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Abstract—Probabilistic ontologies incorporate uncertain and 
incomplete information into domain ontologies, allowing 
uncertainty in attributes of and relationships among domain 
entities to be represented in a consistent and coherent manner.  
The probabilistic ontology language PR-OWL provides OWL 
constructs for representing multi-entity Bayesian network 
(MEBN) theories.  Although compatibility with OWL was a 
major design goal of PR-OWL, the initial version fell short in 
several important respects.  These shortcomings are addressed by 
the latest version, PR-OWL 2.  This paper provides an overview 
of the new features of PR-OWL 2 and presents a case study of a 
probabilistic ontology in the maritime domain.  The case study 
describes the process of constructing a PR-OWL 2 ontology using 
an existing OWL ontology as a starting point. 
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I.  INTRODUCTION 
The emphasis on net-centric operations and the shift to 

asymmetric warfare have created new challenges for automated 
information integration. To meet these challenges, developers 
are recognizing the need to combine explicit representation of 
domain semantics with the ability to represent and reason with 
uncertainty. Probabilistic ontologies allow the representation of 
uncertainty about attributes of and relationships among domain 
entities.  Probabilistic OWL (PR-OWL) [1] is an OWL upper 
ontology for representing probabilistic ontologies.  
Compatibility with OWL was a major design goal for PR-
OWL. However, the initial release of PR-OWL falls short of 
complete compatibility in several important respects. First, 
there is no mapping in PR-OWL to properties of OWL. 
Second, although PR-OWL has the concept of meta-entities, 
which allows the definition of complex types, it lacks 
compatibility with existing types already present in OWL. 
These problems have been noted in the literature [2]: 

PR-OWL does not provide a proper integration of 
the formalism of MEBN and the logical basis of 
OWL on the meta level. More specifically, as the 

connection between a statement in PR-OWL and a 
statement in OWL is not formalized, it is unclear 
how to perform the integration of ontologies that 
contain statements of both formalisms. 

Carvalho [3] proposed a new syntax and semantics, defined 
as PR-OWL 2, which improves compatibility between PR-
OWL and OWL in two important respects. First, PR-OWL 2 
follows the approach suggested by Poole et al. to formalizing 
the association between random variables from probabilistic 
theories with the individuals, classes and properties from 
ontological languages such as OWL. Second, PR-OWL 2 
allows values of random variables to range over OWL 
datatypes. 

This paper presents an overview of PR-OWL 2, describes 
the key features that improve compatibility with OWL, 
discusses an open-source tool for building PR-OWL 2 
probabilistic ontologies, and describes a use case of a PR-OWL 
2 ontology for maritime domain awareness.  

II. A PROBABILISTIC ONTOLOGY IN PR-OWL 

A. PR-OWL 1: An Upper Ontology for MEBN Theories 
PR-OWL provides constructs to define probabilistic 

ontologies in the OWL ontology language.  The initial version, 
PR-OWL 1, is an OWL upper ontology for representing 
MEBN theories [4]. MEBN is a first-order probabilistic 
language (FOPL) [5] that allows probabilities to be assigned in 
a consistent way to logical statements. MEBN represents the 
world as entities that have attributes and are related to other 
entities. Knowledge about the attributes of entities and their 
relationships to each other is represented as a collection of 
MEBN fragments (MFrags) organized into MEBN Theories 
(MTheories). An MFrag represents a conditional probability 
distribution for instances of its resident random variables given 
their parents in the fragment graph and the context nodes. An 
MTheory is a set of MFrags that collectively satisfies 
consistency constraints ensuring the existence of a unique joint 
probability distribution over instances of the random variables 
represented in each of the MFrags within the set.  A PR-OWL 
ontology encodes domain knowledge as a set of MFrags. A PR-
OWL reasoner uses the probability information encoded in the 
MFrags to compute responses to probabilistic queries. 
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B. A PR-OWL Ontology for the Maritime Domain 
As an example of a PR-OWL ontology, Figure 1 shows a 

simple probabilistic ontology developed as part of the 
PROGNOS (Probabilistic OntoloGies for Net-centric 
Operation Systems) project [6]. The ontology is designed for 
the problem of identifying whether a vessel is a ship of interest. 
The model is designed to answer the following queries using 
the following evidence: 

Overall Goal: Identify whether a ship is a ship of interest, 
i.e. if the ship seems to be suspicious in any way. 

1. Query: Does the ship have a terrorist crewmember?  

a. Evidence: Verify whether a crewmember is 
related to any terrorist;  

b. Evidence: Verify whether a crewmember is 
associated with any terrorist organization.  

2. Query: Is the ship using an unusual route? 

a. Evidence: Verify whether there is a direct 
report that the ship is using an unusual route; 

b. Evidence: Verify whether there is a report 
that the ship is meeting some other ship for no 
apparent reason. 

3. Query: Does the ship seem to exhibit evasive 
behavior?  

a. Evidence: Verify whether an electronic 
countermeasure (ECM) was identified by a 
navy ship;  

b. Evidence: Verify whether the ship has a 
responsive radar and automatic identification 
system (AIS). 

Each of the nine MFrags of Figure 1 addresses a modular 
component of the knowledge needed to address the above 
queries. Specifically, probabilistic knowledge about hypotheses 
related to the identification of a terrorist crewmember is 
represented in the HasTerroristCrew, TerroristPerson, and 

ShipCharacteristics MFrags. Knowledge about unusual routes 
is represented in the UnusualRoute and Meeting MFrags. 
Finally, knowledge about hypotheses related to evasive 
behavior is represented in the EvasiveBehavior, Eletronics-
Status, and Radar MFrags. 

A detailed explanation of this model can be found in [6]. 
The model was expanded and extended iteratively as described 
in [7] to address additional queries and evidence. 

C. An Open Source Tool for Probabilistic Ontologies 
The MFrags shown in Figure 1 are screenshots from the 

UnBBayes-MEBN [8], an open source, plug-in-based Java 
application for building and reasoning with probabilistic 
ontologies based on the PR-OWL/MEBN framework. 1  It 
features a graphical user interface (GUI), an application 
programming interface (API) for saving and loading PR-OWL 
ontologies, reasoning algorithms for processing queries, and 
plugin support for extensions. 

D. Queries 
Queries are processed in UnBBayes-MEBN using an 

implementation of the situation-specific Bayesian network 
(SSBN) construction algorithm described in [4]. Figure 2 
shows an SSBN built using the implemented algorithm. We 
applied an exact inference algorithm on small-scale problems 
to test the model and identify logical inconsistencies, 
differences in query results from those expected by subject-
matter experts, and other flaws in the model. For larger scale 
problems, approximate inference algorithms are employed to 
mitigate scalability issues. We also implemented hypothesis 
management methods [9] to control the complexity of the 
constructed networks while maintaining acceptable accuracy in 
results. 

III. PR-OWL 2: IMPROVING COMPATIBILITY WITH OWL 
Ideally, it should be possible to use PR-OWL to reason 

probabilistically about uncertain aspects of an ontology based 
on the information already available. That is, we would like to 

                                                             
1UnBBayes is available from http://unbbayes.sourceforge.net/ 

 
Figure 1.  Probabilistic Ontology for Identifying Ship-of-Interest 



be able to begin with an OWL ontology containing information 
about a domain, use PR-OWL to define uncertainty about 
attributes of and relationships among the entities, and apply a 
probabilistic reasoner to reason with available evidence. For 
example, we might begin with an OWL ontology containing 
classes for ships, routes, persons, and other entities mentioned 
in the MFrags of Figure1. We would then wish to use PR-OWL   
to define the probability distributions represented in the 
MFrags. 

The difficulty with this idea is that PR-OWL 1 has no 
mapping between the random variables used in PR-OWL and 
the properties used in OWL. For example, suppose we have 
defined an OWL class Ship with property isShipOf-
Interest, intended to represent whether a ship is a ship-of-
interest. We might want to use the PR-OWL random variable 
isShipOfInterest(ship) to define the uncertainty 
associated with this property. We might use the ShipOfInterest 
MFrag of Figure 1 to specify its probability distribution. 
However, despite the syntactic similarity between the property 
name and the random variable name, PR-OWL 1 has no way to 
specify formally that the random variable isShipOfInter-
est(ship) defines the uncertainty of the OWL property 
isShipOfInterest. Thus, even if we had information 
about whether a particular ship, say Ship379, is a ship-of-
interest, we would not be able to instantiate the random 
variable isShipOfInterest(ship) for Ship379. 

Poole et al. [10] point out the need to relate the random 
variables from probabilistic theories to the individuals, 
properties and classes of ontological languages like OWL. 

Poole et al. state,  “We can reconcile these views by having 
properties of individuals correspond to random variables.” This 
is the approach taken in PR-OWL 2. 

The key to building the bridge that connects the 
deterministic ontology defined in OWL and its probabilistic 
extension defined in PR-OWL is to understand how to translate 
one to the other. On the one hand, given a concept defined in 
OWL, how should its uncertainty be defined in PR-OWL in a 
way that maintains its semantics defined in OWL? On the other 
hand, given a random variable defined in PR-OWL, how 
should it be represented in OWL in a way that respects its 
uncertainty already defined in PR-OWL? 

PR-OWL 2 formalizes the relationship between OWL 
properties and PR-OWL random variables using the relation 
definesUncertaintyOf [3]. In our previous example, we 
would use the relation definesUncertaintyOf [3] to 
relate the OWL property isShipOfInterest to the PR-
OWL 2 random variable isShipOfInterest(ship).   An 
additional complexity arises because MEBN can represent n-
ary functions and predicates, whereas OWL has only binary 
properties. We must ensure that not only is the random variable  
linked to its associated OWL property by defines-
UncertaintyOf, but also its arguments are linked to their 
respective OWL properties by either isSubjectIn or 
isObjectIn, depending on whether they refer to  the domain 
or range of the OWL property, respectively. This feature is 
especially important when dealing with n-ary random 
variables, where each argument of the random variable will be 
associated with a different OWL property.  

 
Figure 2.  Situation-Specific Bayesian Network for Identifying Ship-of-Interest 



Figure 3 shows a schematic for the mapping between OWL 
properties and PR-OWL random variables.  A full discussion 
of the formal mapping between OWL properties and PR-OWL 
random variables can be found in [3]. The mapping provides 
the basis for a formal definition of consistency between a PR-
OWL probabilistic ontology and an OWL ontology, in which 
rules in the OWL ontology correspond to probability one 
assertions in the PR-OWL ontology. A formal notion of 
consistency can lead to development of consistency checking 
algorithms. 

Another major difference between PR-OWL 1 and PR-
OWL 2 is that the separate definition of entity in PR-OWL is 
replaced by OWL’s built-in notion of classes and data types. 
That is, a PR-OWL entity is now identified with either a class 
or a data type in OWL. Moreover, since OWL supports 
multiple inheritance, so does PR-OWL 2. Thus, all the control 

over the type definition and type hierarchy in PR-OWL is 
delegated to OWL. 

In PR-OWL 2, therefore, the possible values or outcomes of 
a random variable are instances of classes and data types. 
When specifying that a random variable will have individuals 
of a class as its possible outcomes, it is reasonable to assume 
that all known individuals of that class form a set of 
collectively exhaustive outcomes. However, the assumptions 
about individuals in OWL are not enough to guarantee these 
individuals are mutually exclusive. More specifically, although 
OWL provides a way to express unique names, it also allows 
two different names to point to the same object in the real 
world. To address this issue, PR-OWL 2 follows the MEBN 
and PR-OWL 1 convention, and assumes that every individual 
has a unique ID associated to it.

 

 
 

Figure 3.  Mapping of PR-OWL Random Variables and OWL Properties 



 

 
Figure 5.  Entity-Relationship Diagram for Maritime Ship Ontology 

 

 

We note that there are certain aspects of the full PR-OWL 
semantics that are not fully captured in OWL-DL, and 
therefore cannot be handled by OWL-DL reasoners, but are 
expected to be respected by PR-OWL reasoners. In particular, 
to specify the restriction that a random variable defines the 
uncertainty of a property would require OWL Full. For this 
reason, the restriction is not explicitly represented in PR-OWL, 
but it is expected to be enforced by a PR-OWL probabilistic 
reasoner. This enables consistency checking of the 
deterministic part of a PR-OWL ontology using a DL reasoner. 

IV. PR-OWL 2 CASE STUDY 
The following case study demonstrates the application of 

probability to an existing ontology to represent uncertainty in 
knowledge about instance attributes.  In this case, an existing 
ontology of Western European warships identifies the major 
characteristics of each combatant class through the attributes of 
size, sensors, weapons, missions, and nationality.  Figure 5 
shows an entity-relationship diagram for the ontology.  The 
decision maker is trying to determine the warship class of a 
contact about which he has limited information.  By adding 
probability to the existing ontology, we can identify the most 
likely class of ship he is encountering when provided only 
partial or uncertain information.  The model is designed to 
answer the following query using the following evidence: 

Overall Goal: Given uncertain or absent attribute 
information about a specific ship, what is the most likely 
European warship class that satisfies these attributes?   

1. Query: What is the type of warship?  

a. Evidence: Identify the size of the ship;  

b. Evidence: Confirm the ship is a warship; 

c. Evidence: Identify the primary mission of 
the ship based on its weapons and sensors.  

2. Query: What nation has flagged the ship? 

a. Evidence: Identify the nation under which 
the ship is registered. 

The entity-relationship diagram of Figure 5 presents a 
simplified design of the Military Ship Ontology illustrating the 
primary attributes used to answer these queries.  The decision 
maker desires to know the class of warship that he faces.  A 
class of ships has a consistent hull design and a standardized 
suite of weapons and sensors.  These weapons and sensors 
work in concert to provide synergy in executing the primary 
mission of each type of ship.  By combining a ship type with 
the nation that operates it, a logical prediction of warship class 
may be obtained.  

International law of the sea requires that each merchant ship 
is registered and sails under a single nation for the purpose of 
regulation, certification, and pollution control.  That process is 
known as flagging, and an individual ship is flagged by a 
nation.  It is not required that a ship is flagged under the same 
nation as its owner; a “flag of convenience” allows a ship to be 
operated under an alternate nation to reduce operating costs and 
regulations.  However, warships are always flagged under the 
nation of ownership. 



 
Figure 6. Military Ship Probabilistic Ontology 

 

The Gross Naval Class is a naval schema that delineates 
warships from merchant ships, and is mutually exclusive.  
Through identification of weapon and sensor attributes, as 
well as overall ship size, a Gross Naval Class estimate may 
be made for the unknown ship.  While it can be assumed that 
all ships have a radar sensor, only military ships have sensors 
associated with weapons systems.  The presence of a weapon 
system, or a weapon-associated sensor, provides reasonable 
evidence that a ship is a warship. 

Warships are of different types based on their primary 
mission.  Most ships have multiple mission capabilities, but 
for this ontology we assume the following primary mission 
areas by ship type: 

Anti-Air Warfare (AAW):  
− Aircraft Carrier (CV, CVN) 
− Cruiser (CG) 
− Guided Missile Destroyer (DDG) 
− Guided Missile Frigate (FFG) 

Anti-Surface Warfare (ASuW): 
− Destroyer (DD) 

Anti-Submarine Warfare (ASW): 
− Frigate (FF) 

 
By observing the combination of weapons and sensors, it is 
possible to infer the most likely mission area.  This, 
combined with an estimate of ship size, provides an 
indication of the type of warship. 

 
At this point an MTheory is created to determine 

hasWarshipClass(ship) in the WarshipClass MFrag 
for some unknown ship.  The eight MFrags associated with 
this determination are shown in Figure 6.  Inputs to 
hasWarshipClass RV are the RVs from the 
WarshipType and Nationality MFrags, representing the 
concepts introduced above with the RVs 

hasWarshipType(ship) and hasFlag(ship).  The 
WarshipType MFrag may be further decomposed into the 
ShipSize, GrossNavalClass, and PrimaryMission MFrags.  
The GrossNavalClass MFrag is influenced by both the 
ShipSize and ShipSensor MFrags through the 
hasShipSize(ship) and hasSensor(ship) RVs, 
while the PrimaryMission MFrag is influenced by the 
ShipSensor and ShipWeapon MFrags with 
hasSensor(ship) and hasWeapon(ship) RVs.  
With the MTheory complete as shown in Figure 6, the Local 
Probability Distribution (LPD) must be populated. 

 
Prior probabilities for the hasFlag RV were obtained 

from an estimate of merchant ship registrations available 
through open source information.  Similarly, 
hasShipSize represents a finite and exhaustible set of 
ship lengths (LengthLess150m, Length150to-
100m, LengthGreater200m) into which each ship is 
categorized.  Prior probability estimates were again obtained 
via open source literature.  Priors for hasSensor and 
hasWeapon were obtained through subject-matter-expert 
review of open source literature and represent the proportion 
of warships with each of the types of sensors.  LPDs for the 
GrossNavalClass and PrimaryMission MFrags require 
conditional statements about relationships from the input 
nodes shown in Figure 6.  A detailed description of these 
relationships is described in a forthcoming paper. 

Queries to the Military Ship Probabilistic Ontology are 
processed in UnBBayes-MEBN using an implementation of 
the situation-specific Bayesian network (SSBN) construction 
algorithm.  Instances of unknown ships and representative 
evidence are entered via the OWL ontology through the 
UnbBayes GUI to reflect partial or uncertain information 



Figure 7 Situation-Specific Bayesian Network Military Ship Classification 

about ship attributes.  These are checked against known 
characteristics provided by subject-matter experts. 

For example, suppose the following evidence is obtained 
about a ship of interest: 

• UID: Surcouf 

• hasNavalGun(Surcouf): True 

• hasFlag(Surcouf): France 

• hasShipSize(Surcouf): <150m 

Executing a query of the isWarshipClass node 
produces the SSBN found in Figure 7.  In this case, there is a 
68% chance that Surcouf is a member of the French 
LaFayette Class of frigates, which is the correct 
classification. 

As discussed in Section III, our goal is to begin with an 
OWL ontology containing information about a domain, use 

PR-OWL to define uncertainty about attributes of and 
relationships among the entities, and apply a probabilistic 
reasoner to reason with available evidence. Using the 
formalized construct introduced in PROWL-2, we map each 
of the RVs in the MFrags of the probabilistic ontology to the 
existing OWL property in the original ontology.  This is 
accomplished through the probabilistic ontology building 
sequence executed on the UnbBayes software.  For example, 
the WarshipType class in OWL has an object property of 
hasPrimaryMission.  This object property is mapped to 
the hasPrimaryMission(ship) RV of the 
PrimaryMission MFrag.  Mappings produced for each RV 
and its associated property in OWL allow us to use PR-OWL 
to reason probabilistically about uncertain aspects of an 
existing ontology based on the information already available. 

V.  CONCLUSION 
Combining uncertainty reasoning with semantic 

technology is necessary for robust, interoperable, net-centric 



fusion and decision support systems.  The probabilistic 
ontology language PR-OWL provides a way to represent and 
reason with probabilistic ontologies. PR-OWL 2 improves 
compatibility with OWL in several important respects. 
Through a case study, this paper describes the construction 
of a probabilistic ontology obtained by enhancing an existing 
OWL ontology with probability information. 
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