
Automated Ontology Evolution as a Basis for User-
Adaptive Recommender Interfaces

Elmar P. Wach
STI Innsbruck, University of Innsbruck/
Elmar/P/Wach eCommerce Consulting

Hummelsbüttler Hauptstraße 43
22339 Hamburg

+49 172 713 6928

elmar.wach@sti2.at,
wach@elmarpwach.com

ABSTRACT

This research proposes an automated OWL product domain
ontology (PDO) evolution (without a human inspection) based on
given user feedback and enhancing an existing ontology evolution
concept. Its manual activities are eliminated by formulating an
adaptation strategy for the conceptual aspects of an automated
PDO evolution and establishing a feedback cycle. The adaptation
strategy consists of a feedback transformation strategy and a PDO
evolution strategy and decides when and how to evolve by
evaluating the impact of the evolution on the application. An
evolution heuristic and evolution strategies are utilised. The
adaptation strategy was validated/ firstly “instantiated” by
applying it to a real-world conversational content-based e-
commerce recommender system as use case. The evolved PDO is
going to be evaluated with an experiment and validated with the
use case as well.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design – Methodologies. H.3.3
[Information Storage and Retrieval]: Information Search and
Retrieval – relevance feedback. H.3.5 [Information Storage and
Retrieval]: On-line Information Services – commercial services,

web-based services. I.2.4 [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods – representations

(procedural and rule-based), semantic networks. I.2.6 [Artificial
Intelligence]: Learning – concept learning, knowledge

acquisition. K.4.3 [Computers and Society]: Organizational
Impacts – automation.

General Terms

Management, Measurement, Experimentation, Standardization.

Keywords

Ontology Evolution, Recommender Systems, Self-Adapting
Information Systems, Heuristics.

1. INTRODUCTION

Recommender systems in e-commerce applications have become
business relevant in filtering the vast information available in e-
shops (and the Internet) to present useful recommendations to the
user. As the range of products and customer needs and
preferences change, it is necessary to adapt the recommendation
process. Doing that manually is inefficient and usually very
expensive.

Recommenders based on product domain ontologies1 (PDO) can
extract questions about the product characteristics and features to
investigate the user preference and eventually recommend
products that match the needs of the user. By changing the PDO,
such a recommender generates different questions and/ or their
order and herewith adapts the recommender interface to the user
preference. Hence, an automated adaptation of the
recommendation process can be realised by automatically
evolving the PDO2. The high cost of the manual adaptation of the
recommendation process and the underlying PDO can herewith be
minimised.

This research proposes an automated OWL PDO evolution
(without a human inspection) based on given user feedback3 and
enhancing an existing ontology evolution concept. Its manual
activities are eliminated by formulating an adaptation strategy for
the conceptual aspects of an automated PDO evolution and
establishing a feedback cycle. Automatically evolving the PDO is
more efficient and less expensive than manually doing it. The
present research tackles an automated process for the first time (to
the best knowledge of the author).

Figure 1 depicts the starting basis schematically.

In the data modelling layer the OWL PDO evolution is induced by
different kinds of user feedback, i.e. from external and internal
data sources. When evolving the PDO, it can be necessary to
adapt instance data (i.e. products) as well in order to keep them
correctly annotated. Afterwards, the new PDO version including
associated instance data is provided to the application layer. There

1 A product domain ontology (PDO) is defined as the formal,

explicit specification of a shared conceptualisation of a product
description based on OWL DL; this definition is derived from
[6]

2 Ontology evolution is defined as the timely adaptation of a PDO
by preserving its consistency (a PDO is consistent if and only if
it preserves the OWL DL constraints); this definition is derived
from [7] and [16]

3 In order to focus this research on developing an automated
ontology evolution, the feedback is given

Copyright is held by the author.
UCERSTI 2, October 23, 2011, Chicago, IL, USA

59

and in the external data sources, the effect of the PDO evolution is
evaluated and again reported to the data modelling layer which
concludes the feedback cycle.

Data Modelling Layer
(OWL PDO*)

(Assumption: Initial PDO* given)

Instance Data
Annotation
(e.g. XSL)

1. Kind of feedback:
Internal data sources
from the application
layer
(Assumption: Given)

Ontology modifications
lead to instance
modifications

OWL/ RDF data

2. Kind of feedback:
External data sources
(Assumption: Given)

Application Layer
(e.g. Recommender System)

(Assumption: Given)

?

?

* Product Domain Ontology

Figure 1. PDO evolution induced by user feedback

The main research question is: How can an automated4 product
domain ontology evolution be realised based on feedback?

2. RELATED WORK
Previous approaches in the topic of this research can be found in
concepts for ontology evolution like formulated frameworks for
ontology evolution.

[13] focused on the evolution process and have defined six phases
consisting of capturing, representation, semantics of change (i.e. a
rich description about the semantic role of an ontology entity in
order to get more information for solving inconsistencies),
implementation, propagation, and validation of ontology changes.
This process is implemented in the KAON5 framework and the
Ontologging6 system. Evolution strategies have been formulated
defining elementary and composite changes for executing a
change request and eventually deciding the evolution path. [9]
focused on detecting ontology changes and have defined five
components relating the different change representations to each
other. They have proposed a component-based framework for
ontology evolution supporting data transformation between two
ontology versions, update of remote ontologies, consistent
reasoning, verification and approval of ontology changes, and
data access to an old ontology via the new one. [14] focused on
the user interaction and have provided a usage-based approach
implemented in the OntoManager7 system. The conceptual
architecture is based on the MAPE model (Monitor – Analyse –
Plan – Execute). The activities of a user are captured in a semantic
log and are instances of a user log ontology. The log data is
aggregated and visualised helping an ontology manager in
adapting the ontology. Eventually, the ontology evolution process
guarantees a transfer from one ontology version to another while
preserving consistency. [8] focused on handling inconsistency in

4 Without human inspection
5 http://kaon.semanticweb.org
6 European Commission project IST-2000-28293
7 German BMBF project SemIPort (08C5939) and European

Commission project Ontologging

changing ontologies and have defined a framework consisting of
four approaches addressing the consistent ontology evolution, the
repairing of inconsistencies, the reasoning with inconsistent
ontologies, and multi-version reasoning. For the first three
approaches consistency algorithms have been formulated. A
consistent ontology evolution is ensured by removing axioms that
are structurally connected with the conflicting axioms. [11]
focused on collaborative environments and have developed a set
of Protégé8 plugins to support different ontology evolution
scenarios. Those include synchronous (i.e. online)/ asynchronous
ontology editing, continuous editing/ periodic archiving (i.e.
versions), curation (i.e. inspection by a human)/ no curation, and
monitored (i.e. record of changes)/ non-monitored ontology
changes. The central element is a change and annotation ontology
(ChAO) which gathers and provides information about the
ontology changes including meta-information like the author and
timestamp. [10] introduced a general framework answering the
essential questions of what can be changed in an ontology and
how each change should be implemented. It is split in five steps
comprising the ontology model selection, supported operations,
consistency model (i.e. integrity rules), inconsistency resolution,
and action selection based on a preference ordering. [18]
proposed Evolva, a framework and tool for the whole ontology
evolution cycle which decreases user input by making use of
background knowledge like lexical databases, online ontologies
and unstructured Web documents. It consists of the components
information discovery (i.e. extracts content from external data
sources manually specified), data validation (i.e. identifies new
terms and checks the quality), ontology changes (i.e. integrates the
new information to the ontology), evolution validation (i.e.
handles conflicts), and evolution management (i.e. manually
controlling the evolution (modifying, filtering), records changes
and propagates them to dependent ontologies).

Due to the specific challenges of the present research like the
automated ontology evolution process, none of the frameworks
discussed can be completely used as basis, e.g. all frameworks
include a step for the human inspection of the ontology changes
before they are executed. The closest work to the research in this
paper is [13] – in the six phase evolution process, two steps
include manual activities, namely (i) “implementation” in which
the implications of an ontology change are presented to the user
and have to be approved by her before execution, and (ii)
“validation” in which performed changes can get manually
validated. The research in this paper aims at eliminating both
manual steps in [13] with the adaptation strategy and its
implementation. To automate (i), the ontology evolution is
conceptualised and implemented as a complete feedback cycle.
An insufficient ontology change is indicated by decreased metrics
and gets revised according to the evolution strategy chosen.
Hence, the ontology changes do not have to get manually
approved before execution. To automate (ii), the PDO changes are
predefined and application-oriented. Hence, only valid changes
are executed, and nobody has to manually validate them.

3. APPROACH AND PROPOSED
SOLUTION
The aim of this research is to combine the use of PDO with
processing user feedback. The work focuses on how the given

8 http://protege.stanford.edu

60

feedback can lead to a self-improvement of the semantic
application by adapting the PDO. In this context self-
improvement means that by automatically processing user
feedback and evolving the PDO, the defined key performance
indicators (KPI) of the application will increase.

The use case is a real-world conversational content-based e-
commerce recommender system based on PDO that semantically
describe the products offered in e-commerce applications
according to GoodRelations9. Four types of PDO changes are
defined with the following impact on the user dialogue in the
recommender system:

• Switching individuals (i.e. properties are related to other
individuals within the same class): This leads to a different
clustering of the questions

• Switching datatype property ranges (i.e. properties get
Boolean ranges instead of string ranges and vice versa
(where applicable)): This leads to textual modifications of
the questions

• Switching annotation properties label and comment (i.e.
properties get different labels and comments extracted from
another information source): This leads to textual
modifications of the questions (and maybe a need-based sales
approach instead of a technology-prone one)

• Changing annotation property priority (i.e. different priority
values): This leads to a different ranking of the questions and
skips the ones with low priorities

In this paper the PDO change switching individuals is used as an
example (confer section 4.2). A digital camera has a feature
HDMI. This PDO change defines in which feature-related section
the question is nestled whether the camera should offer HDMI.

The success and thus the KPI of an e-commerce recommender are
usually defined by the click-out rate (i.e. clicks-to-
recommendations) or conversion rate (i.e. customers-to-
recommender users). The user gives feedback to the quality of a
product recommendation in following the recommendation (i.e.
click-out) or even buying the product (i.e. conversion).

In the approach a six step adaptation strategy for the conceptual
aspects of an automated PDO evolution has been formulated and a
feedback cycle established. The adaptation strategy answers the
questions when and how to evolve the PDO by evaluating the
impact of the evolution in the precedent feedback cycle. The first
question defines the (temporal and causal) trigger initiating the
PDO change. Basically, this is receiving and transforming the
feedback into ontology input and will be addressed with the
feedback transformation strategy. The second question defines the
changing of the PDO with annotated instances. This is evolving
the PDO and will be addressed with the PDO evolution strategy.
Due to space limitations and the focus on realising a user-centric
evaluation, the adaptation strategy is not elaborated in this paper.
The strategy is used to concisely describe the application for
which the automated PDO evolution should be implemented and
the impacts of PDO changes on the application behaviour. The
interested reader is referred to [17].

9 www.purl.org/goodrelations

3.1 Evolution Heuristic and Evolution
Strategies
The automated ontology evolution is realised by utilising an
evolution heuristic and evolution strategies. Those are defined in
the fifth step of the adaptation strategy “Decide the adequate PDO
evolution”. The impact of the PDO change is measured in the
Feedback Transformer (confer section 3.2) component by
calculating the Success Trend ST for the new user feedback from
the application layer and external data sources. The ST is analysed
by a heuristic that defines the PDO change to be executed. A
heuristic is a strategy that uses accessible and loosely applicable
information to solve a problem of a human being or a machine
[12] and leads to a solution of a complex problem with simplified
conceptual aspects or reduced computation power. [3] mentioned
first the term metaheuristic for a computational method that makes
few or no assumptions about the problem being optimised and
introduced the tabu search metaheuristic [4]. The tabu search
enhances a local search (i.e. iteratively improving a criterion in
the search space) metaheuristic by using “taboos” – a solution is
not executed again according to the criteria defined in the tabu
list. The philosophy when utilising a heuristic should be that the
highest precedent ST defines the next PDO change to always
choose the best evolution. The relevant characteristics of the
heuristic have initially to be defined, confer section 4.1. This
manual effort is rewarded with a greater conceptual flexibility
resulting in an evolution that is more application-oriented. The
relevant metrics have to be defined and the calculations
formulated.

The PDO evolution is decided based on the ST. In case the
feedback includes information extracted from the PDO (e.g.
property-based feedback), the subsequent evolution (i.e. type of
PDO change) is defined by implementing the ST in the same
representation as before (e.g. ontological entity, range), and
neither statistical means nor a heuristic has to be applied.

This research proposes to additionally formulate evolution
strategies that decide the general evolution behaviour (e.g.
executing the same type of PDO change or a rollback) by
correlating the types of PDO changes needed to the ST calculated.
Additionally, the path for determining the initial ST has to be
defined, e.g. the order of the different types of PDO changes and
for which PDO they are executed (i.e. ramp-up of the evolution
strategies). The philosophy should be that the development (and
its strength) of the precedent ST defines the next type of PDO
change to distinguish different evolution impacts.

A positive ST means a positive trend (i.e. an increase) of the
metrics, a negative the opposite. The larger the figure is, the
stronger the development of the metrics (in either direction) from
the precedent to the current cycle has been. So, there are two
criteria (i.e. ST and its strength) to decide about the next type of
PDO change. Basically, there can be two resulting user
behaviours in the e-commerce recommender system:

• The user is satisfied with the product recommendation and
clicks to see the detail page or order it; in that case the
metrics increase, but it still has to be decided if a change
should be made

• The user is not satisfied with the product recommendation
and leaves the recommender; the metrics decrease, though
we do not know why she was not pleased, and a PDO change
is advisable

61

In the first case, one can argue either way – a change is luring to
even further increase the metrics. On the other hand, one could
keep everything as it is and wait for the next feedback. The latter
case is more urging for a change. It has still to be decided if it is a
change or just a rollback to retrieve the previous setting. So, it is
advisable to define evolution strategies reflecting different
behaviours with associated types of PDO changes. In the
following, these strategies are predefined and discussed.

Risky Evolution:

An evolution is induced in either case, i.e. a positive or a negative
trend. Different types of PDO changes than in the precedent
feedback cycle are executed. This behaviour tries to radically
improve the metrics by all means and can be described as “always
evolve differently”. The decision criteria are as follows:

• Increase of the KPI (i.e. 0 ≤ ST ≤ 1)

• Decrease of the KPI (i.e. -1 ≤ ST < 0)

Progressive Evolution:

An evolution depends on the leap in the ST between two
consecutive feedback cycles and can be fine-tuned with a
threshold defining the trend significance (i.e. the increase of the
ST between the precedent and the current cycle). In case of a
significant positive trend, the same type of PDO change as in the
precedent feedback cycle is executed. In case of a moderately
positive trend, a different type of PDO change than in the
precedent feedback cycle is executed. In case of a negative trend,
it is optional to either do a different type of PDO change than in
the precedent feedback cycle or a rollback (to be selected in the
administration interface of the Adaptation Manager). This
behaviour tries to repeat a significant increase by the same means
but gives also the option to revert a negative development. It can
be described as “learn from the past”. Additionally, the “risk” of
the evolution can be adjusted with the threshold. The higher it is
the more unlikely the same type of PDO change as in the
precedent feedback cycle is executed, and the strategy is tuned
towards the Risky Evolution (with a higher threshold). Initially,
the threshold is defined to be 20%10 and can be changed in the
administration interface as well. The decision criteria are as
follows:

• Significant increase of the KPI (for the beginning, the

threshold is defined to be 20%, i.e. 0,2 ≤ ST ≤ 1)

• Moderate increase of the KPI (i.e. 0 ≤ ST < 0,2)

• Decrease of the KPI (i.e. -1 ≤ ST < 0)

Safe Evolution:

An evolution is induced only by a negative trend. In that case, a
rollback is executed. This behaviour tries only to revert a negative
development. It can be described as “only revert negative trends”.
The decision criteria are as follows:

• Increase of the KPI (i.e. 0 ≤ ST ≤ 1)

• Decrease of the KPI (i.e. -1 ≤ ST < 0)

10 Increase of the ST by 20 basis points between the precedent and

the current feedback cycle

Rollback:
This “strategy” reverts the PDO changes from the precedent
feedback cycle (i.e. rolling back to the precedent PDO version)
and is based on any reason or decision of the manager. It is
executed only once but can be manually chosen multiple times.
The behaviour can be described as “undo the PDO changes”.

The evolution strategies introduced above are considered as basic
categories. They can be fine-tuned with regard to the associated
types of PDO changes as well as the threshold defining the trend
significance. Table 1 sums up the predefined evolution strategies,
decision criteria (ST), and the type of PDO changes to be
executed in the feedback cycle.

Table 1. Evolution strategy, Success Trend ST, and associated
type of PDO change

Evolution Strategy
Decision
Criteria

Type of PDO
Change

Risky Evolution

(“always evolve
differently”)

-1 ≤ ST ≤ 1 Different than before

Progressive Evolution

(“learn from the past”)

0,2* ≤ ST ≤ 1

0 ≤ ST < 0,2*

-1 ≤ ST < 0

Same as before
Different than before
Different than before
or Rollback

Safe Evolution

(“only revert negative
trends”)

0 ≤ ST ≤ 1

-1 ≤ ST < 0

None
Rollback

Rollback

(“undo the PDO
changes”)

Manually Rollback

* Increase of the ST by 20 basis points between the precedent and
the current feedback cycle

Each evolution strategy besides Rollback ensures an adaptive
change of the PDO and thus the recommender interface. By
selecting a strategy in the administration interface, the business
manager decides how fundamental the evolution will be.

3.2 Implementing the Strategy by
Programming an Application
By following the principles of adaptive systems [2], the
adaptation strategy is implemented in a new adaptation layer
(confer figure 2) consisting of components in which the user
feedback gets transformed (i.e. Feedback Transformer) and the
respective actions are decided and initiated (i.e. Adaptation
Manager). This system creates an evolved PDO with associated
instances.

New Adaptation Layer

Adaptation
Manager

Feedback
Transformer

Data Modelling Layer

Application Layer

I.
Initiation

II.
Execution

III.
Evaluation

62

Figure 2. PDO evolution cycle with a new adaptation layer

The whole evolution cycle is based on the generic change process
model [1] consisting of three iterative phases and defining four
activities:

1. Phase “initiation” – Activities: Requesting the change and
analysing/ planning the change

2. Phase “execution” – Activity: Implementing the change

3. Phase “evaluation” – Activity: Verifying/ validating the
change

The three layers (i.e. application layer, data modelling layer, and
adaptation layer) interact during the three phases of the generic
change process model forming the basis of the automated PDO
evolution process.

In the first phase “initiation” the different kinds of user feedback
are delivered to the adaptation layer and thus a PDO change
requested. As the PDO is the backbone of a semantic application,
the feedback is assumed to be RDF data. This feedback is
converted to ontology input by the Feedback Transformer
according to the feedback transformation strategy. The Feedback
Transformer accesses the user feedback channels
programmatically via SPARQL endpoints and identifies the PDO
affected with SPARQL SELECT statements. Eventually, the
Feedback Transformer calculates the Success Trends ST for each
feedback channel, e.g. by a simple value transformation or by
calculating the relative frequencies of the property values in the
feedback. Then, the PDO evolution is prepared by identifying the
next PDO change with the transformed feedback by the
Adaptation Manager. The system has to decide which evolution
actions to take according to the PDO evolution heuristic and
strategy. The Adaptation Manager analyses the transformed
feedback with a tabu search metaheuristic that chooses the PDO
change with the highest ST. The tabu criteria are implemented for
each type of feedback. Additionally, the predefined evolution
strategies (i.e. Risky Evolution, Progressive Evolution, Safe
Evolution, Rollback) are implemented and ramped-up. For
determining the initial ST, the different types of PDO changes are
sequentially executed in an alphabetical order with an exemplary
PDO. These values are then valid as starting basis for all PDO.
After this phase, the evolution strategy decides whether the (i)
same or (ii) another type of PDO change is executed. In (i), a
PDO change within the same type of PDO change is executed and
ST(t+1) calculated, except a tabu criterion defined by the
evolution heuristic is met. In this case, another type of PDO
change is executed in contrary to the evolution strategy. In (ii), the
type of PDO change and the PDO change to be executed are
determined by the evolution heuristic, and ST(t+1) is calculated.

In the second phase “execution” the changes get implemented in
the data modelling layer directed by the PDO evolution heuristic
and strategy and by retaining a consistent PDO including correctly
annotated instance data. In the Adaptation Manager the
predefined PDO changes (for the use case they are switching
individuals, switching datatype property ranges, switching
annotation properties label and comment, changing annotation
property priority, confer section 3.) are implemented and thus
ensure a consistent ontology evolution. They are executed with
SPARQL CONSTRUCT rules or programmatically. Eventually,
the versioning is implemented according to the change-based
concept and utilising an ontology with annotated logs. The new

PDO version with associated instances is provided to the
application layer.

The third phase “evaluation” concludes the feedback cycle by
measuring the impact of the change. This is done by calculating
adequate metrics relating the currently evaluated feedback from
the application layer and external data sources reported to the
adaptation layer to the precedent feedback.

The process from the feedback type to the resulting type of PDO
change is depicted in the activity diagram in figure 3.

Figure 3. Activity diagram feedback type to type of PDO
change

4. EVALUATION AND VALIDATION
The adaptation strategy has been validated/ “instantiated” by
applying it to the use case. As this recommender is already used in
live applications, it is a real-world scenario. In a conversational
approach the actions and modifications done in the adaptation
layer mainly lead to a changed user dialogue.

Implicit user feedback is derived from user interactions in the
application layer and gathered by unobtrusively monitoring user
needs. Explicit user feedback is gathered by extracting
information from various websites. Both feedback channels
deliver RDF data via separate SPARQL endpoints
programmatically accessible.

Applying the adaptation strategy could be done quite smoothly.
Only minor aspects of the strategy were clarified, restructured,
and reformulated. After having applied the strategy, the use case
was concisely described and conceived by the ontology engineer.
Moreover, the result formed the basis of the technical
specification and thus the development of the adaptation layer.

Due to space limitations the “instantiation” of the adaptation
strategy is not completely elaborated in this paper. In the
following the evolution heuristic based on tabu search is
introduced (excluding its ramp-up).

4.1 Characteristics of the Evolution Heuristic
The evolution heuristic determines the PDO change to be
executed. As the evolution strategies define if the same type of
PDO change is repeated or another one is executed, the type has
still to be determined in the latter case as well as the PDO change
(e.g. switching the property weight from the individual
WeightAndDimension to the individual GeneralCharacteristics).
For this, a tabu search metaheuristic is utilised with the following
characteristics: (i) Always the impact of the evolution in the
precedent feedback cycle is evaluated, (ii) only one implicit PDO
change is executed per cycle, and (iii) “greedy” approach: The

63

evolution heuristic chooses the PDO change with the highest ST.
There are two types of ST for determining the PDO change to be
executed: (i) STf_pdo_change_x is the ST for the forward PDO change
x, and (ii) STb_pdo_change_x is the ST for the backward PDO change
x (i.e. reverts the forward change). Forward PDO changes to be
executed are determined with the highest STf_pdo_change_x, backward
PDO changes with the highest STb_pdo_change_x.

In the following the tabu criteria are defined.

4.1.1 Specific Tabu Criteria sw and ch
The specific tabu criteria are specifically calculated for each type
of PDO change.

4.1.1.1 Allowed Number of Horizontal Switches sw
With sw one (set of) ontological entity of a PDO within the same
type of PDO change is switched, e.g. a PDO change of one (set
of) property or (set of) individual – most of times there is only one
switch possible like changing the individual, the property range,
or the annotation properties label and comment, and the next
change would be reverting that change. This tabu is defined as
follows:

0, case: p=1∧cfix=0

2+cfix
2/2-cfix, case: p=1∧cfix=2*k, cfix, k∈ℕ\{0}

sw = 1+cfix*(cfix-1)/2, case: p=1∧cfix=2*k-1, k∈ℕ\{0}

1+p2/2-p, case: p>1∧p=2*k, p∈ℕ\{0,1}, k∈ℕ\{0}

p*(p-1)/2, case: p>1∧p=2*k-1, p∈ℕ\{0,1}, k∈ℕ\{0}

(1)

(cfix being the number of fixed candidates within a type of PDO
change (i.e. to these candidates can be switched), p being the
number of pools of sets of entities (e.g. each source for the
properties is a pool like string ranges, Boolean ranges, DBpedia,
or WordNet; p can be changed for each type of PDO change in the
administration interface); a pool p can be switched on the level of
ontological entity (s’) or completely (s), i.e. all sets of
ontological entities are switched at once (can be changed for each
type of PDO change in the administration interface, in case of
more than one data pool p), k being a natural number to indicate
an even (cfix = 2 * k, p = 2 * k) or odd (cfix = 2 * k - 1, p = 2 * k -
1) number of fixed candidates or pools: The case for the even cfix

or p equates to an Eulerian trail, the case for the odd cfix or p to an
Eulerian circuit).

Result is the number of allowed switches sw. In case s is already
connected to cfix (e.g. s - cfix = 1), the second and third case in (1)
are lessen by this one “impossible” switch (i.e. swfix = sw - 1).

4.1.1.2 Allowed Number of Vertical PDO Change
Iterations ch
With ch successive sw switches within the same type of PDO
change are executed, i.e. the next (sets of) ontological entities are
going to be switched. This tabu is defined as follows:

(s-chfix)/n; case: p=1, n∈ℕ\{0}, s, chfix∈ℕ, s≥chfix

ch = s’/n, case: p>1∧s’⊂s (i.e. single sets), n∈ℕ\{0}, s’∈ℕ (2)

Not applicable, case: p>1∧s’≡s (i.e. all sets at once)

ch is truncated to the natural number.

(s being all sets of ontological entities within a type of PDO
change (e.g. all sets of individuals, all sets of properties, all sets of
annotation properties label and comment), s’ being a single set of
ontological entities within a type of PDO change (e.g. specific
properties) to be switched to another pool, n being the fraction of
the “free” sets (i.e. not connected to a cfix) of entities within a type
of PDO change allowed to be switched (e.g. n = 1: All free sets of
entities, n = 2: Half of the free sets, etc.; n can be changed for
each type of PDO change in the administration interface)).

Result is the number of allowed PDO change iterations ch.
Analogous to the case distinction of the horizontal switches sw
and swfix, ch is splitted in the first case in (2) into s is not
connected to cfix before switching (ch), and s is already connected
to cfix before switching (chfix).

4.1.2 General Tabu Criterion gt
To avoid an uniform optimisation and cycles, the PDO changes
within the same type of PDO change are consecutively executed
only as often as there are different types T of PDO changes not
induced by a feedback based on a PDO extraction (here: Three
times, T = 3, i.e. switching individuals, switching datatype
property ranges, and switching annotation properties label and
comment).

In case a type of PDO change has less than T PDO changes, the
general tabu criterion gt is met when all PDO changes within the
respective type of PDO change have been executed.

To calculate the general tabu criterion gt, the overall number of
switches sw and ch executed has to be respected. Hence, this tabu
is valid when having executed either all sw and ch switches within

64

the respective type of PDO change (case: Number of all switches

≤ T) or the number of switches executed within the same type of
PDO change equals T (here: T = 3) (case: Number of all switches
> T); this tabu is defined as follows:

sw*ch+(sw-1)*chfix≤T, case: p=1, sw, ch, chfix, T∈ℕ

gt = sw*ch≤T, case: p>1∧s’⊂s (i.e. single sets), sw, ch, T∈ℕ (3)

sw≤T, case: p>1∧s’≡s (i.e. all sets at once), sw, T∈ℕ

(3)

Result is the number of allowed PDO changes gt. The PDO
changes are sequentially executed and added to the tabu list. In
case the tabu gt or T is met, another type of PDO change is going
to be executed.

In case another type of PDO change is executed, the overall oldest
tabu is deleted from the tabu list.

After the ramp-up and in case the general tabu criterion gt or T is
met (here: The same type of PDO change shall be consecutively
executed for the fourth time), the PDO change with the highest ST
in another type of PDO change is going to be executed and
ST(t+1) calculated.

In case the “allowed number of horizontal switches” sw is met,
the PDO change with the second highest ST within the same type
of PDO change is executed and ST(t+1) calculated.

4.2 Example Calculation of the Tabu Criteria
The tabu criteria are exemplarily calculated for the type of PDO
change switching individuals. It has one data pool (p = 1, i.e. one
set of individuals); p is manually entered in the Administration
Interface. A digital camera has the following sets of properties and
individuals {s, I}: {faceDetection, Features}, {weight,
WeightAndDimension}, {videofunction, GeneralCharacteristics},
{HDMI, Ports}, {opticalZoomFactor, LensFeatures}, and
{touchscreen, Display}. So, the question if the camera should
offer HDMI is nestled between the port-related features of the
camera. By observing the relationships, it is obvious that not all
combinations make sense, e.g. HDMI cannot belong to
WeightAndDimension, but it could belong to Features or
GeneralCharacteristics. When switching the HDMI property to
another individual, e.g. from Ports to GeneralCharacteristics, the
question after HDMI could be placed aside the question for the
video function which could make more sense from a customer
point of view. The Feedback Transformer identifies the general
individuals (i.e. cfix) by parsing the strings. In the example the two
individuals mentioned above are of general meaning, i.e. cfix = 2.

• Specific tabu criterion “allowed number of horizontal
switches” sw:

(1), second case, with cfix = 2:

sw = 2 (case: s is not connected to cfix before switching)
and swfix = 1 (case: s is already connected to cfix before
switching)

 Result: The specific tabu criterion sw is met with two
switches or one switch; in this case, the next set of
individuals is going to be switched.

• Specific tabu criterion “allowed number of vertical PDO
change iterations” ch:

(2), first case, with cfix = 2, n = 2 (i.e. half of the “free” sets;
“free” meaning not connected to cfix before switching), s = 6
(i.e. properties):

ch = 2

 Result: The specific tabu criterion ch is met with switching
two sets of individuals allowed to be switched.

• General tabu criterion gt:

(3), first case:

 gt = 6 ≤ T

 Result: The general tabu criterion gt is met with switching
the minimum of six sets of individuals to cfix and T;
as T = 3 (i.e. three types of PDO changes not
induced by a feedback based on a PDO extraction),
the tabu is met with three individual switches; in
this case, another type of PDO change is going to be
executed

This means in case of a high ST for the switch of HDMI from
Ports to GeneralCharacteristics, this switch will be within the first
three individual switches and get executed. In case it is not, the
question for HDMI will remain aside the port-related questions.

4.3 Future Work: Evaluation and Validation
of the Adaptation Layer
The adaptation layer is going to be evaluated by conducting an
experiment with approximately thirty ontology experts who
evaluate the ontology evolution. The automatically evolved PDO
is going to be compared with a manually evolved one by setting
up and evaluating an experiment with ontology experts who
analyse the feedback delivered and decide the PDO changes to be
executed. Eventually, the PDO resulted from this manual
evolution is compared with the automatically evolved one
regarding the evaluation criteria consistency, completeness,
conciseness, expandability, and sensitiveness [5].

The adaptation layer is going to be validated by programming the
layer and measuring the effects in the e-commerce recommender
system. Its success is defined by the click-out rate (i.e. clicks-to-
recommendations; the user follows the recommendation by
clicking on the product recommended) which measures the impact
of the PDO evolution induced by the implicit and explicit user
feedback.

The validation scenario will be to analyse and evaluate the impact
of the PDO evolution with regard to the respective KPI reported
to the adaptation layer after having accomplished the defined
number of recommendation processes by utilising the formulated
evolution strategies, i.e. Risky, Progressive, and Safe Evolution.
In each feedback cycle the transformed feedback (i.e. ST) gets
reported to the Adaptation Manager. The feedback is PDO-based

65

or PDO- and property-based. According to the feedback reported,
the PDO evolves. The new PDO version is provided to the data
modelling layer and the application layer, and eventually an
adapted recommender interface is presented to the customer. The
feedback circle of the automated system concludes with re-
evaluating the KPI after having again accomplished the defined
number of recommendation processes.

The intended results are a highly user-adaptive system and
eventually better recommendations given to the customer leading
to an increase of the defined KPI. The expected business impacts
are a higher customer satisfaction and loyalty and eventually
increased revenue for the provider of the e-commerce application
(and the recommender system).

5. CONCLUSION
The need for automatically updating and evolving ontologies is
urging in today’s usage scenarios. Here, it is the basis for creating
a user-adaptive recommender interface. The present research
tackles an automated process for the first time (to the best
knowledge of the author). The reason for that can be found in the
ontology definition “formal, explicit specification of a shared
conceptualisation” [6]. “Shared” means the knowledge contained
in an ontology is consensual, i.e. it has been accepted by a group
of people [15]. Entailed from that, one can argue that by
processing feedback in an ontology and evolving it, it is no longer
a shared conceptualisation but an application-specific data model.
On the other hand, it is still shared by the group of people who are
using the application. It may even be argued that the ontology has
been optimised for the usage of that group (in a specific context or
application) and thus is a new way of interpreting ontologies:
They can also be a specifically tailored and usage-based
knowledge representation derived from an initial ontology – an
ontology view, preserving most of the advantages like the support
of automatically processing information. Thus, this changed way
of conceiving ontologies could facilitate the adoption and spread
of using this powerful representation mechanism in the real world,
as it is easier to accomplish consensus within a smaller group of
people than a larger one.

In this research the PDO are based on GoodRelations and evolve
within that upper ontology. This ontology as well as the
“subsumed” PDO conforms to the ontology definition by [6]. The
PDO are application-specific and evolve according to the needs of
their users. Hence, they offer the advantages of both worlds.

In the next steps of this research the adaptation layer is going to
be evaluated and validated.

6. ACKNOWLEDGMENTS
The research presented in this paper is funded by the Austrian
Research Promotion Agency (FFG) and the Federal Ministry of
Transport, Innovation, and Technology (BMVIT) under the FIT-
IT “Semantic Systems” program (contract number 825061).

7. REFERENCES
[1] Bennett, K. H. and Rajlich, V. T. 2000. Software

maintenance and evolution: A roadmap, Proceedings of the
Conference on the Future of Software Engineering, pp. 73-
87.

[2] Broy, M. et al. 2009. Formalizing the notion of adaptive
system behavior, Proceedings of the 2009 ACM Symposium
on Applied Computing (SAC ’09), pp. 1029-1033.

[3] Glover, F. W. 1986. Future paths for integer programming
and links to artificial intelligence, Comput. Oper. Res.,
Volume 13, pp. 533-549.

[4] Glover, F. W. and Laguna, M. 1997. Tabu Search, Kluwer
Academic Publishers.

[5] Gómez-Pérez, A. 2001. Evaluation of ontologies,
International Journal of Intelligent Systems, Volume 16, pp.
391-409.

[6] Gruber, T. R. 1993. Toward principles for the design of
ontologies used for knowledge sharing, Formal ontology in
conceptual analysis and knowledge representation, Kluwer
Academic Publishers.

[7] Haase, P. and Stojanovic, L. 2005. Consistent evolution of
OWL ontologies, Proceedings of the 2nd European Semantic
Web Conference (ESWC 2005), pp. 182 - 197.

[8] Haase, P. et al. 2005. A framework for handling
inconsistency in changing ontologies, Proceedings of the
2005 International Semantic Web Conference (ISWC05), pp.
353-367.

[9] Klein, M. and Noy N. F. 2003. A component-based
framework for ontology evolution, Proceedings of the IJCAI-
03 Workshop on Ontologies and Distributed Systems.

[10] Konstantinidis, G. et al. 2007. Ontology evolution: A
framework and its application to RDF, Proceedings of the
Joint ODBIS & SWDB Workshop on Semantic Web,
Ontologies, Databases.

[11] Noy, N. F. et al. 2006. A framework for ontology evolution
in collaborative environments, Proceedings of the 2005
International Semantic Web Conference (ISWC05), pp. 544-
558.

[12] Pearl, J. 1983. Heuristics: Intelligent search strategies for
computer problem solving, Addison-Wesley.

[13] Stojanovic, L. et al. 2002. User-driven ontology evolution
management, Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge
Management (EKAW ’02), pp. 285-300.

[14] Stojanovic, N. et al. 2003. The OntoManager – a system for
the usage-based ontology management, LNCS 2888, pp. 858-
875.

[15] Studer, R. et al. 1998. Knowledge engineering: Principles
and methods, Data & Knowledge Engineering, Volume 25,
Number 1-2, pp. 161-198.

[16] Suárez-Figueroa, M. C. and Gómez-Pérez, A. 2008. Towards
a glossary of activities in the ontology engineering field,
Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC ’08).

[17] Wach, E. P., 2011. Automated ontology evolution for an e-
commerce recommender, Proceedings of the 14th
International Conference on Business Information Systems
(BIS 2011), in press.

[18] Zablith, F. 2009. Evolva: A comprehensive approach to
ontology evolution, Proceedings of the 6th European
Semantic Web Conference (ESWC 2009).

66

