every use of the relation CC-has-part in the OBO
Flatfile Format is expanded to an OWL axiom in which the variables are filled by
the classes between which the relation was asserted. For example, the statement
that every mouse body has some tail as part in the OBO Flatfile Format would
be:

[Term]

id: Mouse_body

relationship: has-part Tail
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Using the OWLDEF method, Mouse body and Tail fill ?X and ?Y, respectively.
The resulting OWL axiom would be

Mouse_body SubClassOf: has-part some Tail

Although most relations in biomedical ontologies follow an existential all-
some pattern, some relations must be formalized differently. In particular the
relation integral-part-of from the RO [15] cannot be formalized using a stan-
dard existential pattern. A class C is an integral-part-of a class D if and only
if C is a CC-part-of D and D CC-has-part C. These two statements do not
directly translate into a single OWL axiom. Therefore, we performed a transfor-
mation into a single axiom. This axiom states that it is not possible (subclassOf
Nothing) that some entity is an instance of ?X and not the part of some ?Y,
and neither is it possible that some entity is an instance of ?Y and has no ?X as
part.

(?X and not (part-of some ?Y)) or

(?Y and not (has-part some ?X))

subclassOf Nothing

This statement is logically equivalent to asserting both axioms ?X SubclassOf:

part-of some ?Y and ?Y SubclassOf: has-part some ?X.
The patterns we define can not only be used to expand relations between

classes into complex OWL statements, but also to convert a complex OWL
ontology into a set of relations between classes. For this purpose, let L be the
set of named classes in the signature of an OWL ontology. Then, for each pair
(x, y) of classes x, y ∈ L, we replace ?X with x and ?Y with y in the relational
pattern definitions, and use OWL reasoning to verify whether the resulting OWL
axiom is true in the OWL ontology. If the resulting axiom is true in the OWL
ontology, the relation between the classes x and y holds and we can add this
information to the OBO Flatfile Format. This approach is superior to syntactic
transformations of OWL to OBO, because it accounts for the semantics of the
relations, and makes the inferences that can be drawn from them available in
the OBO format.

5.2 Implementation and evaluation

We implemented the expansion and the contraction of relational patterns in
two separate software libraries and applications. The first Java library is an
extension of the Manchester OWL API [7] and provides functionality to con-
vert OBO Flatfile Format ontologies to OWL using OWLDEF relational pat-
tern definitions. This extension replaces the Manchester OWL API’s OBO Flat-
file parser. Our OBO parser reads the owldef definitions for the relations and
adds the derived axioms to the OWL ontology. Instead of the transformation
of relationship statements based on the OWL API’s parser, we use a cus-
tom transformation based on the owldef definitions. For each term definition
containing a relationship statement that refers to a relation with an owldef
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Relationship OWLDEF Pattern

part-of ?X subclassOf part-of some ?Y
develops-from ?X subclassOf develops-from some ?Y

integral-part-of
(?X and not (part-of some ?Y)) or
(?Y and not (has-part some ?X)) subclassOf Nothing

realized-by ?X subclassOf realized-by only ?Y
realizes ?X subclassOf realizes some ?Y
lacks-part ?X subclassOf not (has-part some ?Y)
has-function ?X subclassOf has-function some ?Y
lacks-function ?X subclassOf not (has-function some ?Y)
has-function-realized-by ?X subclassOf has-function some (realized-by only ?Y)

Table 1. OWLDEF implementation of selected relations.

definition, ?X and ?Y from the owldef statement are replaced by the corre-
sponding term names (see 5.1). After the replacement, we use the OWL API’s
Manchester syntax inline axiom parser to generate an OWL axiom from the re-
sulting statement. Each axiom is added to the OWL ontology in addition to the
axioms generated by the transformation from OBO to OWL implemented in the
Manchester OWL API.

Second, we provide a prototypical implementation to extract relational pat-
terns from an OWL ontology so that they can be converted back to the OBO
Flatfile Format. For this purpose, an OWL ontology is read using the Manchester
OWL API [7]. Based on a list of relational patterns such as those in table 1 and
the list of all class names in the loaded OWL ontology, binary relations between
classes are generated as OWL axioms: each class name in the signature of the
OWL ontology is used to replace “?X” in the pattern and then combined with all
class names to replace “?Y” in the same pattern. Consequently, all combinations
of named classes are generated to fill variables in the relation patterns, leading
to a list of OWL axioms. Using the Hermit OWL reasoner [12], we attempt to
prove each of these OWL axioms and keep track of those that the reasoner could
infer from the axioms asserted in the ontology. As a consequence, we obtain a
list of theorems that hold in the ontology and can be added back to an OBO
file.

To evaluate our method we applied it to the Celltype Ontology (CL) [3].
The CL uses two relations, is-a and develops-from. The pattern for is-a
is ?X SubClassOf: ?Y and the pattern for develops-from is ?X SubClassOf:

develops-from some ?Y.

The CL contains 1253 is-a and 275 develops-from statements, i.e., 1528
axioms that restrict CL categories using one of these two relations. We classify
the generated OWL ontology using the Hermit OWL reasoner. Based on the
classified OWL ontology, we attempt to prove the two patterns for each pair
of named classes in the ontology. We use the Hermit reasoner to perform these
inferences. Using this approach, we identify 9,497 is-a and 124,420 develops-
from statements that we add to the OBO Flatfile represenation of the CL. This
shows that OWL reasoning can be used to infer new relations in OBO ontologies.
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Since the CL only uses is-a and develops-from, our conversion is simi-
lar to other OBO-to-OWL conversion methods. Therefore, we further evalu-
ated our method with the Malaria Ontology and the Sequence Ontology (SO)
[5]. The Malaria Ontology uses the realized-by relation three times in its ax-
ioms, and, using OWL reasoning, we infer 56 realized-by relations between
classes from the three assertions. Further, we added one integral-part-of re-
lation to the SO (exon integral-part-of transcript). From this assertion, we
could infer that all exons are part-of some transcript, and conversely that
all transcript have an exon as part. We provide the results at our website at
http://bioonto.de/obo2owl.

6 Discussion

6.1 Comparison to other approaches

There are several methods and tools available to convert ontologies in the OBO
Flatfile Format to OWL [11, 13]. Some tools and methods are capable of convert-
ing OWL to OBO [16]. At least one semantics is proposed for the OBO Flatfile
Format that uses an interpretation of OBO in OWL [9]. The commonly used
conversion tools for OBO to OWL have in common that they interpret a rela-
tion R between two classes C and D as an existential statement: C SubClassOf:

R some D.
Although this pattern is appropriate for a majority of currently used relations

in OBO and OBO Foundry ontologies, it fails in several cases. Table 1 lists
several such cases. In particular, the integral-part-of and has-integral-part
relations in the RO require a different translation to OWL. Further relations
that are used in OBO ontologies include the realized-by relation between a
function or disposition and a process. Several complex relations such as has-
function-realized-by [6] also require a more expressive translation to OWL.

To the best of our knowledge, there are no conversion tools available that are
compatible with the RO in that they apply the definition patterns of the RO in
the conversion. Similarily, the OWL implementation of the RO does not coincide
with the definitions of the RO relations in first order logic. We are also not aware
of an implementation of the RO in OWL that implements or approximates the
definition patterns the RO attempts to provide.

Our prototypical implementations serve to demonstrate our method. In the
future, we plan to use the OPPL formalism [10] to formalize relational patterns.
OPPL is a pattern processing language for OWL, and OPPL version 27 permits
the definition of complex patterns similar to relational pattern definitions.

6.2 Limitations

The OWLDEF method provides a flexible way to define relations using complex
OWL statements. However, it interferes with other parts of the OBO Flatfile

7 http://oppl2.sourceforge.net
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Format. In particular disjointness, intersection and union statements do not
interoperate well with the OWLDEF method. To illustrate the problem, consider
the following definition of a category in the OBO Flatfile Format:

[Term]

id: ID:1

intersection_of: ID:2

intersection_of: integral-part-of ID:3

The difficulty is that integral-part-of ID:3 is not a class description when the
OWLDEF method is used. Instead, ID:1 integral-part-of ID:3 would trans-
late into one OWL axiom but axioms cannot be disjoint from classes (ID:2) in
OWL. This shows a fundamental limitation of the OBO Flatfile Format, because
it is not obvious what an intersection statement together with an integral-part-
of relation is intended to mean.

However, the current translations of the OBO Flatfile Format to OWL do
not provide an adequate semantics for this statement either, because the relation
integral-part-of is not appropriately translated. One possible solution would be
to disallow the use of relational statements in intersection, disjointness or union
statements, and allow only class names as arguments. However, it is subject to
future research to provide a semantics for these statements in combination with
the OWLDEF method.

6.3 Application to RDF and Linked Data

OWL relational pattern definitions can be applied to unstructured RDF data to
provide a semantic layer and an interpretation of relations used in RDF stores.
One application would be to apply our method to Linked Data [4]. Linked Data
is a web of data where URIs denote things and links between URIs are expressed
using RDF and represent relations between things. At least a fragment of the
Linked Data cloud contains URIs of classes, not individuals, and relations be-
tween these classes are expressed in RDF. Similar to the OBO Flatfile Format,
the semantics of the relation between classes is not made explicit. OWL rela-
tional pattern definitions can provide a method to convert some parts of the
Linked Data cloud from RDF to OWL, utilizing the expressive semantics of
OWL to formalize, structure and verify pieces of data. An implementation and
evaluation of applying OWL relational pattern definitons to RDF and Linked
Data is subject to future work.

7 Conclusions

We developed a novel semantics for a fragment of the OBO Flatfile Format
by explicitly incorporating relational definition patterns in the OBO Flatfile
Format. A definition pattern is an OWL axiom with variables for OWL classes.
Our approach leads to a flexible OWL-based semantics for several biomedical
ontologies. Motivated by the problem of finding an adequate semantics for the
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OBO Flatfile Format, we developed an extension to OWL that is general enough
to be applicaple in many domains. It provides a means to incorporate ontology
design patterns in the ontology development process, leading to an intuitive
interface to otherwise complex logical statements.
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