
A Two-step Approach to Video Retrieval based on ASR
transcriptions

Ken Schmidt, Thomas Körner, Stephan Heinich, Thomas Wilhelm
Chemnitz University of Technology
Department of Computer Science

Straße der Nationen 62, 09111 Chemnitz, Germany
{sken, koert, heist, wilt}@hrz.tu-chemnitz.de

ABSTRACT
In this paper, we describe our experiments for the Rich Speech
Retrieval Task at the MediaEval Benchmark Initiative 2011. We
start with a brief overview on the used framework and its
structure. Our experiments indicate that a two-step retrieval
approach and applying a spell checker can improve the quality of
retrieval results in the given scenario. Finally, we discuss other
techniques that may further improve the quality of the results.

Categories and Subject Descriptors

H.3.1 [Content Analysis and Indexing] and H.3.3 [Information
Search and Retrieval]

General Terms
Measurement, Experimentation, Languages

Keywords
Information retrieval, automatic speech recognition, multimedia
retrieval

1. INTRODUCTION
The aim of Rich Speech Retrieval Task at MediaEval 2011 [1]
was to provide jump-in points for videos given a user query. We
had 350 hours of internet video material from blip.tv shows,
mostly in English language. Automatic speech recognition
transcripts in two versions one from 2010 and another from 2011
served as basic metadata. We used the transcripts from 2010 in
our experiments. Additional metadata, such as tags and shot
segmentation were supplied in the form of XML documents.
Along with the shot segmentation, key frames of every scene were
also provided.

2. SYSTEM DESCRIPTION
For the participation at MediaEval 2011, we based our
experiments on the information retrieval framework Xtrieval
(eXtensible reTRIeval and EVALuation) [2]. Xtrieval is being
developed at Chemnitz University of Technology since 2005. The
idea behind this framework was to create a flexible and adjustable
framework with state-of-art retrieval-techniques. Xtrieval
provides several Java-based object-orientated API's for different
retrieval tasks. There are four main components: indexing,
retrieval, evaluation and the user interface. The first three are the
main components; we did not use the UI component.

The Xtrieval framework itself works in the following way. The
textual data from various sources is captured by the indexer. The
indexing process is based on a data collection concept that
abstracts the actual collection under investigation. The indexing
itself is done by the Indexer class. The resulting index is used for
searching. The topics (or queries), index and retrieval parts are
necessary to run an evaluation experiment. Using the experiment
data structure, we can evaluate various indexing and search
approaches.
Xtrieval is capable of providing different retrieval API's, such as
Apache Lucene1, Terrier2 and Lemur3, through a common
programming interface. We used Lucene as retrieval core for the
present experiments. There are many possibilities to tune
components and parameters in Xtrieval. Here, we opted to weight
a part of the query to emphasize its impact on the result.
We were required to submit one specifically configured run and
up to four arbitrary runs. The respective data was extracted from
the XML documents using XPath. Before indexing we applied
some standard token filters, such as lowercase transformation,
Porter stemming, and a standard list of stopwords for English4.
We built several indexes using the development data set. Various
system configurations were tested to investigate the specific
characteristics of the data and the respective retrieval problem.
The initial idea of preferring a two-step approach over standard
retrieval is based on the following thoughts. If the search terms do
not appear all together in a single segment, it is hard to define the
most relevant segment. We supposed that results can be improved
by first identifying a possibly relevant document (based on its full
transcript) and determining the most relevant segment in a second
step. Thus, we created two basic indexes. In the first, we indexed
the ASR transcripts and used the documents as identifiers to create
a (preliminary) ranking. For the second index we treated the
speech segments as documents in order to create a ranking on
segment level.
In the first step of retrieval, we identify the most relevant
document, weight it and add its ID to the query. This modified
query is submitted to the second index in order to identify the
most relevant segment, related to the first document. Here, a
weight of 0.0 for the document ID in the modified query means no
effect (or modification). In contrast to that, assigning a weight of
1.0 to the ID results in retrieving only segments of documents that
were already identified before, i.e. it defaults to standard retrieval.

1 http://lucene.apache.org/
2 http://terrier.org/
3 http://www.lemurproject.org/
4 http://members.unine.ch/jacques.savoy/clef/index.html

Copyright is held by the author/owner(s).
MediaEval 2011 Workshop, September 1-2, 2011, Pisa, Italy.

Because the documents that were retrieved from the first index
were not always relevant, we decided to give them only a partial
influence on the results for the search in the second index.
Obviously, using different weights produced different results,
which are reported in more detail in the next section. We decided
to use this two-step retrieval approach, because we observed better
results than with a standard search when we were experimenting
with the development set.

3. CONFIGURATIONS AND RESULTS
In this section we report the results that were obtained by
alternating parameters of our system configuration. We provide a
brief discussion of our results for the official evaluation along
with some observations on additional experiments.

3.1 Submitted Runs
We submitted five different configurations of our experiments.
For the required run (run1) we indexed the complete ASR
information from the XML transcripts of 2010 in the first index.
Our second index contained only the segments of speech detected
by ASR. So we did for all our runs. In our retrieval experiments
we used the title and the short title from the queries. The field act
was discarded, because it significantly decreased the result quality
in preliminary experiments. The starting point of the identified
speech segment was returned as the required jump-in point.
For our arbitrary configurable runs, we also included the metadata
information in the first index. This increased the result quality on
the development data. During our experiments we observed, that
some of the queries did contain spelling errors. Since these
mistakes were not intended, they reflected a realistic use case.
Thus, we decided to use a spellchecker and we filtered the queries
with it. We used the Google spell check API5, which returned a
weighted list of suggested words. The first word from this list was
added to the search query. Applying this technique resulted in a
slight improvement of quality.
The weighting of the first identified document was varied from
0.1 to 0.9. We recognized that in case of a non-relevant document
on the top of the ranking, giving a high weight to this document
ID in the modified query significantly decreased the result quality.
A reason could be the fact that higher weights pushed down
alternative results in the result list. Our results are listed in detail
in the following table.
Table 1: Experiments and results for test and development set
experiment id mGAP*
test set window 10s window 30s window 60s
run1 0.1 TT ASR 0.1432 0.2420 0.3051
run2 0.1 TT 0.1432 0.2419 0.3051
run3 0.1 FCT 0.1432 0.2420 0.3052
run4 0.6 FCFC 0.1164 0.2039 0.2557
run5 0.8 FCFC 0.1140 0.2004 0.2511
development set
run1 0.1 TT ASR 0.2325 0.2886 0.3228
run2 0.1 TT 0.2926 0.3585 0.3946
run3 0.1 FCT 0.2925 0.3620 0.4017
run4 0.6 FCFC 0.2863 0.3609 0.4071
run5 0.8 FCFC 0.2863 0.3609 0.4071
*mGAP: mean generalized average precision
Run1 is the required and restricted experiment. Hence, it is based
on the 2010 ASR transcripts only. Our second run (and also third,

5 http://code.google.com/p/google-api-spelling-java/

fourth and fifth) includes additional metadata in the first index. In
run2 we searched with the raw (original) query. The weighting for
the first document was 0.1. For the third experiment (run3) we
filtered the query using the Google spellchecker in the first search
step (FC). The weighting remained at 0.1. For the last two
experiments run4 and run5 we increased the weighting to 0.6 and
0.8. Additionally, we used the spellchecker twice (FCFC), for
document and segment search step.
Our experiments with the development data achieved much higher
mGAP values than the test set results. This may be due to the
smaller size of the development set.

3.2 Additional Experiments
In addition to the submitted runs we followed some other
approaches. We also tried searching in one index that contained
all available information. But there were no improvements. We
decided to explore the possibilities of text recognition in the key
frame pictures. But the recognition results were very bad, because
of the moderate image quality. Only in some cases we could
extract words which were ready to use.

We see some other problems with short queries. Queries that
contain for example the name “Hillary Clinton” and only a few
general terms deliver bad results. This may be due to the fact that
the term “Clinton” appears more often alone or in conjunction
with “Bill” and refers to the former president of the USA.

4. CONCLUSIONS AND FUTURE WORK
Our tests showed that a two-step retrieval approach works well for
the present scenario. But only in the case that the first identified
document is not overrated to avoid excluding alternative
solutions. A spelling checker works well in cases of misspelled
names. If there are several variations for spelling a name like
Denis (or also Dennis), the spell checker adds the most common
notation. We suppose a case where the ASR system returns a
misspelled name (Denis vs. Dennis). The user knows the person is
spelled with two “n” but it was transcribed only with one. So the
spell checker adds “Denis” to the query and the document could
be found by the user.
Future work could focus on improving quality of the first
document. Another possibility is to take various languages of the
documents into account. We disregarded this, because there are
only few videos with other languages than English. Furthermore,
there are prospects to work with the shot segmentation: combining
the shot time with the speech segment time to improve the jump-
in point. Another disregarded option is to make use of the
provided tags. It might be possible to categorize the query in such
a way that the search heaps only videos with tags fitting the query.

5. ACKNOWLEDGMENTS
This publication was prepared as a part of the research initiative
sachsMedia (http://sachsmedia.tv), which is funded by the
German Federal Ministry of Education and Research under the
grant reference number 03IP608. The authors take sole
responsibility for the contents of this publication.

6. REFERENCES
[1] Martha Larson, Maria Eskevich, Roeland Ordelman,

Christoph Kofler, Sebastian Schmeideke, Gareth J. F. Jones:
Overview of MediaEval 2011 Rich Speech Retrieval Task
and Genre Tagging Task, MediaEval 2011 Workshop.

[2] Jens Kürsten, Thomas Wilhelm, Maximilian Eibl: Extensible
Retrieval and Evaluation Framework: Xtrieval. In
Proceedings of the LWA – Workshop FGIR, p. 107-110.

