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Abstract. The importance of geospatial information is being reflected on
the growing amount of spatial datasets on the Semantic Web. However, the
high variability of the data presents challenges for integration. In this paper,
we address the problem of finding spatial equivalences between geospatial
RDF datasets. First, we present mappings between our NeoGeo vocabu-
lary and the vocabularies used by some well-known spatial RDF datasets.
Second, we describe a method to find spatially co-located features across
spatial RDF datasets. To find equivalences, we rely on analyzing the Haus-
dorff distance distribution in the compared datasets, with the objective of
finding a sensible criterion that aids the recognition of equivalent regions.

1 Introduction

Geospatial data is ubiquitous in information management, supporting scientific,
industrial or just everyday activities. The relevance of geospatial data is reflected
by the growing amount of geospatial datasets on the Web.

A feature is an abstraction of a real world phenomenon (e.g. a building, a
mountain or an administrative region). A geographic feature is a feature associated
with a location relative to the Earth, which is usually represented by a certain
geometric shape (e.g. a point, a curve or a polygon). Features that are spatially co-
located (i.e. share the same location) are not necessarily always the same. However,
finding spatially co-located regions is a powerful measure of similarity between
features.

Factors like rounding effects, different scales and different formats, present a
challenge when attempting to elicit equivalences between geospatial resources. We
define a method for obtaining a criterion that best fits the differences between the
datasets merged.

This work was successfully applied to integrate our RDF representations of
the NUTS nomenclature of the European Union 3 and of the GADM project 4

to other datasets describing spatial information on the Semantic Web, and also
between each other.

Our contributions are as follows:

– Representation and modeling of datasets: we survey the representation of exist-
ing geospatial datasets, and distill an integration vocabulary which covers the

3 http://nuts.geovocab.org/
4 http://gadm.geovocab.org/



core set of classes and properties in existing data. We also integrate existing
vocabularies and publish two geospatial datasets (Section 2).

– Integration and mapping of multiple datasets: we develop an algorithm for
finding equivalences for geometric shapes across multiple datasets (Section 3).

– Evaluation of the presented approach: we conduct experiments in which we
evaluate the accuracy of the results (Section 4).

We discuss the related work in Section 5. Finally, we identify areas for future
work and conclude in Section 6.

2 Representing geospatial data on the web

2.1 Analyzed datasets

We start with providing a brief summary of the analyzed datasets.

– UN FAO Geopolitical Ontology5: The Food and Agriculture Organization of
the United Nations (FAO) is a specialized agency of the UN. The UN FAO
Geopolitical Ontology provides the FAO and its associated partners with a
master reference for geopolitical information.

– OS OpenData6 [8]: The Ordnance Survey (OS) is the national mapping agency
for Great Britain. OS has released a number of its products as Linked Data.

– GeoLinkedData.es [2, 3]: The initiative provides geospatial information about
the national territory of Spain. The information provided as RDF at their
website is gathered from different national sources. However, the integration
process is based on string matching.

– LinkedGeoData.org [22]: The project provides data from OpenStreetMap7 as
Linked Data.

– GeoNames.org: GeoNames is a geographical database that covers all countries
and provides Linked Data under a Creative Commons attribution license.

– Uberblic.org: Uberblic provides an integration service that includes data from
GeoNames, Wikipedia, MusicBrainz, Freebase, Last.fm and Foursquare.

– RAMON NUTS8: The Nomenclature of Units for Territorial Statistics (NUTS)
is a geocoding standard for referencing the subdivisions of countries for sta-
tistical purposes developed by the European Union and published as Linked
Data.

– DBpedia.org: The community effort extracts structured information from Wiki-
pedia for publication as Linked Data.

– NeoGeo: We provide an integration vocabulary, described in more detail in
Sections 2.4 and 2.5.

5 http://www.fao.org/countryprofiles/geoinfo/geopolitical/resource/
6 http://data.ordnancesurvey.co.uk/
7 http://openstreetmap.org/
8 http://rdfdata.eionet.europa.eu/ramon/nuts2008/



2.2 Representing location

The analyzed spatial datasets represent the location of features in different ways.
We identified four main kinds of representation: point, bounding box, points in
lists, points using a single property and literals. Geometric shapes are not only
described using different vocabularies, but also these vocabularies are based on
different structures, which increases the difficulty of working with GeoData across
datasets.

– Point Location of objects is merely represented by a geographic point. The
most common vocabulary to do so is W3C Geo[24], sometimes complemented
with a GeoRSS representation [21], such is the case of the UK Ordnance Survey,
even if GeoRSS is not a proper RDF vocabulary but an XML-Schema. In some
cases, neither W3C Geo nor GeoRSS is used, but an own vocabulary, as is the
case of the Uberblic Ontology, which uses its own ”latitude”, ”longitude” and
”altitude” predicates.

– Bounding box The location is represented by two points or four line seg-
ments forming a georeferenced rectangle (on cylindrical projections). This is
the case of the FAO Geopolitical Ontology, which uses four predicates (hasMin-
Longitude, hasMinLatitude, hasMaxLongitude, hasMaxLatitude) to represent
a rectangle. The rectangle is represented by line segments, which should be
tangential to the region at some point.

– Points in lists The geometric shape of a region is represented by a col-
lection of points, each being described as a single RDF node. The whole col-
lection of points is then linked together using either an RDF Collection or an
RDF Container. LinkedGeoData.org represents geometric shapes by using a
”hasNodes” object property, which links to a rdf:Seq container. The rdf:Seq
container describes the nodes of a shape, which are represented using the W3C
Geo Vocabulary.

– Points using a single property In the GeoLinkedData.es ontology, rivers
are represented by a group of ”Curva” (curve) RDF resources (similar to a
GML LineString). ”Curva” resources use a single ”formadoPor” object prop-
erty to link each of their nodes, which at the same time contain the WGS-84
coordinates (represented with the W3C Geo Ontology) and an ”orden” (order)
value property, defining the position of each node within the geometric shape.

– Literals Both Ordnance Survey and GeoLinkedData.es (for rivers only) on-
tologies include a predicate allowing to include a GML representation of the
geometric data, which is coded in RDF as a literal. A ”geometry:extent” prop-
erty links a feature to its geometric representation.

2.3 Representing spatial relations

A spatial relation states the location of an object in relation to another. We created
a set of vocabulary mappings to the NeoGeo vocabulary using the rdfs:subPropertyOf
predicate. Table 1 shows which predicates are used in each dataset to describe spa-
tial relations.



Dataset Disjoint Touches Overlaps Within Contains Equals Nearby
UN FAO hasBorder-

With
isInGroup

Ordnance Survey disjoint touches partially-
Overlaps

within contains equals

GeoLinkedData.es forma-
ParteDe

formado-
Por

LinkedGeoData.org
GeoNames.org neighbour

/ neigh-
bour-
ingFea-
tures

parent-
Feature

children-
Features

nearby /
nearby-
Features

Uberblic.org adjoining-
location

containing-
location

RAMON NUTS partOf
DBpedia.org locatedIn-

Area
NeoGeo DC EC PO PP PC EQ

Table 1: Equivalent properties for spatial relations across multiple vocabularies.

2.4 NeoGeo ontologies

Given the lack of a standardized spatial vocabulary, we developed our own set of
spatial ontologies, which we call NeoGeo9. We manually created a set of mappings
between our vocabularies and the vocabularies used by some acknowledged spatial
datasets like the Ordnance Survey and LinkedGeoData.org. Both the GADM and
NUTS datasets use the NeoGeo vocabularies.

The Geometry Vocabulary10 is an RDF vocabulary for the description of geo-
referenced geometric shapes. It is based on the Core Profile of the Spatial Schema
[12] and the General Feature Model [11]. Hopefully, the lack of a standardized RDF
vocabulary in this domain will probably be addressed by GeoSPARQL[16] shortly.
For experimentation reasons, the Geometry vocabulary allows to encode geometric
shapes in a representation fully based on RDF or as a WKT representation [10]
embedded in an XMLLiteral.

The Spatial Ontology11 provides a vocabulary for the representation of the spa-
tial relations used in the Region Connection Calculus (RCC) [19]. It also provides
monotonic reasoning by mapping most of the semantics of RCC into OWL.

2.5 NeoGeo datasets

We provide two datasets, NUTS and GADM, containing geospatial information as
Linked Data.

9 http://geovocab.org/
10 http://geovocab.org/geometry
11 http://geovocab.org/spatial



The Nomenclature of Territorial Units for Statistics (NUTS) is a classification
defined by the Eurostat office of the European Union. It is intended to divide the
administrative regions of the European Union, in a way that the resulting regions
are demographically equivalent.

The RDF representation of the NUTS nomenclature contains a 1:60,000,000
geospatial representation of the NUTS statistical units mapped to RDF. The re-
sources representing NUTS regions in our dataset include (among others) links to
resources in DBpedia, FAO Geopolitical Ontology, GeoNames, Ordnance Survey
and GeoLinkedData.es.

The Global Administrative Areas (GADM)12 is a project seeking to become
a collaborative effort on building a spatial database containing information about
all of the administrative regions in the world. GADM aims to provide high res-
olution mappings for all administrative areas in the world, along with additional
information about them. The latest version of GADM (0.9) maps 226.439 adminis-
trative areas. The information can be downloaded at their website in the following
formats: Shapefile, ESRI geodatabase, RData and KMZ.

Given the value of the GADM project, we have created an RDF representation
of the information contained in the original GADM project, which we seek to enrich
with additional capabilities like the materialization of spatial relations, mappings
to other RDF datasets and SPARQL querying support.

3 Instance mappings

The alignment of the vocabularies is only the first step for the integration of the
datasets. The second step in the process is to find matchings between the features.

We can classify the features into three general categories, in relation on how
their location is represented in the datasets. First are the resources that present
no quantitative spatial information at all. Second, the features that approximate
their location by using only a single point. And finally, features which present
rich information about their location (i.e. include a description of their geometric
shape).

3.1 Resources with no quantitative geospatial information

Resources which include no quantitative information about their location can be
integrated by relying either on text matching [14], or object property matching [23]
[4]. These techniques are also suitable for the disambiguation of spatially obtained
mappings [9]. This kind of resources is not the topic of this work.

3.2 Resources with poor quantitative geospatial information

Sometimes the location of a feature is approximated by using a single point (e.g.
using the W3C Geo vocabulary) instead of representing its actual extent (i.e. the
geometric shape). Examples of this kind of representation are DBpedia, Linked-
GeoData.org, GeoNames and LinkedGeoData.es.

12 http://gadm.org/



This kind of representation can lead to false assertions while performing com-
parisons against a spatial index if these features are not especially considered. For
example, DBpedia uses the W3C Geo Vocabulary to describe the latitude and
longitude coordinates of features as points. The resource for Germany in DBpedia
http://dbpedia.org/resource/Germany is spatially represented by a point with
latitude 52.516666 and longitude 13.383333. If we intended to obtain the contain-
ment relations for such resource by comparing it with a spatial index, the result
would be that Germany is part of Berlin, which is false. Therefore, even though
these relations can be obtained using the coordinates represented in DBpedia, first
it is necessary to ensure that the process will not return such false statements.
The false matches can be avoided, for example, by filtering the features that will
be compared by its class, in a way that ensures that the feature will be properly
contained in the features that it will be compared to (e.g. cities in provinces or
restaurants in cities).

3.3 Resources with rich quantitative geospatial information

Resources that include an accurate description of their extent as a geometric shape
can be compared using this information. We will focus on obtaining links be-
tween spatially co-located regions (we use the spatial:EQ predicate). Whether
owl:sameAs links can be deduced from the obtained links depends on the model-
ing of the datasets (e.g. the class the resource belongs to).

To perform the comparison, we will adopt a Plate Carrée projection for both of
the compared datasets. Being this projection equirectangular, we can treat latitude
and longitude coordinates as if they were cartesian. Therefore, the units will be
presented in centesimal degrees.

The benefit of using an equirectangular projection is that it simplifies the cal-
culations by avoiding local reprojections (e.g. to UTM), and also allows to use a
global spatial index, improving the performance of the process. In our approach
it is not important if the projection distorts the real size or the actual geomet-
ric shapes on the surface of the Earth, as long as the geometric data is equally
distorted for all datasets.

Due to a series of factors like rounding effects and different scales, there is no
guarantee that both geometric shapes will be vertex by vertex identical. Figure 1
exemplifies these differences by showing the boundaries for Luxembourg as they
are represented in the GADM and NUTS datasets.

An effective method of determining how similar two geometric shapes are is
to compute the Hausdorff distance between them. The Hausdorff distance is the
”maximum distance of a set to the nearest point in the other set“ [20]. More
formally, given two sets of points A = {a1, a2, ..., an} and B = {b1, b2, ..., bn}, the
Hausdorff distance is defined by:

dH(A,B) = max ({arg maxaεA arg minbεB d(a, b), arg maxbεB arg minaεA d(a, b)})

It can be deduced from the formula that in the particular case of calculating the
Hausdorff distance between points, the Hausdorff distance matches the Euclidean
distance d(a, b).



Fig. 1: Incongruency of the geometric data (GADM: blue, NUTS: violet) due to
differences in resolution.

Figure 2 shows the values of correct and wrong guesses for similar regions in
both datasets. In order to better appreciate the variability of the values, only
small areas are plotted in the chart. From the figure it can be deduced that smaller
regions (e.g. boroughs) require greater precision than larger regions (e.g. countries),
in order to differentiate them from each other. Therefore, the Hausdorff distance
margins allowed for regions which are suspected to be spatially co-located must be
different, depending on the area size of the regions being compared.

Fig. 2: Values for correct and wrong guesses for similar regions in NUTS and
GADM.

To address this issue, it is desirable to obtain a function for a Hausdorff dis-
tance threshold for a given area size. In order to do this, first we calculate the
midpoint between the lowest and second lowest Hausdorff distance values, for a
representative set of features in both datasets. Afterwards we perform a quadratic



regression from the midpoint Hausdorff distance values. This produces a formula
that allows to determine the maximum Hausdorff distance allowed between two
regions, in order to consider them similar. The resulting function has the following
form:

MaxHDist(x) = A · x2 + B · x + C

Where MaxHDist is the maximum Hausdorff distance allowed between two
regions in order for them to be considered similar. The x variable is the area of
the region. The quadratic function gives more precision for small regions while
allowing a greater margin for large regions. The A,B and C constants are tunable
parameters for the integration procedure.

A yet unresolved issue of using a quadratic function is that the samples must
include values for the approximated maximum area for which the integration will
be performed. This is because the values of the function will tend to decrease
after reaching a maximum value. We are performing experiments with logarithmic
functions to solve this issue.

Table 2a shows sample execution times and Hausdorff distance values between
features in the NUTS and GADM datasets.

Region Name NUTS
Id

Area Hausdorff Distance Time (ms)

Finland FI 62.2835 1.3996 30353
Iceland IS 19.3357 0.4163 567
Croatia HR 6.2139 1.1374 7830
Schleswig-Holstein DEF 2.1126 0.7281 1870
Karlsruhe DE12 0.8433 0.1062 35
Seine-Saint-Denis FR106 0.0358 0.0812 1

(a) for the original geometric shapes

NUTS
Id

Hausdorff Distance Time (ms)

FI 1.3483 2504
IS 0.4613 66
HR 1.1366 1108
DEF 0.7257 296
DE12 0.1906 13
FR106 0.0716 2

(b) simplified with a separation of 0.2
degrees

NUTS
Id

Hausdorff Distance Time (ms)

FI 1.3483 2257
IS 0.4863 49
HR 1.1366 1053
DEF 0.7801 278
DE12 0.3762 14
FR106 0.0716 2

(c) simplified with a separation of 0.5 de-
grees

Table 2: Sample Hausdorff distance values and execution times

Calculating the Hausdorff distance between the original geometric data is quite
expensive, especially for large regions. In order to increase the performance of the
process, as an optional step, we chose to simplify the geometric shapes using the



Ramer-Douglas-Peucker algorithm [18] [5], prior to the calculation of the Hausdorff
distances.

The Ramer-Douglas-Peucker algorithm starts by considering a line segment
between the first and last points of the line. Then, it finds the furthest point from
the line segment between the first and last points of the line. If the point found
is closer than a predefined distance ε to the line segment, all other points that
were not chosen to be used in the solution can be discarded. If the point furthest
from the line segment is greater than ε, then the point is used in the solution. The
algorithm then calls itself recursively with the found point and the last point as
parameters.

Tables 2b and 2c show the Hausdorff distance between the NUTS regions and
their matching GADM region, as well as execution times for different levels of sim-
plification. As it can be seen, execution times are dramatically reduced, especially
for large regions.

A further refinement of the process is to calculate the simplification distance
for the Ramer-Douglas-Peucker algorithm depending on the Hausdorff distance
threshold and therefore of the area of the regions. This is based on the same
principle applied for the Hausdorff distance, where small areas require greater
precision than large areas.

Given two spatial datasets A and B, the algorithm can be summarized as Al-
gorithm 1.

4 Experiments

4.1 Implementation

We implemented the algorithm presented in Section 3.3 using the PostGIS 1.5.2
extension running on PostgreSQL 8.4.8. The computer is running on Ubuntu 10.04
on an Intel SU7300 processor with 4GB DDR3 RAM.

PostGIS includes the ST HausdorffDistance function, which implements an ap-
proximation to the original algorithm. This approximation can be thought of as
the ”Discrete Hausdorff distance“, which is the Hausdorff distance restricted to
discrete points for one of the geometric shapes. If more precision is needed, the
function receives also an optional ”denistyFrac“ parameter which performs a seg-
ment densification before computing the discrete Hausdorff distance.

Since we are not concerned about the actual Hausdorff distance values, but just
use it as a measure to determine if two regions are similar enough to be considered
spatially co-located, this approximation is sufficient.

For the simplification of geometric data we will use the ST SimplifyPreserveTopology
function included in PostGIS. This function is a refined version of ST Simplify,
which is based on the Ramer-Douglas-Peucker algorithm [18] [5].

The query used with PostGIS to find regions which are supposed to be spatially
co-located is very similar to the one presented below. To avoid having to perform
the same calculations repeatedly, the values of the maximum Hausdorff distance
function are cached into the ”max hausdorff dist“ column. The ”geometry“ column
in both tables belongs to the ”Geometry“ datatype provided by PostGIS.



input : Datasets A, B
output: Equivalent regions from A and B
Convert the compared resources to a shared coordinate reference system.
Project the data into an equirectangular projection.
Obtain a representative set of regions in dataset A which intersect regions in
dataset B and have a maximum arbitrary Hausdorff distance between each other.
foreach region a of a representative set of regions in dataset A do

Get the minimum Hausdorff distance to a region in dataset B.
Get the second minimum Hausdorff distance to a region in dataset B.
Calculate the midpoint between the minimum and second minimum Hausdorff
distances.

end
Perform a regression on the midpoints between the Hausdorff distances to
calculate the Hausdorff threshold function.
foreach region a in A do

foreach region b in B do
if a intersects b then

Calculate the Hausdorff distance between a and b.
if Hausdorff distance between a and b is lower than the threshold for
the area of a then

a and b can be considered as spatially co-located.
end
else

a and b cannot be considered as spatially co-located.
end

end

end

end
Algorithm 1: Matching algorithm

SELECT g.gadm_level, g.gadm_id, n.nuts_id

FROM nuts n INNER JOIN gadm g ON (n.geometry && g.geometry)

WHERE

n.shape_area BETWEEN (g.shape_area*0.9) AND (g.shape_area*1.1)

AND ST_HausdorffDistance(ST_SimplifyPreserveTopology(n.geometry, 0.5),

ST_SimplifyPreserveTopology(g.geometry,0.5)) < g.max_hausdorff_dist;

Basically this query selects the identifiers for the GADM region (level and id),
and for the NUTS region (id). The && operator matches an intersection between
the bounding boxes of the of the regions. Since similar regions will also have a
similar area size, the first condition in the ”where“ clause filters regions that have
a similar area size with an error of 10%. The second condition checks if the discrete
Hausdorff distance between the simplified geometric shapes is within the limit
calculated by the function presented in Section 3.3.

4.2 Evaluation

We can analyze the effectiveness of the method by looking at the results of the
process of finding spatial equivalences between the NUTS and GADM datasets.



The NUTS dataset codes the geometric shapes fully in RDF using the NeoGeo
vocabulary, and the coordinate system used is WGS-84. The data is retrieved by
using a Construct SPARQL query and then converted into WKT using XSLT.

After retrieving the geometric data, it is merged with the GADM dataset using
the method presented in Section 3.3.

Not all NUTS regions are expected to match a GADM region, since many
NUTS regions represent parts or aggregations of administrative boundaries. Also
a GADM administrative region in a certain level should be able to match different
NUTS regions in different levels, and vice-versa.

From the existing 1,671 NUTS regions of the 2008 nomenclature that were
included in the comparison, the algorithm detected 965 matches, from which 13
were false positives, as Table 3 shows.

NUTS
Region

Incorrect guess GADM
Id

GADM
Level

Area Hausdorff Distance

UKM34 East Renfrewshire 14084 2 0.0214 0.1862
FR106 Val-De-Marne 13799 2 0.0334 0.1644
BE321 Soignies 2691 2 0.0654 0.3521
BE353 Thuin 2692 2 0.1188 0.2834
CH061 Aargau 531 1 0.1672 0.3653
LT Latvija 136 0 9.5204 2.5098
LI Appenzell Innerrhoden 533 1 0.0205 0.2783
UKM28 North Lanarkshire 14095 2 0.0689 0.3478
BE331 Lige 2696 2 0.1013 0.335
BE353 Thuin 2692 2 0.1188 0.2834
CH061 Aargau 531 1 0.1672 0.3653
SE3 Norge 168 0 60.585 7.8658
BE321 Soignies 2691 2 0.0654 0.3521

Table 3: False positives resulting on the application of the method

These false positives are due to the fact that the threshold is set too high for
very small and very large areas. It is desirable to produce a larger gradient for
small areas and a smaller Hausdorff distance threshold for large areas. This is still
a matter for further research.

5 Related work

The problem of aligning spatial datasets is not new in the Semantic Web commu-
nity and much work has been put on finding sensible solutions both at T-Box and
A-Box level.

Ontology alignment is a heavily researched topic. Proposed solutions have been
based on the terminological [15], structural [7], semantic [6] and extensional [17]
aspects of the aligned ontologies. The last two works consider the alignment of
spatial T-Boxes in particular.



Algorithms have also been proposed for feature matching across spatial datasets.
[1] presents a series of algorithms for the integration of features, for which the lo-
cation is approximated by a single point. These approaches have the problems
exposed in Section 3.2 and therefore, are not suitable for all cases. [13] considers
feature matching as an assignment problem based on a minimization of the Haus-
dorff distance between the geometric shapes. However, being this a case of Linear
Programming, the method can only be applied for all the geometric shapes of both
datasets at the same time, making it more difficult to integrate to live crawling.

6 Conclusion

We have presented a generic method that can be used to map multiple spatial
datasets. We also showed its functioning by describing the integration between our
two spatial datasets and analyzed its results.

Although the method has been used successfully to align the GADM and NUTS
datasets, the false positive rate can still be improved when analyzing regions cov-
ering a wide spectrum of area sizes. However, the presented method has proven to
be usable in Semantic Web applications.

Since the first experiments showed promising results, we are developing a tool
that automates the whole mapping process. We are also further refining the algo-
rithm to improve its precision and performance.
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