
A Study of Sweeping Algorithms in the Context of

Model Checking

Zyad Hassan, Yan Zhang, and Fabio Somenzi

Dept. of Electrical, Computer, and Energy Engineering

University of Colorado at Boulder

Boulder, CO 80309

Abstract—Combinational simplification techniques have

proved their usefulness in both industrial and academic

model checkers. Several combinational simplification al-

gorithms have been proposed in the past that vary in

efficiency and effectiveness. In this paper, we report our

experience with three algorithms that fall in the com-

binational equivalence checking (sweeping) category. We

propose an improvement to one of these algorithms. We

have conducted an empirical study to identify the strengths

and weaknesses of each of the algorithms and how they

can be synergistically combined, as well as to understand

how they interact with ic3 [1].

I. INTRODUCTION

Combinational simplification eliminates redundancies

and increases sharing of logic in a design. It has been

successfully employed in logic synthesis, equivalence

checking, and model checking.

In the model checking context, combinational sim-

plification often dramatically improves the performance

of the proof engines. This has made it into a primary

component in both industrial [2] and academic [3],

[4] model checkers. Several combinational simplification

algorithms have been proposed in the past, such as

DAG-aware circuit compression [5], [6] and sweeping

methods [7]–[9]. Sweeping methods merge functionally

equivalent nodes. They include BDD sweeping [7], SAT

sweeping [8], [10], and cut sweeping [9].

When designing a model checker, the strengths and

weaknesses of each of the sweeping methods should

be taken into account. To the best of our knowledge,

no studies have been carried out so far to evaluate

and compare the different sweeping methods, with the

exception of a limited study reported in [9].

The effect of combinational simplification on several

model checking engines has been studied in the past.

In [8], SAT sweeping has been shown to positively

affect bounded model checking (BMC) [11]. In [12], it

is shown that combinational redundancy removal tech-

niques benefit interpolation considerably. The recently

introduced ic3 [1] incrementally discovers invariants

that hold relative to stepwise reachability information.

Designing a model checking flow that involves ic3

requires understanding how combinational simplification

algorithms affect it.

This paper makes the following contributions:

• We carry out a comparative study of the different

sweeping methods.

• We propose a BDD-based cut sweeping method that

is more effective than the original cut sweeping.

• We propose a combined sweeping approach in

which more than one sweeping method is applied.

We show that the combined approach can achieve

more simplification than any of the methods can

achieve individually.

• We perform an empirical study of the effect of

sweeping on ic3.

The rest of the paper is organized as follows. Section

II contains preliminaries. In Section III, we introduce

the BDD-based cut sweeping method. In Section IV,

we explain the rationale behind the combined sweeping

approach. In Section V we present the experimental

results and in Section VI we conclude.

II. PRELIMINARIES

A. AND-inverter-graph

The input and output of our sweeping algorithms

are AND-inverter-graphs (AIGs). An AIG is a directed

acyclic graph that has four types of nodes: source nodes,

sink nodes, internal nodes and the constant TRUE node.

A primary input (PI) is a source node in an AIG. A

primary output (PO) is a sink node and has exactly one

predecessor. The internal nodes represent 2-input AND

gates. A node v is a fanin of v0 if there is an edge (v, v0);
it is a fanout of v0 if there is an edge (v0, v). Left(v)
and Right(v) refer to the left and right predecessors of v.

Fanin(v) and Fanout(v) denote the fanins and fanouts

of node v. An edge in an AIG may have the INVERTED

attribute to model an inverter. The Boolean function of

a PI is a unique Boolean variable. For an edge, it is

the function of its source node if the edge does not have

the INVERTED attribute, and the complement otherwise.

For an internal node, it is the conjunction of the functions

of its incoming edges. The Boolean function of a PO is

that of its incoming edge.

A path from node a to b is a sequence of nodes

〈v0, v1, v2, . . . , vn〉, such that v0 = a, vn = b and

vi ∈ Fanin(vi+1), 0 ≤ i < n. The height of a node v,
h(v), is the length of the longest path from a PI to v. The
fanin (fanout) cone of node v is the set of nodes that have

a path to (from) v. Two nodes are functionally equivalent

(complementary) if they represent the same (comple-

mentary) Boolean function(s). Functionally equivalent

(complementary) nodes can be merged transferring the

fanouts of the redundant nodes to their representative.

To simplify our presentation, in what follows we delib-

erately ignore detection of complementary functions.

B. BDD Sweeping

BDD sweeping identifies two nodes as equivalent if

they have the same BDD representation. The original

algorithm of Kuehlmann and Krohm [7] works in two

stages: equivalence checking and false negative detec-

tion. In the first stage, it builds BDDs for each node

and merges nodes having the same BDD. The algorithm

introduces an auxiliary BDD variable (cut point) for each

node that has been merged, which potentially leads to

false negatives. In the second stage, it takes the BDDs

of the output functions and for each of them, replaces

the auxiliary variables with their driving functions. The

algorithm is complete in the sense that it can find all

the equivalences in the circuit given a sufficiently large

limit on the BDD sizes. However, a large limit often hurts

efficiency. In this paper, we intend to use BDD sweeping

in conjunction with SAT sweeping which is complete

and avoids inherent BDD inefficiencies [8]. For that, we

employ a version of BDD sweeping that is incomplete

yet faster than the original.

The algorithm we adopt iterates the following steps

on each node v of the AIG in some topological order.

It builds a BDD for v and checks if there exists another

node that has the same BDD. If so, it merges these two

nodes and continues. Otherwise, if the BDD size exceeds

a given threshold, the algorithm introduces an auxiliary

BDD variables for v to be used in place of the original

BDD when dealing with the fanouts of v. An important

point is that the original BDD is kept for equivalence

checking, but is not used to produce new BDDs. The

algorithm is complete if the threshold is so large that

no auxiliary variable is introduced. In practice, however,

this can be prohibitive.

C. SAT Sweeping

The advancements in SAT solver technology over the

past two decades has proliferated SAT-based reasoning

methods. SAT sweeping is one such method proposed

by Kuehlmann [8] for combinational redundancy identi-

fication. SAT sweeping queries the SAT solver to prove

or refute the equivalence of two nodes in the circuit.

The basic SAT sweeping algorithm works as follows.

First, the circuit is simulated with random inputs, and

candidate equivalence classes are formed, where nodes

having the same simulation values are placed together.

Next, for each two nodes belonging to the same class,

the SAT solver is queried for their equivalence. If the

SAT solver reports they are equivalent, one of them is

merged into the other. Otherwise, the counterexample

provided is simulated to break this equivalence class,

and possibly rule out other candidate equivalences as

well. This process is repeated until a resource limit is

reached, or until all classes become singletons, indicating

the absence of further equivalences.

In our implementation of SAT sweeping, several

heuristics were applied. We mention each of them briefly.

1) Simulating Distance-1 Vectors: This heuristic was

proposed in [13]. Instead of just simulating the coun-

terexample to equivalence derived by the SAT solver,

all distance-1 vectors, that have a single bit flipped, are

simulated as well. Only the bits corresponding to the

inputs that are in the fanin cone of the two nodes being

checked for equivalence are flipped. We have found this

heuristic to be very effective in practice. In [13], this

process is repeated for vectors that were successful in

breaking up equivalence classes until convergence. In our

implementation, we only simulate the distance-1 vectors

for the original counterexample: for the benchmark suite

we experimented with, recurring on successful vectors is

too expensive for the number of refinements it achieves.

2) Clustering: Simulating distance-1 vectors often

results in considerable refinement of the equivalence

classes. This is desirable, since an equivalence class

is often broken up more cheaply by simulation than

by the SAT solver. Moreover, we have observed that

with distance-1 vector simulation, it becomes very likely

that nodes remaining in an equivalence class are indeed

equivalent. Therefore, rather than checking the equiva-

lence of two nodes at a time, we check the equivalence

of all nodes in an equivalence class using a single SAT

query. If they are all indeed equivalent, we find that using

a single SAT query rather than n− 1 queries where n is

the number of nodes in the class.

3) Height-Based Merging: When two nodes are

proved equivalent, we merge the node with a larger

height into the one with a smaller height, instead of

merging based on a topological order as in [13]. The

intuition being that a node having a larger height often

has a larger fanin cone, which suggests that merging it

would lead to a larger reduction. Nodes coming later in a

topological order do not necessarily have a larger height

than nodes coming earlier.

D. Cut Sweeping

Cut sweeping [9] is a fast yet incomplete approach

for combinational equivalence checking. It iteratively

computes cuts for each AIG node and compares the

functions associated to the cuts.

A cut is defined with respect to an AIG node, called

root. A cut C(v) of root v is a set of nodes, called leaves,

such that any path from a PI to v intersects C(v). A cut-

set Φ(v) consists of several cuts of v. For cut-sets Φ(v1)
and Φ(v2), the merge operator ⊗ is defined as

Φ(v1)⊗ Φ(v2) = {C1 ∪ C2 | C1 ∈ Φ(v1), C2 ∈ Φ(v2)} .
(1)

Assume k ≥ 1. A k-feasible cut is a cut that contains

at most k leaves. A k-feasible cut-set is a cut-set that

contains only k-feasible cuts. The k-merge operator, ⊗k,

creates only k-feasible cuts. Cut enumeration recursively
computes all k-feasible cuts for an AIG. It computes the

k-feasible cut-set for a node v as follows:

Φ(v) =

{

{{v}} v ∈ PI

{{v}} ∪ Φ (Left(v))⊗k Φ (Right(v)) v ∈ AND ,
(2)

where PI and AND refer to the set of PIs and 2-input

AND gates respectively. Note that cuts are not built for

POs because they are never merged.

The function of a cut is the Boolean function of the

root in terms of the leaves. It can be represented in

different ways, for instance, using bit vectors or BDDs.

Two cuts are equivalent if their cut functions are equal.

Hence, two nodes are functionally equivalent if their cut-

sets contain equivalent cuts.

Cut sweeping is parametrized by k and N , the maxi-

mum cut size and the maximum cut-set size, respectively.

For each node v in some topological order of the AIG,

the algorithm builds a k-feasible cut-set Φ(v). Each cut

in Φ(v) is associated with a truth table. Next, it searches

for a node equivalent to v by looking for a cut equivalent

to some cut in Φ(v). If it succeeds, the two nodes are

merged. Otherwise, a heuristic is applied to prune Φ(v)
to at most N cuts. After pruning, the algorithm stores

Φ(v) as the cut-set of v and builds a cross-reference

between each of its cuts and v.
The heuristic for pruning, which we call the quality

heuristic, computes a value q for each cut:

q(C) =
∑

n∈C

1

|Fanout(n)|
. (3)

The cuts with the smallest values of q are kept. The

intuition of the quality heuristic is two-fold. First, it tries

to localize the equivalence and thus favors smaller cuts.

Second, it normalizes cuts by attempting to express them

with the same set of variables. The chosen variables are

those that have a large fanouts, i.e., that are shared by

many other nodes.

A good truth-table implementation is critical to the

performance of cut sweeping. In [9], truth tables are

implemented as bit vectors. An advantage of bit vectors

is the constant-time cost of Boolean operations. On the

other hand, bit interleaving is required to extend the bit

vectors to the same length so that the corresponding bits

represent the same minterm1.

III. BDD-BASED CUT SWEEPING

Representing functions having a small number of

inputs using bit vectors is very efficient. However, the

number of bits required grows exponentially with the

number of variables, which can easily lead to memory

blow-up. As an alternative, BDDs, which are more suit-

able for large functions, can also be used to represent cut

functions. Furthermore, the strong canonicity of BDDs

makes it trivial to check for equivalence. The use of

BDDs also enables a heuristic which we describe below.

The proposed algorithm differs from the original one

in two aspects. First, we introduce a new parameter s, the
maximum size of a BDD, to replace k. That is, instead of
k-feasible cuts, we keep cuts whose functions contain at

most s BDD nodes. Node count, as opposed to number

of inputs, is a more natural characterization of BDD size.

The second difference comes from the pruning heuris-

tic. We define the height h of a cut C as the average

height of its nodes:

h(C) =
∑

v∈C

h(v)

|C|
. (4)

1A good reference of bit-interleaving can be found at http://

graphics.stanford.edu/∼seander/bithacks.html.

A smaller h indicates that the leaves in the cut are closer

to the PIs. The height heuristic keeps at most N cuts

choosing the ones with smallest values of h.

a

b

c

d

a

d

c

b

p

q

f

r

s

g

Fig. 1. Two implementations of a 4-input AND gate

A motivating example for the new heuristic is in

Figure 1, which shows two different 4-input AND gates.

Nodes a, b, c, and d are PIs. Nodes p, q, r, and s are

internal nodes. Nodes f and g can only be merged if

their cut-sets both contain {a, b, c, d}. However, if the

internal nodes have many more fanouts than the PIs, the

quality heuristic may select cuts containing the internal

nodes instead, causing the merge to be missed.

As mentioned before, the quality heuristic tries to

normalize the cuts on certain “attractors.” This reduces

the possibility that equivalent functions are represented

differently. However, this might also lead to the loss

of the opportunity to find equivalences that cannot be

expressed by those “attractors,” as in Figure 1.

On the other hand, the height heuristic tries to push the

cut boundary as far as possible. A supporting argument

is that, if a node is employed in equivalent cuts, then

replacing it with its predecessors preserve equivalence.

Furthermore, new merges that are otherwise undiscover-

able (consider other equivalences that require a and b in
the above example) may be found. The height heuristic

does not attract cuts to certain nodes, which may result

in different cuts for equivalent nodes. As shown in the

experiments, the effectiveness of the height heuristic

reduces as the height of nodes increases.

The two heuristics have their own strengths and weak-

nesses. A natural question is whether it is possible to

combine them to benefit from their individual strengths.

We can choose a few cuts with each heuristic. This may

lead to more merges but may also worsen the efficiency

if it significantly increases the number of cuts. To prevent

such an increase, a combined heuristic only records

height cuts for the lower nodes, while it keeps both types

of cuts for the others.

There is some connection between cut sweeping with

each of the two heuristics and BDD sweeping. With

the height heuristic, cut sweeping tries to build cuts as

large as possible, as BDD sweeping does. However, BDD

sweeping can store cuts that exceed the threshold while

cut sweeping only keeps those below the threshold. The

quality heuristic tries to attract cuts on certain nodes,

which is similar to the placement of auxiliary variables in

BDD sweeping. Nevertheless, the number of “attractors”

in the quality heuristic tends to be much larger than in

BDD sweeping.

IV. COMBINING SWEEPING METHODS

The idea of combining several simplification algo-

rithms is not new. Many existing model checkers iterate

several simplification algorithms before the problem is

passed to the model checking engines. However, we are

unaware of any studies that have been carried out to

identify the best way they could be combined. In this

section we attempt to give general guidelines to which

a combined approach should adhere. We support our

claims by empirical evidence collected in the experi-

ments reported in Section V.

The problem we address is as follows: given a time

budget for combinational simplification, how should it

be allotted to the different algorithms? The sweeping

algorithms discussed in previous sections vary in their

completeness and speed, with cut sweeping being the

most incomplete method yet the fastest of the three meth-

ods, SAT sweeping being a complete, yet the slowest,

and BDD sweeping lying in between, both in terms of

completeness and speed.

Possible solutions include allocating the whole time

budget to a single algorithm, or dividing it among two or

more algorithms. The fact that some methods are better

in approaching certain problems than others, suggests

that more than one method should be applied. If two or

more methods are to be applied in sequence, the intuition

suggests that the lower effort methods should precede

the higher effort ones. The advantages of doing so are

two-fold. First, although the higher-effort methods are

likely to discover the merges that a lower-effort method

discovers, in general, it will take them more time to do

so. Second, preceding higher-effort methods by lower-

effort methods is beneficial in having them present a

smaller problem that is easier to handle.

Finally, the percentages of total time that should be

allotted to each of the methods to yield the maximum

possible reduction is studied in Section V.

V. RESULTS

The experiments are divided into three parts. The first

part compares different variations of the cut sweeping

algorithm. The second part shows the results of the com-

bined sweeping methods, and the third part is concerned

with the effect of sweeping on ic32.

We use the benchmark set from HWMCC’10 [14], a

set of 818 benchmarks in total. The experiments are run

on a machine with a 2.8GHz Quad-Core CPU and 9GB

of memory. We use CUDD [15] as our BDD package

for all the BDD-related algorithms.

A. BDD-based Cut Sweeping

Variations of cut sweeping are applied to the

HWMCC’10 benchmark set. The differences between

variations are two-fold. First, either the number of vari-

ables, k, or the number of BDD nodes, s, is used to

drop over-sized cuts. Second, we experiment with several

heuristics for pruning cut-sets: the quality heuristic,

the height heuristic, and two combined heuristics. The

naive combined heuristic (“combined-1”) chooses one

cut based on the height heuristic and the others based

on the quality heuristic. The other heuristic (“combined-

2”) sets a threshold on the node height (350 in our

experiments). For nodes that are below the threshold,

it only keeps a height cut. For higher nodes, it produces

cut-sets consisting of a height cut and two quality cuts.

We denote a method by a k or an s followed by the the

heuristic name. All the variations use BDDs to represent

the cut functions.

The results are shown in Table I; they are aggregated

over the 818 benchmarks. Based on experiments, both

the threshold of BDD sweeping and s in BDD-based

cut sweeping are set to 250. The total number of AIG

nodes before sweeping is 7.22M. “Final” is the size of

AIGs after sweeping. “Generated” and “Kept” are the

number of cuts generated and kept by the corresponding

methods. For an individual benchmark, its “height” is the

average height of all merged cuts. The “Height” column

is computed by taking the average of the “height” of

all the benchmarks. A smaller value indicates that more

merges are found by cuts that are close to the PIs. Note

that since we use BDDs, the results in terms of efficiency

of bit-vectors based methods may not be as good as in

[9]. Therefore, when dealing with them, we just compare

the effectiveness.

Results indicate that the resulting AIGs are con-

sistently smaller with s than with k. There are

a few interesting observations. First, the ratios

GeneratedCuts/Merge and KeptCuts/Merge are im-

2Detailed results for first and second parts can be found at http:

//eces.colorado.edu/∼hassanz/sweeping-study

proved significantly with s. This means that with s, each
cut has a larger chance of resulting in a merge.

Second, while “k-quality” and “k-combined-1” have

very close sweeping times, the latter achieves 19.8%
more merges. Furthermore, the decrease in the “Height”

column reveals that the height cuts indeed lead to

merges. Although “s-quality” is more effective than the

two above methods, it is less efficient due to the larger

cut sizes.

For the methods with s (excluding “s-quality”), we

observe that “s-heightN = 1” is the fastest and produces
a good number of merges. Increasing the number of

height cuts to two triples the run time without gaining

many more merges. Comparing it with “s-combined-1”,

an improvement on the merges is shown by the latter.

This indicates that maintaining one height cut and one

quality cut works better than two height cuts. For “s-

combined-2”, the number of merges is between the two

above methods, but with lower run time. Furthermore,

the numbers of generated cuts and kept cuts are even

comparable to “s-height N = 1”. That is, even though

we keep three cuts for those nodes with height larger

than 350, on average we compute only a few percent

more cuts than we do in the case of one cut per node.

The “Height” values of the three methods confirm the

assumption made in Section III: most merges produced

by the height heuristic come from cuts close to the

PIs. When the two heuristics are combined, a significant

increase on the “Height” value is observed. In Figure

2, we show the number of merges found by “s-height

N = 1” and “s-combined-2” on nodes within different

height ranges. The plot is normalized to “k-quality” and

has bin size of 50, i.e., a point at (2, 1) indicates that the
method finds the same number of merges as “k-quality”

for nodes with height from 100 to 149. Obviously, the
height heuristic works better on smaller height nodes,

while the quality heuristic catches more on larger height

ones. The combined heuristic takes the advantage of

both and produces an even better profile on nodes with

larger heights. Note that although the height heuristic

works worse on the nodes with larger heights, it can

still get more merges. This may be due to the fact that

in this benchmark set, a large percent of equivalences

are located at lower heights.

In our setup, cut sweeping is intended for usage as a

fast method. Thus we consider “s-height N = 1” and

“s-combined-2” to be the best variants. Compared to

BDD sweeping, those two variants are faster because

they create fewer BDD nodes than BDD sweeping, but

are less effective since BDD sweeping may keep BDDs

TABLE I

RESULTS OF CUT SWEEPING, BDD SWEEPING AND SAT SWEEPING ON THE HWMCC’10 SET. BY DEFAULT, k = 8 AND s = 250.

Method Final (×10
6) Merges (×10

5) Time (s) Generated (×10
7) Kept (×10

7) Height

k-quality N = 5 6.82 2.62 123.26 5.83 1.92 10.20

k-combined-1 N = 5 6.75 3.14 129.64 5.84 1.90 8.57

s-quality N = 5 6.71 3.31 536.75 7.63 2.32 12.11

s-height N = 1 6.55 4.07 58.99 1.07 0.54 3.19

s-height N = 2 6.51 4.20 181.52 2.18 0.99 2.94

s-combined-1 N = 2 6.48 4.42 181.21 2.29 1.02 12.86

s-combined-2 6.52 4.28 74.64 1.10 0.54 12.72

BDD Sweeping 6.34 5.61 112.74 – – –

SAT Sweeping 6.10 6.37 2149.4 – – –

0 20 40 60 80 100 120
10

−1

10
0

10
1

10
2

Node Height (/50)

R
a
ti

o
 o

v
e
r

Q
u

a
li
ty

 H
e
u

ri
s
ti

c

Height Heuristic

Combined Heuristic

Fig. 2. Number of merges on nodes within different height ranges

that exceed the threshold.

B. Combined Sweeping Methods

In this section, we show experimental evidence that

supports the guidelines of combining sweeping methods

presented in Section IV. In particular, we try several pos-

sibilities of allotting the budget to the different sweeping

algorithms with the purpose of identifying empirically if

they should be combined, and if so, in which way. In

what follows we use the “s-height N = 1” variant of

cut-sweeping since it is the fastest, and we simply refer

to it as cut sweeping.

In our combined approach, SAT sweeping is always

run last since it is the only complete method of the three,

and should thus be given whatever time is left to find

equivalences not discovered by the other methods. Also,

the time not used by any of the preceding methods is

passed to SAT sweeping. For instance, if cut sweeping

is given a time budget of 4 seconds and only uses 3 of

them, SAT sweeping gets to run for one extra second.

We compare the reduction measured in terms of the

number of AIG nodes removed, and the total time

spent in sweeping. Data are aggregated over the 818

benchmarks. The base case for our comparisons is the

pure SAT sweeping case in which SAT sweeping gets

the whole budget. The time budget used in our study is

10 seconds.

We consider the following policies: (a) allocating

the budget to two methods, (b) allocating it to three

methods, and (c) allocating the whole budget to SAT

sweeping. For (a) and (b), we consider all the different

permutations of assigning integer time values to each

method, such that they sum up to 10 seconds. Note that if

a sweeping algorithm times out, what it has achieved thus

far is used in what follows. In all cases, a set of light-

weight sequential simplification algorithms are applied

before sweeping. This set of algorithms includes cone-

of-influence reduction, stuck-at-constant latch detection,

and equivalent latch detection. The total number of

AIG nodes for all 818 benchmarks measured after the

sequential simplification step is 6.1M.

Results are presented in Table II. The first column lists

the methods, where the number before each sweeping

method indicates the number of seconds given to it.

The second column shows the number of AIG nodes

removed. The third column shows the total time spent in

sweeping. The methods are listed in order of decreasing

reduction. The last row is for pure SAT sweeping. We

only show the best three setups in terms of reduction for

each of the possible orders of the method sequences.

Several observations can be made. First, when it

comes to running two methods in sequence, BDD

sweeping combined with SAT sweeping outperforms cut

sweeping combined with SAT sweeping. The method

that achieves maximum reduction (8 seconds of BDD

sweeping followed by 2 seconds of SAT sweeping)

removes 56K more nodes than pure SAT sweeping (7.7%

more reduction). Second, more reduction is achievable

by running three methods in sequence. As suggested in

Section IV, ordering the methods by increasing effort

TABLE II

EFFECT OF BUDGET ALLOCATION ON REDUCTION.

Method Reduction Total Sweeping Time (s)

4 Cut, 5 BDD, 1 SAT 801,932 518
2 Cut, 5 BDD, 3 SAT 801,137 516
6 Cut, 3 BDD, 1 SAT 801,119 522

4 BDD, 1 Cut, 5 SAT 794,052 517
8 BDD, 1 Cut, 1 SAT 793,921 515
7 BDD, 2 Cut, 1 SAT 793,814 519

8 BDD, 2 SAT 793,226 500
7 BDD, 3 SAT 793,068 503
5 BDD, 5 SAT 792,797 508

1 Cut, 9 SAT 772,563 512
6 Cut, 4 SAT 771,070 513

3 Cut, 7 SAT 769,483 511

10 SAT 736,594 619

(or equivalently by increasing degree of completeness)

achieves more reduction than otherwise. Here, the best

method (4 seconds, 5 seconds, and 1 second for cut,

BDD and SAT sweeping, respectively), has an edge

of 65K nodes over pure SAT sweeping (about 8.9%

more reduction). Third, in terms of sweeping time, it

is clear that a large drop occurs (> 100 seconds) when

two or three methods are combined versus pure SAT

sweeping, which is due to the often smaller time needed

by BDD and cut sweeping to discover equivalences than

SAT sweeping. Given an overall model checking budget,

smaller sweeping time allows more time for the model

checking engine, which is desirable.

The question of whether such difference has a consid-

erable effect on the performance of the model checking

engine is answered in the next section.

C. Effect on ic3

The recently developed model checking algorithm,

ic3 [1], has been regarded as the best standalone model

checking algorithm developed up till now [16]. As the

interaction of combinational simplification methods with

different model checking algorithms has been studied in

the past, we here aim to study how they interact with

ic3. In particular, we would like to empirically find

out if ic3 benefits from preprocessing the netlist with

a simplification algorithm or not, and if it does, how

sensitive it is to the magnitude of reductions achieved

through simplification.

In the first experiment, we compare two runs of ic3,

one that is preceded by SAT sweeping, and one that

is not. The experimental setup is as follows. A total

timeout of 10 minutes is used. The budget for SAT

sweeping is 10 seconds. The light-weight sequential

simplification algorithms referred to in Section V-B are

applied once in the no-sweeping case, and twice (before

TABLE III

EFFECT OF SWEEPING ON ic3’S PERFORMANCE.

Solves Solves Runtime (s) Runtime (s)
Seed (No (With (No (With
Index Sweeping) Sweeping) Sweeping) Sweeping)

1 693 698 96,297 91,762
2 689 699 95,629 90,341
3 691 699 95,050 92,714
4 696 697 93,691 91,141
5 693 698 95,007 89,656
6 690 695 96,270 91,559
7 693 699 94,784 92,056
8 690 701 94,351 90,837
9 693 693 95,491 92,847
10 690 693 95,124 93,048

Average 691.8 697.2 95,169 91,596

and after sweeping) in the sweeping case. We compare

the number of solves, and the aggregate runtime among

all benchmarks.

It is important to note that the ic3 algorithm has a

random flavor. In particular, the order by which gener-

alization (dropping literals) is attempted is randomized.

Also, since the algorithm is SAT-based, randomization

occurs in the SAT solver decisions. To have reliable

experimental results, each experiment is repeated with

10 different seeds, and the results are averaged over the

different seeds.

Results are shown in Table III. The first column shows

the seed index, the second and third columns show the

number of solves without and with sweeping, and the

fourth and fifth columns show the aggregate runtime

without and with sweeping.

The results confirm a positive effect of sweeping on

the performance of ic3. On average, five more solves

are achieved with sweeping, and the aggregate runtime

drops by 3.8%.

The enhancement in the performance of ic3 in pres-

ence of sweeping can be attributed to two factors. First,

reduction in the number of gates caused by sweeping can

result in the reduction in the SAT solver time. Second,

simplification often results in dropping of latches (e.g.,

if it merges the next-state functions of two latches). For

example, for the benchmark set used in our experiments,

sweeping reduces the aggregate number of latches from

279,161 to 269,091 (3.6% decrease). This reduces the

amount of work done by ic3 in generalization of

counterexamples to induction.

We now repeat the previous experiment, but this time

we compare the number of solves and the aggregate

runtime between pure SAT sweeping and the empirically

optimum combined sweeping scheme of Section V-B.

The purpose of this experiment is to understand how

TABLE IV

OPTIMUM SWEEPING VERSUS PURE SAT SWEEPING.

Solves Solves Runtime (s) Runtime (s)
(Pure (Optimum (Pure (Optimum

Seed SAT Sweeping SAT Sweeping
Index Sweeping) Scheme) Sweeping) Scheme)

1 698 696 91,762 91,567
2 699 696 90,341 91,113
3 699 697 92,714 92,373
4 697 702 91,141 90,478
5 698 697 89,656 90,327
6 695 699 91,559 90,606
7 699 697 92,056 91,498
8 701 699 90,837 92,228
9 693 696 92,847 91,252
10 693 697 93,048 92,663

Average 697.2 697.6 91,596 91,411

sensitive ic3 is to the magnitude of reductions.

Results are shown in Table IV, where the second and

third columns compare the number of solves for pure

SAT sweeping and the optimum sweeping scheme, and

the fourth and fifth columns compare the total runtime.

As the results indicate, ic3 does not benefit much

from the better reduction achieved by the combined

sweeping scheme. The lack of performance enhancement

on ic3 can be attributed to the small improvement

in reduction the combined sweeping approach achieves

over pure SAT sweeping. In particular, while pure SAT

sweeping removes 737K nodes out of the total 6.1M

nodes in the 818 benchmarks (12.1% reduction), the

combined approach removes 802K nodes (13.2% reduc-

tion); a mere 1.1% improvement. This suggests that ic3

has a small sensitivity to the magnitude of reduction.

VI. CONCLUSION

In this paper, we presented an empirical study of

the different sweeping methods proposed in the past.

We have shown that a combined sweeping approach

outperforms any of the sweeping methods alone. We

have also proposed a BDD-based cut sweeping method

that is more effective than the original cut sweeping.

Finally, we have studied the effect of sweeping on the

new model checking algorithm, ic3, and investigated

the causes of the better performance it experiences with

sweeping. The goal of this analysis is to help designers

of model checkers to make decisions regarding the

incorporation of sweeping methods and to provide a

deeper understanding of how sweeping methods interact

with ic3.

ACKNOWLEDGEMENTS

We thank Aaron Bradley who motivated this work

and contributed to many discussions. We also thank the

reviewers for their insightful comments regarding cut

sweeping’s pruning heuristics that prompted us to try

the “combined-2” heuristic.

REFERENCES

[1] A. R. Bradley, “SAT-based model checking without unrolling,”

in Proc. Int. Conf. on Verification, model checking, and abstract

interpretation, 2011, pp. 70–87.

[2] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and

A. Kuehlmann, “Scalable automated verification via expert-

system guided transformations,” in Formal Methods in

Computer-Aided Design, 2004, pp. 159–173.

[3] R. Brayton and A. Mishchenko, “ABC: An academic industrial-

strength verification tool,” in Computer Aided Verification,

2010, pp. 24–40.

[4] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model

checker for algorithmic improvements and tuning for perfor-

mance,” in Proc. Hardware Verification Workshop, 2010.

[5] P. Bjesse and A. Boralv, “DAG-aware circuit compression for

formal verification,” in Proc. Int. Conf. on Computer-aided

design, 2004, pp. 42–49.

[6] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware

AIG rewriting a fresh look at combinational logic synthesis,”

in Proc. Design Automation Conference, 2006, pp. 532–535.

[7] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts

and heaps,” in Proc. Design Automation Conference, 1997, pp.

263–268.

[8] A. Kuehlmann, “Dynamic transition relation simplification for

bounded property checking,” in Proc. Int. Conf. on Computer-

aided design, 2004, pp. 50–57.

[9] N. Eén, “Cut sweeping,” Cadence Design Systems, Tech. Rep.,

2007.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton, “FRAIGs: A

unifying representation for logic synthesis and verification,”

EECS Dept., UC Berkeley, ERL, Tech. Rep., Mar 2005.

[11] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic

model checking without BDDs,” in TACAS, 1999, pp. 193–207.

[12] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Stepping

forward with interpolants in unbounded model checking,” in

Proc. Int. Conf. on Computer-aided design, 2006, pp. 772–778.

[13] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, “Im-

provements to combinational equivalence checking,” in Proc.

Int. Conference on Computer-aided design, 2006, pp. 836–843.

[14] A. Biere and K. Claessen, “Hardware model checking compe-

tition,” in Hardware Verification Workshop, 2010.

[15] F. Somenzi, CUDD: CU Decision Diagram Package, University

of Colorado at Boulder, ftp://vlsi.colorado.edu/pub/.

[16] R. Brayton, N. Een, and A. Mishchenko, “Continued relevance

of bit-level verification research,” in Proc. Usable Verification,

Nov. 2010, pp. 15–16.

