
Encoding syntactic dependencies using
Random Indexing and Wikipedia as a corpus

Pierpaolo Basile and Annalina Caputo

Dept. of Computer Science, University of Bari ”Aldo Moro”
Via Orabona, 4, I-70125, Bari (ITALY)
{basilepp,acaputo}@di.uniba.it

Abstract. Distributional approaches are based on a simple hypothesis:
the meaning of a word can be inferred from its usage. The application
of that idea to the vector space model makes possible the construction
of a WordSpace in which words are represented by mathematical points
in a geometric space. Similar words are represented close in this space
and the definition of “word usage” depends on the definition of the con-
text used to build the space, which can be the whole document, the
sentence in which the word occurs, a fixed window of words, or a spe-
cific syntactic context. However, in its original formulation WordSpace
can take into account only one definition of context at a time. We pro-
pose an approach based on vector permutation and Random Indexing
to encode several syntactic contexts in a single WordSpace. We adopt
WaCkypedia EN corpus to build our WordSpace that is a 2009 dump of
the English Wikipedia (about 800 million tokens) annotated with syntac-
tic information provided by a full dependency parser. The effectiveness
of our approach is evaluated using the GEometrical Models of natural
language Semantics (GEMS) 2011 Shared Evaluation data.

1 Background and motivation

Distributional approaches usually rely on the WordSpace model [20]. An overview
can be found in [18]. This model is based on a vector space in which points are
used to represent semantic concepts, such as words.

The core idea behind WordSpace is that words and concepts are represented
by points in a mathematical space, and this representation is learned from text
in such a way that concepts with similar or related meanings are near to one
another in that space (geometric metaphor of meaning). The semantic similarity
between concepts can be represented as proximity in an n-dimensional space.
Therefore, the main feature of the geometric metaphor of meaning is not that
meanings can be represented as locations in a semantic space, but rather that
similarity between word meanings can be expressed in spatial terms, as proximity
in a high-dimensional space.

One of the great virtues of WordSpaces is that they make very few language-
specific assumptions, since just tokenized text is needed to build semantic spaces.
Even more important is their independence from the quality (and the quantity)
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of available training material, since they can be built by exploiting an entirely un-
supervised distributional analysis of free text. Indeed, the basis of the WordSpace
model is the distributional hypothesis [10], according to which the meaning of
a word is determined by the set of textual contexts in which it appears. As a
consequence, in distributional models words can be represented as vectors built
over the observable contexts. This means that words are semantically related as
much as they are represented by similar vectors. For example, if “basketball”
and “tennis” occur frequently in the same context, say after “play”, they are
semantically related or similar according to the distributional hypothesis.

Since co-occurrence is defined with respect to a context, co-occurring words
can be stored into matrices whose rows represent the terms and columns repre-
sent contexts. More specifically, each row corresponds to a vector representation
of a word. The strength of the semantic association between words can be com-
puted by using cosine similarity.

A weak point of distributional approaches is that they are able to encode
only one definition of context at a time. The type of semantics represented in a
WordSpace depends on the context. If we choose documents as context we obtain
a semantics different from the one we would obtain by selecting sentences as con-
text. Several approaches have investigated the aforementioned problem: [2] use
a representation based on third-order tensors and provide a general framework
for distributional semantics in which it is possible to represent several aspects
of meaning using a single data structure. [19] adopt vector permutations as a
means to encode order in WordSpace, as described in Section 2. BEAGLE [12]
is a very well-known method to encode word order and context information in
WordSpace. The drawback of BEAGLE is that it relies on a complex model to
build vectors which is computational expensive. This problem is solved by [9] in
which the authors propose an approach similar to BEAGLE, but using a method
based on Circular Holographic Reduced Representations to compute vectors.

All these methods tackle the problem of representing word order in WordSpace,
but they do not take into account syntactic context. A valuable attempt in this
direction is described in [17]. In this work, the authors propose a method to
build WordSpace using information about syntactic dependencies. In particular,
they consider syntactic dependencies as context and assign different weights to
each kind of dependency. Moreover, they take into account the distance between
two words into the graph of dependencies. The results obtained by the authors
support our hypothesis that syntactic information can be useful to produce ef-
fective WordSpace. Nonetheless, their methods are not able to directly encode
syntactic dependencies into the space.

This work aims to provide a simple approach to encode syntactic relations
dependencies directly into the WordSpace, dealing with both the scalability prob-
lem and the possibility to encode several context information. To achieve that
goal, we developed a strategy based on Random Indexing and vector permu-
tations. Moreover, this strategy opens new possibilities in the area of semantic
composition as a result of the inherent capability of encoding relations between
words.
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The paper is structured as follows. Section 2 describes Random Indexing,
the strategy for building our WordSpace, while details about the method used
to encode syntactic dependencies are reported in Section 3. Section 4 describes
a first attempt to define a model for semantic composition which relies on our
WordSpace. Finally, the results of the evaluation performed using the GEMS
2011 Shared Evaluation data1 is presented in Section 5, while conclusions are
reported in Section 6.

2 Random Indexing

We exploit Random Indexing (RI), introduced by Kanerva [13], for creating a
WordSpace. This technique allows us to build a WordSpace with no need for
(either term-document or term-term) matrix factorization, because vectors are
inferred by using an incremental strategy. Moreover, it allows to solve efficiently
the problem of reducing dimensions, which is one of the key features used to
uncover the “latent semantic dimensions” of a word distribution.

RI is based on the concept of Random Projection according to which high
dimensional vectors chosen randomly are “nearly orthogonal”.

Formally, given an n ×m matrix A and an m × k matrix R made up of k
m-dimensional random vectors, we define a new n× k matrix B as follows:

Bn,k = An,m·Rm,k k << m (1)

The new matrix B has the property to preserve the distance between points.
This property is known as Johnson-Lindenstrauss lemma: if the distance between
two any points of A is d, then the distance dr between the corresponding points
in B will satisfy the property that dr = c ·d. A proof of that property is reported
in [8].

Specifically, RI creates a WordSpace in two steps (in this case we consider
the document as context):

1. a context vector is assigned to each document. This vector is sparse, high-
dimensional and ternary, which means that its elements can take values in
{-1, 0, 1}. A context vector contains a small number of randomly distributed
non-zero elements, and the structure of this vector follows the hypothesis
behind the concept of Random Projection;

2. context vectors are accumulated by analyzing terms and documents in which
terms occur. In particular, the semantic vector for a term is computed as the
sum of the context vectors for the documents which contain that term. Con-
text vectors are multiplied by term occurrences or other weighting functions,
for example log-entropy.

Formally, given a collection of documents D whose vocabulary of terms is V
(we denote with dim(D) and dim(V ) the dimension of D and V , respectively)
the above steps can be formalized as follows:

1 Available on line:
http://sites.google.com/site/geometricalmodels/shared-evaluation
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1. ∀di ∈ D, i = 0, .., dim(D) we built the correspondent randomly generated
context vector as:

−→rj = (ri1, ..., rin) (2)

where n� dim(D), ri∗ ∈ {−1, 0, 1} and −→rj contains only a small number of
elements different from zero;

2. the WordSpace is made up of all term vectors
−→
tj where:

−→
tj = wj

∑
di∈D
tj∈di

−→ri (3)

and wj is the weight assigned to tj in di.

By considering a fixed window W of terms as context, the WordSpace is built
as follows:

1. a context vector is assigned to each term;
2. context vectors are accumulated by analyzing terms which co-occur in a

window W . In particular, the semantic vector for each term is computed as
the sum of the context vectors for terms which co-occur in W .

It is important to point out that the classical RI approach can handle only
one context at a time, such as the whole document or the window W .

A method to add information about context (word order) in RI is proposed in
[19]. The authors describe a strategy to encode word order in RI by permutation
of coordinates in random vector. When the coordinates are shuffled using a
random permutation, the resulting vector is nearly orthogonal to the original one.
That operation corresponds to the generation of a new random vector. Moreover,
by applying a predetermined mechanism to obtain random permutations, such as
elements rotation, it is always possible to reconstruct the original vector using
the reverse permutations. By exploiting this strategy it is possible to obtain
different random vectors for each context2 in which the term occurs. Let us
consider the following example “The cat eats the mouse”. To encode the word
order for the word “cat” using a context window W = 3, we obtain:

< cat >= (Π−1the) + (Π+1eat)+

+(Π+2the) + (Π+3mouse)
(4)

where Πnx indicates a rotation by n places of the elements in the vector x.
Indeed, the rotation is performed by n right-shifting steps.

3 Encoding syntactic dependencies

Our idea is to encode syntactic dependencies, instead of words order, in the
WordSpace using vector permutations.

2 In the case in point the context corresponds to the word order
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A syntactic dependency between two words is defined as:

dep(head, dependent) (5)

where dep is the syntactic link which connects the dependent word to the head
word. Generally speaking, dependent is the modifier, object or complement,
while head plays a key role in determining the behavior of the link. For example,
subj(eat, cat) means that “cat” is the subject of “eat”. In that case the head
word is “eat”, which plays the role of verb.

The key idea is to assign a permutation function to each kind of syntactic
dependencies. Formally, let D be the set of all dependencies that we take into
account. The function f : D → Π returns a schema of vector permutation for
each dep ∈ D. Then, the method adopted to construct a semantic space that
takes into account both syntactic dependencies and Random Indexing can be
defined as follows:

1. a random context vector is assigned to each term, as described in Section 2
(Random Indexing);

2. random context vectors are accumulated by analyzing terms which are linked
by a dependency. In particular the semantic vector for each term ti is com-
puted as the sum of the permuted context vectors for the terms tj which
are dependents of ti and the inverse-permuted vectors for the terms tj which
are heads of ti. The permutation is computed according to f . If f(d) = Πn

the inverse-permutation is defined as f−1(d) = Π−n: the elements rotation
is performed by n left-shifting steps.

Adding permuted vectors to the head word and inverse-permuted vectors to the
corresponding dependent words allows to encode the information about both
heads and dependents into the space. This approach is similar to the one inves-
tigated by [6] for encoding relations between medical terms.

To clarify, we provide an example. Given the following definition of f :

f(subj) = Π+3 f(obj) = Π+7 (6)

and the sentence “The cat eats the mouse”, we obtain the following dependencies:

det(the, cat) subj(eat, cat)

obj(eat,mouse) det(the,mouse)
(7)

The semantic vector for each word is computed as:

– eat :
< eat >= (Π+3cat) + (Π+7mouse) (8)

– cat :
< cat >= (Π−3eat) (9)

– mouse:
< mouse >= (Π−7eat) (10)

In the above examples, the function f does not consider the dependency det.
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4 Compositional semantics

In this section we provide some initial ideas about semantic composition relying
on our WordSpace. Distributional approaches represent words in isolation and
they are typically used to compute similarities between words. They are not able
to represent complex structures such as phrases or sentences. In some applica-
tions, such as Question Answering and Text Entailment, representing text by
single words is not enough. These applications would benefit from the composi-
tion of words in more complex structures. The strength of our approach lies on
the capability of codify syntactic relations between words overcoming the “word
isolation” issue.

Recent work in compositional semantics argue that tensor product (⊗) could
be useful to combine word vectors. In [21] some preliminary investigations about
product and tensor product are provided, while an interesting work by Clark
and Pulman [5] proposes an approach to combine symbolic and distributional
models. The main idea is to use tensor product to combine these two aspects,
but the authors do not describe a method to represent symbolic features, such
as syntactic dependencies. Conversely, our approach deals with symbolic fea-
tures by encoding syntactic information directly into the distributional model.
The authors in [5] propose a strategy to represent a sentence like “man reads
magazine” by tensor product:

man⊗ subj ⊗ read⊗ obj ⊗magazine (11)

They also propose a solid model for compositionality, but they do not provide
a strategy to represent symbolic relations, such as subj and obj. Indeed, they
state: “How to obtain vectors for the dependency relations - subj, obj, etc. -
is an open question”. We believe that our approach can tackle this problem by
encoding the dependency directly in the space, because each semantic vector in
our space contains information about syntactic roles.

The representation based on tensor product is useful to compute sentence
similarity. For example, given the previous sentence and the following one: “wo-
man browses newspaper”, we want to compute the similarity between those two
sentences. The sentence “woman browses newspaper”, using the compositional
model, is represented by:

woman⊗ subj ⊗ browse⊗ obj ⊗ newspaper (12)

Finally, we can compute the similarity between the two sentences by inner
product, as follows:

(man⊗subj⊗read⊗obj⊗magazine)·(woman⊗subj⊗browse⊗obj⊗newspaper)
(13)

Computing the similarity requires to calculate the tensor product between
each sentence element and then compute the inner product. This task is complex,
but exploiting the following property of the tensor product:

(w1 ⊗ w2) · (w3 ⊗ w4) = (w1 · w3)× (w2 · w4) (14)
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the similarity between two sentences can be computed by taking into account
the pairs in each dependency and multiplying the inner products as follows:

man · woman× read · browse×
×magazine · newspaper

(15)

According to the property above mentioned, we can compute the similar-
ity between sentences without using the tensor product. However, some open
questions arise. This simple compositional strategy allows to compare sentences
which have similar dependency trees. For example, the sentence “the dog bit
the man” cannot can be compared to “the man was bitten by the dog”. This
problem can be easily solved by identifying active and passive forms of a verb.
When two sentences have different trees, Clark and Pulman [5] propose to adopt
the convolution kernel [11]. This strategy identifies all the possible ways of de-
composing the two trees, and sums up the similarities between all the pairwise
decompositions. It is important to point out that, in a more recent work, Clark
et al. [4] propose a model based on [5] combined with a compositional theory
for grammatical types, known as Lambek’s pregroup semantics, which is able
to take into account grammar structures. However, this strategy does not allow
to encode grammatical roles into the WordSpace. This peculiarity makes our
approach different. A more recent approach to distributional semantics and tree
kernel can be found in [7] where authors propose a tree kernel that exploits
distributional features to compute similarity between words.

5 Evaluation

The goal of the evaluation is to prove the capability of our approach in compo-
sitional semantics task exploiting the dataset proposed by Mitchell and Lapata
[15], which is part of the “GEMS 2011 Shared Evaluation”. The dataset is a list of
two pairs of adjective-noun/verb-object combinations or compound nouns. Hu-
mans rated pairs of combinations according to similarity. The dataset contains
5,833 rates which range from 1 to 7. Examples of pairs follow:

support offer help provide 7

old person right hand 1

where the similarity between offer-support and provide-help (verb-object) is
higher than the one between old-person and right-hand (adjective-noun). As
suggested by the authors, the goal of the evaluation is to compare the system
performance against humans scores by Spearman correlation.

5.1 System setup

The system is implemented in Java and relies on some portions of code publicly
available in the Semantic Vectors package [22]. For the evaluation of the system,
we build our WordSpaces using the WaCkypedia EN corpus3.

3 Available on line: http://wacky.sslmit.unibo.it/doku.php?id=corpora
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Dependency Description Permutation

OBJ object of verbs Π+7

SBJ subject of verbs Π+3

NMOD the relationship between a noun and its adjunct modifier Π+11

COORD coordination Π+23

Table 1. The set of dependencies used in the evaluation.

WaCkypedia EN is based on a 2009 dump of the English Wikipedia (about
800 million tokens) and includes information about: PoS, lemma and a full de-
pendency parse performed by MaltParser [16].

Our approach involves some parameters. We set the random vector dimen-
sion to 4,000 and the number of non-zero elements in the random vector equal
to 10. We restrict the WordSpace to the 500,000 most frequent words. Another
parameter is the set of dependencies that we take into account. In this prelimi-
nary investigation we consider the four dependencies described in Table 1 which
reports also the kind of permutation4 applied to each dependency.

5.2 Results

In this section, we provide the results of semantic composition. Table 2 reports
the Spearman correlation between the output of our system and the scores given
by the humans. Table 2 shows results for each type of combination: verb-object,
adjective-noun and compound nouns. Moreover, Table 2 shows the results ob-
tained when two other corpora were used for building the WordSpace: ukWaC
[1] and TASA.

ukWaC contains 2 billion words and is constructed from the Web by limiting
the crawling to the .uk domain and using medium-frequency words from the
BNC corpus as seeds. We use only a portion of ukWaC corpus consisting of
7,025,587 sentences (about 220,000 documents).

The TASA corpus contains a collection of English texts that is approximately
equivalent to what an average college-level student has read in his/her lifetime.
More details about results on ukWaC and TASA corpora are reported in an our
previous work [3].

It is important to underline that syntactic dependencies in ukWaC and TASA
are extracted using MINIPAR5 [14] instead of the MaltParser adopted by WaCk-
ypedia EN.

The results show that WaCkypedia EN provides a significant improvement
with respect to TASA and ukWaC. This result is mainly due to two factors: (1)
the WordSpace built using WaCkypedia EN contains more words and depen-
dencies; (2) MaltParser produces more accurate dependencies than MINIPAR.
However, considering adjective-noun relation, TASA corpus obtains the best re-

4 The number of rotations is randomly chosen.
5 MINIPAR is available at http://webdocs.cs.ualberta.ca/∼lindek/minipar.htm
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Corpus Combination ρ

WaCkypedia EN

verb-object 0.257
adjective-noun 0.346
compound nouns 0.254
overall 0.299

TASA

verb-object 0.160
adjective-noun 0.435
compound nouns 0.243
overall 0.186

ukWaC

verb-object 0.190
adjective-noun 0.303
compound nouns 0.159
overall 0.179

Table 2. GEMS 2011 Shared Evaluation results.

sult and generally all corpora obtain their best performance in this relation.
Probably, it is easier to discriminate this kind of relation than others.

Another important point, is that TASA corpus provides better results than
ukWaC in spite of the huger number of relations encoded in ukWaC. We believe
that texts in ukWaC contain more noise because they are extracted from the
Web.

As future research, we plan to conduct an experiment similar to the one pro-
posed in [15], which is based on the same dataset used in our evaluation. The idea
is to use the composition functions proposed by the authors in our WordSpace,
and compare them with our compositional model. In order to perform a fair eval-
uation, our WordSpace should be built from the BNC corpus. Nevertheless, the
obtained results seem to be encouraging and the strength of our approach relies
on the capability of capturing syntactic relations in a semantic space. We be-
lieve that the real advantage of our approach, that is the possibility to represent
several syntactic relations, leaves some room for exploration.

6 Conclusions

In this work, we propose an approach to encode syntactic dependencies in
WordSpace using vector permutations and Random Indexing. WordSpace is
built relying on WaCkypedia EN corpus extracted from English Wikipedia pages
which contains information about syntactic dependencies. Moreover, we propose
an early attempt to use that space for semantic composition of short phrases.

The evaluation using the GEMS 2011 shared dataset provides encouraging
results, but we believe that there are open points which deserve more investi-
gation. In future work, we have planned a deeper evaluation of our WordSpace
and a more formal study about semantic composition.
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