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Abstract. Visual logics based on Euler diagrams have recently been
developed, including generalized constraint diagrams and concept dia-
grams. Establishing the metatheories of these logics includes providing
completeness proofs where possible. Completeness has been established
for such logics, including Euler diagrams, spider diagrams and a fragment
of the constraint diagram logic. In this paper, we identify commonality
in their completeness proof strategies, showing how, as expressiveness in-
creases, the strategy readily extends. We identify a fragment of concept
diagrams and demonstrate that the completeness proof strategy does
not extend to this fragment. Thus, we have established that the existing
completeness proof strategies are limited. Consequently, we examine the
challenge of devising new approaches to proving completeness in more
expressive logics.

1 Introduction

There has been a lot of recent interest in logics that, in various ways, extend Euler
diagrams. This interest was sparked by pioneering work in the mid 1990s, by
Hammer [3] and Shin [9]. Hammer developed a very simple sound and complete
Euler diagram logic, whereas Shin devised a logic, called Venn-II, that was more
expressive than Euler diagrams and which she also proved to be sound and
complete. Since these early days we have seen the development of diagrammatic
logics with ever-increasing levels of expressiveness. Amongst these logics, perhaps
the most studied is that of spider diagrams, introduced by Gil et al. [2], which
arose from Kent’s constraint diagram logic [6], formalised in [1]. Building on from
the complete systems of Hammer and Shin, spider diagrams have been shown
to be complete [4], as has a fragment of the constraint diagram logic [11]. Other
related logics include the Euler/Venn system of Swoboda and Allwein [13] and
the Euler system of Mineshima et al. [7].

One reason that significant emphasis has been placed on deriving complete-
ness results for logics is that completeness means that the logic is capable of
proving all theorems expressible within the logic. Formally, a theorem is a state-
ment that semantically follows from a set of statements formulated in the logic,
called axioms. In the case of diagrammatic logics, the set of axioms is a set of
diagrams and a theorem is a diagram whose informational content is derivable
from the axioms. For a theorem to be provable from the axioms, we need to be
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able to apply so-called inference rules, which are (informally) transformations
that alter the syntax of the axioms, until we obtain the theorem.

This paper has two key parts. First, in section 2, we will demonstrate that
there are substantial similarities in existing completeness proof strategies for
Euler-based diagrammatic logics, with the result that we can consider the strate-
gies to be variations on a single approach. In section 3 we describe the task of
extending the proof strategy to a fragment of concept diagrams and show that
the strategy breaks down. We examine the factors whose interaction prevents
the ready extension of the strategy and show that completeness proofs for more
expressive notations will require a different approach. We conclude in section 4
by describing some of the approaches that may be taken to finding suitable new
strategies.

2 Completeness Strategies for Euler Diagram Logics

There have been a number of sound and complete logics based on Euler diagrams
developed to date. All of the proofs of completeness have used constructive
strategies, providing a proof that the theorem follows from the axioms (in fact,
those strategies we demonstrate are restricted to a single axiom). Moreover, they
all adopt a similar framework, converting the diagrams involved into normal
forms that are easily comparable. As we shall demonstrate in this section, the
completeness proof for each considered logic is an extension of the completeness
proofs for its fragments. We show this by detailing the strategies used for a
hierarchy of increasingly expressive logics: Euler diagrams [3], spider diagrams [4]
and, briefly, constraint diagrams as considered in [11].

2.1 Euler Diagrams

Euler diagrams, as investigated by Hammer [3], are the simplest logic that we will
consider. They comprise closed curves, each with a label. In any given diagram,
no two distinct curves have the same label. Examples can be seen in figure 1,
where d expresses that (the sets) A and C are disjoint, B is a subset of A, and
D is a subset of C. The diagram d′ expresses that D is a subset of C. Whilst
the curves (labelled) A and E are present in d′, no information is given about
the relationship of the sets they represent to C and D.

Fig. 1. Three Euler diagrams.
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Hammer’s logic contains just three inference rules: Erasure (of a curve), In-
troduction of a New Curve, and Weakening which allows new regions to be
added; Weakening is illustrated in figure 1, where d + AC is obtained from d
by adding a region inside both A and C. To prove completeness of this logic,
Hammer proceeds by constructing a proof-writing algorithm: given an axiom d
and a theorem d′, carry out the following steps to prove d′ follows from d:

1. Apply the Introduction of a New Curve rule, adding one curve labelled L for
each curve label, L, in d′ that is not in d, to give a diagram dc.

2. Apply the Erasure rule, erasing all curves from dc that have labels not ap-
pearing in d′, to give a diagram de.

3. Apply the Weakening rule, adding minimal regions to de until it is the same
as d′.

The proof of completeness involves showing that it is possible to apply this
algorithm whenever d � d′ (i.e. d semantically entails d′), thus establishing that
d ` d′ (i.e. there is a proof that d′ follows from d). We observe that the first step
of this proof can be considered as kind of maximising step: syntax is added to the
axiom that is used in the theorem. The last step of the proof also adds syntax.
In fact, we can interchange the last two steps without significantly impacting the
details of the completeness proof. Thus, if we add minimal regions before erasing
curves we would genuinely have maximised the syntax in the axiom diagram so
that only inference steps that erase syntax are required in order to obtain d′.
In what follows, we denote the maximised version of d by dmax , and we have,
instead:

1. Apply the Introduction of a New Curve rule, adding one curve labelled L
for each curve label, L, in d′ that is not in d, to give a diagram dc; we can
similarly obtain d′c, which we will use to determine inference rule applications
at the next step.

2. Apply the Weakening rule, adding minimal regions to dw until it has the
same the same minimal regions as d′c, to obtain dw = dmax , the maximised
version of d.

3. Apply the Erasure rule, erasing all curves from dmax that have labels not
appearing in d′, to give a diagram de. Then de = d′.

That is, we have:
d ` dc ` dw = dmax ` de = d′.

To determine which minimal regions to add to obtain dmax , we constructed a
diagram, d′c from d′ by adding the curves with labels that occur in d but not
in d′. Then dc and d′c have the same curve labels, so the minimal regions are
immediately comparable; we add regions that are in d′c but are not in dc, thus
maximising the syntax to get dmax . As we shall see, this concept of maximising
the syntax in the axiom diagram is a recurring theme in subsequently developed
completeness proofs. The completeness proof strategy is illustrated in figure 2,
where we show d ` d′.
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Fig. 2. Proving d ` d′.

In order to illustrate the extension of this strategy to more expressive systems,
including spider diagrams in the next subsection, we formalize the notion of
maximal forms. First, we define an (abstract) Euler diagram:

Definition 1. An Euler diagram is a pair, d = (L,R), where L is a finite set
of curve labels and R ⊆ {(in, L− in) : in ⊆ L} is a finite set of regions.

So, d in figure 2 is, formally, d = (L,R) where L = {A,B,C,D} and

R = {(∅, {A,B,C,D}), ({A}, {B,C,D}), ({A,B}, {C,D}), ({C}, {A,B,D}), ({C,D}, {A,B})}.

For example, ({A}, {B,C,D}) corresponds to the region inside the curve labelled
A but outside the curves labelled B, C, and D1.

Now, going back to the completeness proof strategy, we have seen that dmax

is created by constructing the diagram d′c which does not formally comprise part
of the proof that d ` d′; in figure 2 we have dmax = d′c when d ` d′. We define
the maximal form as follows:

Definition 2. Let dc = (L,R) and d′c = (L′, R′) be Euler diagrams such that
L = L′. The diagram dc is maximal with respect to d′c provided R′ ⊆ R.

It can be shown, given that dc is maximal with respect to d′c, d � d′c if and
only if R = R′. In terms of the completeness proof strategy, this means that
dmax = d′c. Our re-ordering of the steps in Hammer’s completeness proof can
now be informally justified. Firstly, to dc we add precisely the minimal regions
in d′c that are not in dc to give dw = dmax . Since d

′
c is semantically equivalent to

d′ and d′c = dmax , it should be easy to see that we can then merely delete curves
from dmax to give d′, establishing completeness.

1 The elements of R are often called zones but in this paper we call them regions for
consistency with Hammer’s work.
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2.2 Spider Diagrams

Spider diagrams extend the Euler diagram logic of Hammer in two distinct ways:
they are augmented with (a) trees, called spiders, and shading, both of which are
used within diagrams to place constraints on set cardinality, and (b) logical con-
nectives which are used to allow more complex expressions to be formed. Whilst
Euler diagrams form a very simple monadic first-order logic, spider diagrams
take the level of expressiveness to monadic first-order logic with equality [12].

Examples of spider diagrams can be seen in figure 3 where, in addition to
the information provided by the underlying Euler diagram, d1 expresses – using
spiders – that there are at least two elements, one of which is in B and the
other of which is in B ∪D. Diagram d1 also expresses – using shading – that no
further elements are in B. Here, each of the spiders (one of which comprises a
single node) represents the existence of an element. The shading in a region, r,
expresses that all elements in the set represented by r must be represented by
spiders. The spider diagram d2 ∨ d3 is semantically equivalent to d1.

Fig. 3. Three spider diagrams.

The completeness proof strategy for spider diagrams, from [4], starts with
axiom d and theorem d′, so d � d′, and, as with Hammer’s approach, constructs
a proof to show that d ` d′. In brief, the process starts off by converting d
to a normal form where the only logical connective used is ∨ and the spiders
each comprise just a single node, giving a diagram we will denote by dNF (NF
for Normal Form). Of note is that the construction of dNF includes some of
the steps we need to maximise syntax in the axiom: all of the so-called unitary
diagrams contain all of the curve labels that occur somewhere in either the
axiom or theorem. Unitary diagrams are spider diagrams which do not involve
any logical connectives. In addition, the unitary diagrams in this normal form
contain the same sets of regions. For Euler diagrams we constructed d′c to direct
which regions we needed to add. The same approach is used for spider diagrams:
we convert diagram d′ to, in this case, d′NF in order to allow us to identify which
inference rules to apply to dNF to give d′NF and, subsequently, to obtain d′ (which
is both syntactically and semantically equivalent to d′NF ).

Since the rules applied to convert to normal forms are equivalences, we see
that if it can be shown that dNF ` d′NF , then we have established

d ` dNF ` d′NF ` d′.
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We focus on the part of the completeness proof that establishes dNF ` d′NF .
Since dNF is in normal form, by definition this means that

dNF =
∨

1≤i≤n

di,

where each di is a unitary spider diagram containing only spiders that are single
nodes. Similarly,

d′NF =
∨

1≤i≤m

d′i.

Returning to our consideration of regions, these normal forms ensure that, for
each di and d′j in dNF and d′NF respectively, the sets of regions are the same.
That is, if we consider the underlying Euler diagrams, Li = L′

j and Ri = R′
j .

So, the ‘Euler part’ of di is maximal with regard to the ‘Euler part’ of dj and
we have the right ‘Euler conditions’ for semantic entailment (i.e. if there were
no spiders or shading then di ` d′j). What remains is to consider the effects
of spiders and shading. By comparing dNF and d′NF , an inference rule can be
applied to dNF in order to add spiders and shading to its components, increasing
the number of diagrams in the disjunction, until it can be established that each
unitary diagram, di, in the axiom logically entails a unitary diagram, d′j , in
the theorem. In this sense, the completeness proof strategy for spider diagrams
maximizes the syntax in the axiom by adding curves (to get the ‘right’ curve
label set), adding regions, and finally adding spiders and shading. Similar to the
Euler diagram case, once this maximal form is achieved it is merely a matter of
erasing syntax from di to obtain d′j . We have di ` d′NF (by using an inference
rule analogous to P ` P ∨ Q in propositional logic). Subsequently, it can be
trivially shown that dNF ` d′NF , as required. We refer to [4] for full details.

For our purposes, it is sufficient for us to now define unitary spider diagrams
where spiders comprise only single nodes, and to extend the definition of maximal
to this case.

Definition 3. A spider diagram is a tuple, d = (L,R,R∗, S, η), where (L,R)
is an Euler diagram, R∗ ⊆ R is a set of shaded regions, S is a finite set whose
elements are called spiders and η : S → R is a function that identifies the region
in which each spider is placed.

In figure 3, the spider diagram d2 has d of figure 2 as its underlying Euler dia-
gram for which we previously specified L and R. In addition, there is one shaded
region, and we have R∗ = {({A,B}, {C,D})}, two spiders, so S = {s1, s2}, and
these spiders are placed in regions as given by η(s1) = ({A,B}, {C,D}) and
η(s2) = ({C,D}, {A,B}). For diagrams with spiders comprising single nodes,
the definition of maximal is as follows:

Definition 4. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider di-
agrams such that L = L′. The diagram d is maximal with respect to d′ provided
R′ = R, R∗′ ⊆ R∗ and there exists an injection, f : S′ → S such that for each
s′ ∈ S′, η′(s′) = η(f(s′)).
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The definition of maximal given for spider diagrams generalizes that for Euler
diagrams2. Intuitively, our definition of maximal is saying that everything that
occurs in d′ also occurs in d. The next lemma follows from a similar result in [4]
(essentially restated here using our terminology):

Lemma 1. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider di-
agrams such that L = L′ and R = R′. Suppose d is maximal with respect to
d′. Then d � d′ if and only if for each shaded region, r′, in R∗′, the number of
spiders in r′ in both diagrams is the same.

Theorem 1. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider di-
agrams such that L = L′ and R = R′. If d is maximal with respect to d′ and
d � d′ then d ` d′.

Proof (Sketch). By lemma 1, each region that is shaded in d′ contains the same
number of spiders in d. Thus we can erase shading from d until R∗ = R∗′,
obtaining di, then remove spiders from di, that are not mapped to by the injective
function f : S(d′) → S(d). Finally, rename the spiders to obtain d′.

Theorem 2. Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′) be spider dia-
grams such that L = L′ and R = R′. If d � d′ then d is maximal with respect to
d′.

Proof (Sketch). The proof is by contradiction. Suppose d � d′ but d is not
maximal with respect to d′. Then eitherR∗′ 6⊆ R∗ or there is no suitable injection,
f , from the spiders of d′ to those of d. In the first case, d′ contains a shaded
region, r, which is non-shaded in d. Then d′ asserts that the set represented
by r contains exactly n elements, where n is the number of spiders in r in d′.
However, d allows the set represented by r to contain n+ 1 elements, so d 6� d′.
In the second case, where there is no suitable injection, f , there is a region, r′, in
d′ that contains more spiders than in d. Here, d asserts that the set represented
by r′ contains at least n elements, where n is the number of spiders in r′ in d.
However, d′ asserts that the set represented by r′ contains at least n+j elements,
where j is the number of ‘extra’ spiders in r′ in d′. Again, d 6� d′. Thus, since
d � d′, the conditions for maximality must be satisfied.

We now have a completeness result concerning the fragment of the spider
diagram logic that we have defined:

Theorem 3 (Completeness). Let d = (L,R,R∗, S, η) and d′ = (L′, R′, R∗′, S′, η′)
be spider diagrams such that L = L′ and R = R′. If d � d′ then d ` d′.

Proof. If d � d′ then, by theorem 2, d is maximal with respect to d′. By theo-
rem 1, d ` d′.

To summarize, whilst the overall strategy is more complex, we still have a
process of adding syntax to the axiom in order to maximize it with respect to
the theorem we are aiming to prove.

2 Note that for Euler diagrams we stipulated R′ ⊆ R, but for spider diagrams we
have R = R′. This difference is not significant; it merely makes the details of our
argument more straightforward.
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2.3 Constraint Diagrams

Constraint diagrams build on spider diagrams by adding further syntax, in par-
ticular arrows, to place constraints on binary relations. The system developed
in [11] was shown to be sound and complete, with the completeness proof strat-
egy directly extending that for spider diagrams. We omit formal definitions of
these diagrams and maximal forms, and just illustrate the concepts by example.

Fig. 4. Constraint diagrams: maximal forms and completeness.

First, to give a brief introduction to the meaning of arrows, consider d in
figure 4. The arrow labelled g tells us that (the element represented by) the
spider at its source is related to precisely the elements in C, the target, under
(the relation represented by) g. Similarly, the spider in D is related to the unique
element in B under f , and no other elements. In this example, d is maximal with
respect to both d′ and d′′. Here, d � d′ but d 6� d′′. In the case of d and d′, we
can injectively map the spiders from d′ to d in such a manner that the regions in
which they are placed match. That is, there is an injective function f : S′ → S
where η(s′) = η(f(s′)) and f ensures that the induced function g : A′ → A is
also an injection, where A′ and A are the sets of arrows for d′ and d respectively.
Arrows are of the form (label , source, target) and g(l, s, t) = (l, f(s), f(t)) in the
case where s and t are both spiders. We then delete shading, along with spiders
and arrows that are not mapped to by f and g, from d to obtain d′.

Similar functions exist for d and d′′, but this time we cannot apply inference
rules to erase syntax from d to give d′′. We would need to erase a spider from
a shaded region, which is not sound; as with spider diagrams, the numbers of
spiders in the shaded regions of the theorem, d′, must match those in the axiom,
d. Similarly to the spider diagram case, the number of spiders in the shaded
regions of the theorem must be the same as in the axiom. These examples give
the idea of the maximal forms used in constraint diagrams. We refer the reader
to [11] for the full details which are too complex to illustrate in full here.

3 Concept Diagrams: The End of the Strategy?

We now consider extending the proof strategy described in the previous section
to concept diagrams, which are intended to be used to model ontologies; see [5]
for a practical example. They were introduced by Oliver et al. in 2009 [8] and
extend constraint diagrams. Concept diagrams may include unlabelled curves,
which we call anonymous curves and which represent anonymous subsets of the
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universal set. These provide an increase in expressiveness over notations such
as constraint diagrams. As with our consideration of spider diagrams, we only
permit spiders to comprise single nodes. Thus, taking a concept diagram from
this fragment and removing its arrows and anonymous curves yields a spider
diagram from the fragment defined in section 2.2.

Fig. 5. A concept diagram.

The diagram in figure 5 is a concept diagram. The part of the diagram made
up of labelled curves, shading and spiders is a spider diagram. The arrows provide
information about binary relations. The diagram d expresses the following, in
addition to the information given in the underlying spider diagram:

1. there are two sets, x and y, the former is a subset of A and the latter is a
subset of C,

2. the image of the relation f , when its domain is restricted to y, is A,
3. there is an element, a, in A− x such that the image of the relation g, when

its domain is restricted to a, is the element in C − y.

We now present the syntax of the fragment of concept diagrams under con-
sideration, adapted from [10].

Definition 5. A unitary concept diagram is a tuple d = (L,C,R,R∗, S, η, A),
where

1. L = L(d) is a finite set whose elements are called labelled curves,
2. C = C(d) is a finite set whose elements are called anonymous curves,
3. R = R(d) is a set of regions such that

R ⊆ {(in, (L ∪ C)− in) : in ⊆ L ∪ C}.

4. R∗ = R∗(d) ⊆ R is a set of shaded regions.
5. S = S(d) is a finite set whose elements are called spiders,
6. η = ηd : S → R is a function that returns the location of each spider.
7. A = A(d) is a finite set of arrows, each of the form (l, s, t), where l is the

label, s ∈ L ∪ C is the source and t ∈ S ∪ L ∪ C is the target.

If d = (L,C,R,R∗, S, η, A) is a concept diagram and C = ∅ then ds =
(L,R,R∗, S, η) is a spider diagram. Semantics are assigned to concept diagrams
similarly to the previous notations discussed: in addition to the usual interpre-
tation of the underlying spider diagram, the arrows of a concept diagram place
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restrictions on binary relations and the anonymous curves represent the existence
of sets as illustrated in our examples3.

In order to extend the strategy discussed in the previous section to concept
diagrams, we first extend the definition of maximality:

Definition 6. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A)
be concept diagrams such that L = L′. The diagram d is maximal with respect
to d′ provided:

1. there exists a bijection g : L′ ∪ C ′ → L ∪ C such that
(a) g is the identify map when its domain is restricted to L′,
(b) g induces a bijection h : R′ → R, defined by h(in, out) = (in ′, out ′),

where
i. in ′ = {g(c′) : c ∈ in}, and
ii. out ′ = {g(c′) : c′ ∈ out},
which ensures for each (in, out) ∈ R∗′, h(in, out) ∈ R∗,

2. there exists an injection, f : S′ → S such that for each s′ ∈ S′, η′(s′) =
η(f(s′)), and

3. g and f induce an injection p : A′ → A defined by

p(l, s, t) =


(l, g(s), g(t)) if s, t ∈ L′ ∪ C ′

(l, g(s), f(t)) if s ∈ L′ ∪ C ′ ∧ t ∈ S′

(l, f(s), g(t)) if s ∈ S′ ∧ t ∈ L′ ∪ C ′

(l, f(s), f(t)) if s, t ∈ S′.

Equipped with the definition of maximality, we can examine how to generalize
the lemma and theorems from section 2.2 in order to extend the strategy. We
start by considering the equivalent of lemma 1:

Conjecture 1. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. Suppose d is maximal with respect to
d′. Then d � d′ if and only if for each shaded region, r′, in R∗′, the number of
spiders in r′ is the same as the number of spiders in h(r′) in d.

Figure 6 shows a counterexample to conjecture 1. First, it is obvious that d1
is maximal with respect to d2. Here, d1 tells us that there exists a set containing
exactly two elements. From this we can deduce that there exists a set containing
exactly one element. That is, d2 follows logically from d1. The shaded region in d2
contains fewer spiders than in d1. In both these diagrams, we see that the shading
is actually redundant: removing the shading does not alter the informational
content of the diagrams.

3 Here, we note that our representation of concept diagrams assumes that spiders
represent the existence of elements; strictly, in concept diagrams, spiders act as free
variables. Formally, unitary diagrams as we have defined them would need to be
prefixed by existential quantifies (one for each spider) to get our interpretation.
However, to avoid diagram clutter, we simply omit the existential quantifiers since
no ambiguity arises.
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Fig. 6. The spiders in the shaded regions do not match.

Clearly, such problems concerning spiders and shading impact our ability to
obtain a completeness result for the fragment under consideration. In order to
obtain completeness, we need inference rules that allow us to identify when (a)
shading is redundant, (b) we can delete spiders from shaded regions, and (c)
when anonymous curves are redundant. Worthy of note is that the diagrams
in figure 6 are semantically equivalent to spider diagrams (on removing the
anonymous curves, the informational content is unaltered). Thus, the problems
here arise from the syntactic richness of the notation and are not merely because
of an increase in expressive power.

To proceed with our exposition of problems that arise when attempting to
extend the previously used proof strategies to concept diagrams, we extend the
definition of maximal to incorporate the condition on shading given in conjec-
ture 1:

Definition 7. A concept diagram d is strongly maximal with respect to d′

provided

1. d is maximal with respect to d′, and
2. for each shaded region, r′, in R∗′, the number of spiders r′ is the same as

the number of spiders in h(r′) in d.

By doing this, we are following the standard mathematical process of applying
further constraints to a conjecture for which we have found a counterexample. In
fact, conjecture 1 is trivially true in the strongly maximal case. As a consequence,
our attempts to extend the completeness strategy apply to a smaller fragment
of concept diagrams.

Next, we consider extending theorem 1 to concept diagrams:

Conjecture 2. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. If d is strongly maximal with respect to
d′ and d � d′ then d ` d′.

To establish the truth of conjecture 2, we start by defining the inference rules
which are needed to establish d ` d′, if d is strongly maximal with respect to d′

and d � d′.

Inference rule 1: Remove arrow. Let d = (L,C,R,R∗, S, η, A) be a concept
diagram and let a ∈ A be an arrow in d. Let d′ = (L,C,R,R∗, S, η, A− {a}) be
the diagram obtained by removing a from d. Then d logically entails d′.
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Inference rule 2: Remove shading. Let d = (L,C,R,R∗, S, η, A) be a concept
diagram and let r∗ ∈ R∗ be a shaded region in d. Let d′ = (L,C,R,R∗ −
{r∗}, S, η, A) be the diagram obtained by removing the shading from r∗ in d.
Then d logically entails d′.

Inference rule 3: Remove spider. Let d = (L,C,R,R∗, S, η, A) be a concept
diagram and let x ∈ S be a spider with an non-shaded location in d. Let d′ =
(L,C,R,R∗, S−{x}, η, A) be the diagram obtained by removing x from d. Then
d logically entails d′.

Inference rule 4: Substitute spider Let d = (L,C,R,R∗, S, η, A) be a con-
cept diagram and let x ∈ S. Let y be a spider not in S. Let d′ = (L,C,R,R∗, (S−
{x})∪{y}, (η−{(x, η(x)})∪{(y, η(x)}, A) be the diagram obtained by replacing
x with y in d1. Then d is logically equivalent d′.

Inference rule 5: Substitute anonymous curve Let d = (L,C,R,R∗, S, η, A)
be a concept diagram and let c ∈ C. Let c′ be an anonymous curve not in C.
Let d′ be the diagram obtained from d by replacing all occurrences of c with c′.
Then d is logically equivalent d′.

Lemma 2. The inference rules are sound.

We have sufficient inference rules to show that conjecture 2 is true.

Theorem 4. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. If d is strongly maximal with respect to
d′ and d � d′ then d ` d′.

Proof (Sketch). Assume d is strongly maximal with respect to d′. By the def-
inition of strong maximality there is an injection, p, from the arrows of d′ to
the arrows of d. Therefore, we can apply rule 1, remove arrow, to d until its
arrows match those of d′, i.e. p becomes bijective. Similarly, we can apply rule
2, remove shading, repeatedly until the shading of d matches that of d′. Now,
by the definition of strong maximality, each shaded region, r′, in d′, contains
the same number of spiders as h(r′) in d. This means we can apply rule 3 to
remove spiders until f is bijective. All that differs now are the spiders and the
anonymous curves. Apply rules 4 and 5 to obtain d′.

We must now consider whether theorem 2 extends to concept diagrams:

Conjecture 3. Let d = (L,C,R,R∗, S, η, A) and d′ = (L′, C ′, R′, R∗′, S′, η′, A′)
be concept diagrams such that L = L′. If d � d′ then d is strongly maximal with
respect to d′.

Figure 6 provides a counterexample to conjecture 3 (as well as conjecture 1).
The problems arising from counterexamples like figure 6 may be easy to over-
come (by defining inference rules that remove redundant anonymous curves, for
instance). We will now demonstrate that problems also arise in more complex
situations where arrows are involved.
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Such a counterexample to conjecture 3 can be seen in figure 7. In d, the
anonymous curves x and y are given labels for convenience. The arrow (f,A,B)
tells us the image of f when its domain is restricted to A is B. One of the elements
inside x is related to nothing under f , which we know by the arrow targeting
the curve that represents the empty set (i.e. the curve containing shading but no
spiders). At least one of the other elements inside A must therefore be related
to the element inside B. In d′, the arrows provide this information that we have
just deduced from the arrows of d. The other information provided by d′ ‘agrees’
with that provided by d, so d � d′. However, d is not strongly maximal with
respect to d′: there is no appropriate injective mapping from arrows of d′ to
those of d.

Fig. 7. Conjecture 3: not enough arrows.

Fig. 8. Adding arrows.

As stated above, with regard to shading and spiders we can attempt to over-
come the problems by devising inference rules for removing redundant anony-
mous curves, for example. With regard to arrows, the question arises as to
whether we can add arrows to diagram d, figure 7, until there is an appropriate
injection from the arrows of d′ to those of d. This leads to the notion of poten-
tial arrows, those arrows which can be added to a diagram without changing its
meaning:

Definition 8. Let d = (L,C,R,R∗, S, η, A) be a concept diagram and let a 6∈ A
be an arrow not in d. Let d′ = (L,C,R,R∗, S, η, A ∪ {a}). If d is semantically
equivalent to d′ then a is a potential arrow for d.

In figure 7, there are two potential arrows for d. The arrow (f,A,B) tells us
that at least one element of A is related under f to the element in B, and so
we can add an arrow which represents this information explicitly. The arrows
(f, x,B) in diagram d1 and (f, y,B) in diagram d2, figure 8, are potential arrows



15

for d, since either arrow can be added to d without changing its meaning. After
adding either arrow, however, the other arrow ceases to be a potential arrow.
Neither d1 nor d2 have any potential arrows. Thus, an element of choice arises
when adding potential arrows to concept diagrams, which again causes problems
for completeness. Rather, adding potential arrows results in a set of obtainable
diagrams each of which is semantically equivalent to the original diagram. In
figure 8, {d1, d2} is the set of such diagrams obtainable from d (figure 7).

If we are to extend the completeness proof strategy by adding arrows to
the axiom, all of the diagrams obtained from d using this process must have an
arrow set that can be injectively mapped to by the arrows of d′ in the appropriate
way; this is because the diagrams obtained are semantically equivalent to d and,
therefore, semantically entail d′. We can see that we can remove syntax from d2
to obtain d′ since d2 is strongly maximal with respect to d′. However , there is
currently no sequence of rules that would, or general strategy that can be used
to, transform d1 into d′, even though d1 � d′ (since d1 is semantically equivalent
to d and d � d′); d1 is not strongly maximal with respect to d′.

A possible approach to overcome this problem is to determine whether we can
remove syntax from d′ without changing its meaning until we have an appropriate
injection from its arrows to those of, in this example, d1. Unfortunately, no arrows
can be removed from d′ without weakening information, so such an approach is
still insufficient.

Compared to the steps required to extend the definition of maximality, the
non-uniqueness of the ways in which we can add arrows is the most serious blow
so far to the aim of extending the completeness proof strategy. It is not at all
clear how we need to change the syntax of an arbitrary axiom, d, to obtain d′

in general. As we have demonstrated, we need to devise strategies for altering
the spiders, shading and the arrows present in either the axiom and/or theorem
until the axiom is strongly maximal with respect to the theorem. Even once this
is solved, it will be challenging to extend the completeness proof strategies to
larger fragments of the concept diagram logic.

4 Conclusion

We have identified commonality in the completeness proof strategies of various
logics based on Euler diagrams and shown how, as expressiveness increases, the
strategy readily extends in some cases. We have illustrated various ways in which
this strategy breaks down for concept diagrams, which are syntactically richer
and more expressive than earlier logics based on Euler diagrams. The problems
identified with extending the completeness strategy to concept diagrams arise
because we cannot simply delete syntax from the axiom to obtain the theorem,
even for the very small fragment that we considered. Thus, we have established
that the existing completeness proof strategies are limited. The non-unique ways
of adding syntax to concept diagrams, which further complicates the issue, re-
sults from the syntactic richness of the notation and from their expressive power.
We believe that the same phenomena will arise in equally expressive logics.
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We examined ways in which parts of the completeness proof strategy might
be ‘patched up’ but we conjecture that a new strategy needs to be developed. One
(rather undesirable) route to obtaining completeness for fragments of concept
diagrams is to derive inference rules for them inspired by complete symbolic
logics4. This is not the route we want to pursue, strongly preferring a set of
inference rules that makes use of diagrammatic reasoning. Even small fragments
of the more expressive visual logics will require new completeness strategies.

We believe the need for expressive visual logics such as concept diagrams is
clear, since they allow the techniques of diagrammatic reasoning to be applied in
new domains, such as ontology specification. For these logics to be fully exploited,
we need to develop sound inference rules with clearly understood metatheories,
including establishing expressiveness and identifying complete fragments. Un-
derstanding the effect that increases in both syntactic richness and notational
expressiveness have on completeness is essential for the informed design of new
logics.
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