
Hazard Estimation and Method Comparison with 

OWL-Encoded Toxicity Decision Trees 

Leonid L. Chepelev
1
, Dana Klassen

1
, and Michel Dumontier

1,2,3
, 

 
1 Department of Biology, 2 Institute of Biochemistry, and 3 School of Computer Science, 

Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, Canada 

{leonid.chepelev, dana.klassen, michel.dumontier}@gmail.com  

Abstract. Industrial and regulatory evaluation of chemical toxicity is often 

done via statistical analysis of chemical features focusing on chemical structure 

and function. One popular method to characterize chemical toxicity involves the 

development of decision trees based on large sets of empirical toxicological 

data where chemicals are assigned toxicity or activity classes. In this paper, we 

describe the representation of decision trees as OWL ontologies that can be 

used to carry out initial evaluation of toxicity and activity of prospective 

chemical products. We further discuss how trees derived from different datasets 

can be semantically compared by examining the logical equivalence of the 

toxicity and bioactivity classes in different trees. Taken together, this initial 

work forms the basis for continued investigation into OWL-driven semantic 

framework for toxicity evaluation.  
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1   Introduction 

Our industrialized society relies on millions of diverse chemical entities in 

applications as broad as energy production, combating disease, and manufacturing. As 

novel chemicals are developed and as industrial processes evolve, we become heavily 

exposed to an increasingly diverse pool of environmental pollutants and their poorly 

characterized by-products. The resource commitment necessary to fully characterize 

the toxicity of even a single chemical entity experimentally is very substantial. Since 

the pool of chemicals in need of routine toxicity screening by organizations such as 

environmental protection agencies and pharmaceutical companies is practically 

infinite and the resources for this task are often scarce, alternative means of toxicity 

screening are often applied to prioritize compound screening or alert chemical 

researchers to the potential adverse effects of their molecule of interest, especially in 

the early stages of compound development. 

Such predictive in silico approaches may be broadly characterized into two major 

categories: data-driven systems and expert systems [1]. Data-driven systems involve 

the generation of mathematical models (regression, neural network, or any other 

method) to correlate computed or observed physicochemical molecular properties to 

their experimentally obtained functional characteristics, such as toxicity, binding 



affinity for a given enzyme, or biological activity of a given type. The result of data-

driven systems are quantitative structure-activity relationships (QSAR) that are 

specific to the class of compounds represented in the training set and are often 

difficult to logically interpret or integrate even for a human operator. 

Expert-based systems, on the other hand, strive to capture the knowledge of human 

toxicology experts into machine-readable models with the aim of automating 

chemical classification and chemical information analysis. Expert-based systems can 

take a number of forms, among which rule-based and decision tree-based systems are 

quite prominent. Rule-based systems rely on the formulation of a number of 

independent rules that can be integrated to construct a logical conclusion about the 

toxicity or activity of a given compound. Decision tree-based systems involve the 

sequential execution of a series of logical tests, with each branch point of the tree 

containing a logical test, and each leading either to a final classification, or a deferral 

to further tests (Fig. 1). 

 

Fig. 1. A simple toxicity decision tree: at each branching point, a rule is evaluated, and based on the 
outcome of this rule, either a final activity decision is made, or judgment is deferred to another node. 

 

Since their introduction four decades ago [2], decision tree-based toxicity and 

activity prediction systems have gained acceptance by academics and industrial 

researchers alike, finding applications in predicting molecular properties such as 

mutagenicity, toxicity, and skin sensitization among others [3]. Furthermore, 

automated objective methods have appeared to emulate the work of human experts by 

creating decision trees in which rules and tree structures are drawn based on the 

analysis of empirical toxicity data [4]. Aside from simplifying and automating 

classification efforts, and unlike data-driven toxicology prediction systems, decision 

tree-encoded expert knowledge is understandable to humans and machines alike. 

Unfortunately, the potential of OWL ontologies to formally capture and enact such 

expert-based decisions in chemical toxicology and many other fields has not yet been 

fully realized. Consequently, the decision frameworks and the supporting databases 

for making such decisions are still largely fragmented along discipline, software, and 

institutional divides. Since biological and chemical information is increasingly 

standardized and integrated into the Semantic Web through initiatives like Bio2RDF 

[5], we find ourselves at the point where OWL-based formalization of expert rule 

bases and decision trees, combined with ready access to vast amounts of linked data 

can yield unprecedented, tangible benefits in integrated bioactivity and toxicity 

prediction and predictive method comparison and integration. 



In this work, we demonstrate the automated generation of biologically relevant 

decision trees and their subsequent representation as OWL ontologies. We show how 

the OWL ontologies can be used for classification over RDF-based linked data and 

discuss the potential for the application of OWL-based decision trees on large RDF 

chemical knowledgebases. Finally, we demonstrate the automated logical comparison 

and integration of bioactivity/toxicity classes on the example of automatically derived 

decision trees for drug-likeness and toxicity prediction. We believe that this work is 

an important initial development in the formalization, standardization, and integration 

of computational toxicology resources and predictive classification methods. 

2   Methods 

In order to explore the practical utility of decision trees for predictive chemical 

toxicology, we first built decision trees using a popular toolkit with experimental and 

molecular features from a chemical carcinogenicity dataset. These trees were 

converted to OWL ontologies, which were used in classification of RDF-based data 

using automated reasoning. Finally, we demonstrate the possibility of inferring 

toxicity/bioactivity class logical equivalence for different OWL-based decision trees. 

2.1   Data Sources and Data Preparation  

Our analysis made use of empirically and theoretically derived datasets. A 

carcinogenic toxicity dataset, from which 1400 chemical entities were selected, was 

obtained from the ToxCast database [6]. These compounds were either active or 

inactive with respect to single cell mutagenicity. Then, 318 non-redundant features for 

each molecule were computed using the ToxTree API [7] to determine a Boolean 

value for each feature: true for feature presence and false for absence. These features 

corresponded to rules at decision tree branch points: true if satisfied, and false if not.  

  Features for the Rule of Five training set, consisting of 7000 compounds selected 

from HMDB [10], were computed using the Chemistry Development Kit [8], and the 

drug-likeness attribute was derived using the logical tests outlined by Lipinski [9].  

Software and data are available upon request. 

2.2   Decision Tree Construction and Validation 

Weka [11] was used to construct and validate binary decision trees using the 

experimental and computed feature information. Decision trees were constructed 

using the J48 algorithm [4]. We applied ten-fold cross-validation to derive a set of 

statistical measures of tree predictive ability. Though these statistical measures are not 

directly relevant for this work, they have been included as annotations on resultant 

OWL-encoded decision trees for completeness. For the purposes of discussion in this 

work, we generated five decision trees: Lipinski Rule of Five, modified Lipinski Rule 

of Five, as well as trees resulting from different partitions of the ToxCast datasets.  



2.3  Representation of Decision Trees as OWL Ontologies 

OWL ontologies were constructed using  the OWL API [12] from the decision tree 

graphs represented with the DOT graph description language. Each decision node is 

represented as being equivalent to a class expression involving the parent decision 

node intersected with a restriction on the attribute value (true;false) that the parent 

node represents (e.g. contains an alcohol moiety). For example, given three 

substances (A, B and C), where A is the parent substance and B and C are defined 

with respect to the exact value of the parent feature X, and given Substance classes, 

‘has attribute’ object property, and ‘has value’ functional datatype property, the 

equivalent class expressions corresponding to Substance B and Substance C are: 

 

Substance B EquivalentClass  

Substance A and ‘has attribute’ some (Attribute X and ‘has value’ true) 

Substance C EquivalentClass  

Substance A and ‘has attribute’ some (Attribute X and ‘has value’ false) 

 

EquivalentClass axioms were added to terminal nodes corresponding to the final 

classification, e.g. toxic or non-toxic. This enabled us to reflect both the structure of 

the decision tree and the formal axioms leading to the classification of a given 

chemical entity into a given biological functional class. We did not include covering 

axioms (e.g. A can have the disjoint subclasses B or C) because we would like to 

avoid inconsistencies in some manually created trees where multiple classification 

outcomes may be possible and the most hazardous classification outcome is selected. 

2.4   Ontology Integration and Comparison 

For direct comparison of simple ontologies to logically identify predicted toxicity and 

bioactivity class equivalence, we used the Pellet reasoner through the OWL API in 

Java. We fused ontologies through a direct import and carried out ontology 

classification using Pellet [13]. In cases where an equivalence or subclass relationship 

between the final bioactivity or toxicity classes was identified, we noted this 

relationship directly.  

2.5   Chemical Classification 

Molecular entities were instantiated using conventions set out by the  Chemical Entity 

Semantic Specification (CHESS) [14] and the Chemical Information Ontology 

(CHEMINF) [15]. These entities annotated with chemical feature data were classified 

using Pellet through the OWL API into the predicted toxicity classes using our 

automatically generated OWL-based decision trees. 



3   Results and Discussion 

3.1   OWL-Based Decision Trees: Rule of Five 

The first task that we addressed with our automated OWL ontology decision tree 

generator was the construction of simple ontologies where the classification rules 

involved the evaluation of numerical values associated with various molecular 

descriptors. This is a fairly common mode of preliminary screening of large 

compound datasets in initial stages of cheminformatics analysis. The decision tree 

generated by Weka using computed data reproduced the Rule of Five criteria (Fig. 2). 

 

Fig. 2. A decision tree generated from a computationally derived dataset of drug-like compounds. Drug-

like compound classification is indicated as true. Correctly classified molecule counts are given in brackets. 
No classification was incorrect. 

 

There was little surprise that the Rule of Five criteria (used as an example, not a 

practical application) which we imposed in the computationally derived dataset were 

perfectly returned to us after data-based decision tree construction in Weka. However, 

this had demonstrated to us that, given a sufficient amount of data with low levels of 

noise, one could successfully derive meaningful and useful numerical cutoff-based 

decision trees which could subsequently be converted to predictive ontologies.  

In order to carry out the conversion, we have followed the scheme indicated in 

Section 2.3 to obtain a set of substance classes that followed numerical cutoff rules, 

such as the following.  

Substance_N1:  

Substance_N0 and has_attribute some (MolecularWeight and has_value 

some double[<= "500"^^double]) 

As a result of applying our generator, we have obtained an ontology that perfectly 

captured the Rule of Five decision tree (Fig. 3). 



 

Fig. 3. The structure of an automatically generated OWL representation of a Rule of Five tree (Fig. 2). 

3.2   OWL-Based Decision Trees: Large-Scale Boolean Feature-Based Trees 

Unfortunately, biological information is often a subject to extensive variation, 

whether due to noise in experimental conditions or the abundance of the variable 

parameters that may differ even within a single laboratory and experiment. 

Compounding this is the limited experimental data availability to characterize most 

forms of biological activity, especially for experiments that are not high-throughput at 

inception. As a result, the real-world data is rarely as neatly classifiable as in the 

decision tree above. However, our primary concern in this work has been the proof of 

principle for the utility of OWL-based decision trees. To this end we have been able 

to generate a number of useable trees with the full 318-feature set (not shown due to 

complexity), as well as the more presentation-friendly limited feature sets (Fig. 4). 

Upon closer examination of such increasingly complex decision trees, we have 

identified several unanticipated classification challenges. The greatest surprise has 

come from the identification of the logical equivalence of several branches within 

some of the generated trees. While that was considered completely plausible at the 

level of the individual nodes, the subsequent identification of the logical equivalence 

of the final toxicity and bioactivity classifications upon the application of reasoners to 

our generated ontologies has led to some concerns over the validity and applicability 

of our approach. Clearly, the equivalence of the class of toxic compounds to the non-

toxic compounds is not an anticipated or desirable effect for an ontology used to 

replace the existing classification systems. Further, in order to make the decision tree 

more transparent, we needed a way to trace the logical path taken to activity 

classification leaves, while still preserving broad activity classification capacity. 



 

Fig. 4. A simplified carcinogenic toxicity decision tree generated from a ToxCast dataset, using a restricted 

set of chemical features for ease of presentation. Note the repetition of some rules at multiple decision tree 

nodes. The path taken to classify acetaminophen, as detected with the explanation functionality of Protégé, 
has been highlighted with red arrows. 

 

After careful consideration of the logical explanation of the equivalence of these 

practically distinct classes, we identified the cause of the problem to lie in the 

repetition of rules within a single decision tree and the lack of the distinction between 

the nodes that executed rules in a particular order. As such, it was quite possible to 

arrive at a situation where, having ignored the context of the rest of the tree, the 

classifier technically correctly assigned class equivalence between the toxic and non-

toxic compounds simply because parts of the paths taken to these classifications were 

similar, while the other parts were not mutually exclusive. 

To rectify this problem, we have recognized that node-specific classification rule 

tracking had to be implemented. Thus, we amended our generator to include a local 

set of node-specific classification features within a given ontology. This translated 

into alterations to substance classifications, as follows. 

Substance_N6:  

Substance_N0 and has_attribute some (RuleToxicFunctionalGroups_N0 and 

has_value value false)    

Note that what used to be the RuleToxicFunctionalGroups descriptor became the 

RuleToxicFunctionalGroups_N0 descriptor. This amendment was effective in solving 

our misclassification problem. However, the introduction of ontology-specific 

descriptors would negate our ability to integrate and compare the different ontologies, 

as well as to draw on existing repositories of chemical entities annotated with the 

general standard descriptors and features. To rectify ontology comparison deficiency, 



we have created versions of our decision tree ontologies where node-specific rules 

were explicitly defined as subclasses of their generic counterparts. Similarly, node-

specific activity leaves were introduced to enable tracing classification paths. Thus, 

although we had to artificially distinguish activity categories and rules, we were still 

able to query for the compounds falling into the general activity classes, as well as to 

trace classification paths, important in e.g. automated toxicity tree comparison. 

3.3   Chemical Entity Classification 

While the above amendment permitted comparison between multiple ontologies and 

still avoided erroneous class equivalence conclusions, it did not address drawing on 

existing data repositories, as there is no direct inference that if a general rule bears a 

particular value, there exists an instance of its subclass that bears the same value. The 

first intuitive suggestion to clear this task is to modify our generator to also create 

ontologies where the general rules were specified as subclasses of the node-specific 

rules. This has allowed us to automatically make the necessary inference to import 

data from existing chemical knowledge repositories in RDF. 

However, upon carrying out the classification within such ontologies, we have been 

unpleasantly surprised to find out that due to the introduced equivalences at the data 

level, some of our instances were capable of adopting both, active and inactive 

classifications. In order to rectify this problem, we defined node-specific final 

classifications (e.g. active_N3) which were declared to be subclasses of the general 

final classes (e.g. active and inactive) (Fig. 5).  

 

Fig. 5. A fragment of the final, classification-friendly decision tree. 

Classification was successfully carried out by querying whether a given instance 

belonged to one of these general classes. Using thus constructed decision tree-based 

ontologies, we encountered no problems classifying numerous RDF-encoded 

molecules bearing the requisite information. A sample OWL model is available [18]. 
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Fig. 6. Relevant features of acetaminophen used in classification. 



As an example, consider the case of acetaminophen, a known non-carcinogen. Its 

attributes (Fig. 6) were imported from its CHESS [15] representation and correctly 

classified as inactive according to the decision tree presented earlier (Fig. 4). This 

classification was also reproduced using numerical trees (omitted for brevity).  

Further, unlike the traditional classification systems, which are essentially black 

boxes, our approach has allowed us to automatically trace the exact route taken to 

classifying acetaminophen as a non-carcinogen, using the explanation feature of 

Protégé [16]. The fact that we created artificially distinct activity classes in our trees 

did not prevent us from querying for chemical activity in terms of general categories. 

3.4   Ontology Integration and Concept Comparison 

Thanks to the automatically generated ontology structure (Section 3.2), it was 

possible to integrate and compare multiple predictive toxicology ontologies in order 

to identify equivalence or subclass relationships between their toxicity and bioactivity 

classifications. Perhaps the easiest to demonstrate is the integration of two Rule of 

Five-based ontologies. In one set, one of the requirements for a compound to be drug-

like was a molecular weight less than 500 Da (Fig. 2), while in another, small drug-

like compounds were introduced, with a molecular weight under 250 Da. Simple 

import of one ontology into the other and classification with Pellet resulted in small 

drug-like compounds inferred to be a subclass of drug-like compounds. 

4   Conclusions 

4.1   Significance 

In this work, we have demonstrated for the first time the automated construction and 

practical application of OWL-encoded decision trees in chemical toxicology. The 

OWL ontologies that we generate can capture numerical cutoff-based rules, as well as 

Boolean-based rules, and can be used to represent both, automatically and expert-

generated decision trees. Using our approach, decision trees that form the basis for 

predictive chemical toxicology classification and are either manually (expert-based 

systems) or algorithmically (data-based systems) generated can be routinely converted 

to OWL ontologies. Due to the explicit and formal specification of concepts within 

these ontologies, toxicity and bioactivity classes can be exposed for comparison and 

logical integration. In addition to this, these ontologies can also be easily applied to 

classify chemical entities in the rapidly growing knowledgebases of RDF-encoded 

chemical information. In replacing framework-, software-, and domain-specific 

classification engines with standard OWL ontologies, we allow for the chemical 

toxicology efforts to break free of their respective boundaries and support their 

current shift towards the Semantic Web technologies. As this shift occurs, we are 

confident that the work we present here will play an important role in informing 

future efforts in integrating and analyzing the future Chemical Semantic Web to 

support open, transparent, and reproducible chemical toxicology research. 



4.2   Future Applications and Developments 

This work marks a first step towards an OWL-based predictive toxicology framework 

that is currently under development. In this framework, ontologies capture the 

decision tree-based toxicology and bioactivity mathematical models are generated on 

the fly from linked open data. These ontology-specified models will subsequently be 

accessible for further automated classification of large collections of semantically 

represented chemical entities. Preliminary results point to the possibility of logically 

comparing formalized decision trees of multiple types so as to provide explanations 

for [16] and to identify points of equivalence of toxicity and bioactivity classes. 

Finally, the capture of classification statistics presents an interesting avenue to 

explore probabilistic reasoning [17] using description logics which would be well 

suited for toxicity prediction within a set of confidence intervals.  
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