
Support for Eviation Detections in the Context of Multi-

Viewpoint-Based Development Processes

Reda Bendraou
1
, Marcos Aurélio Almeida da Silva

1,2
, Marie-Pierre Gervais

1,2
 and

Xavier Blanc
3

1 LIP6, UPMC Paris Universitas, France
2 UPO, Université Paris Ouest, France

{reda.bendraou, marcos.almeida, marie-pierre.gervais}@lip6.fr
3 Labri, Université de Bordeaux 1{xavier.blanc@labri.fr}

Abstract. One recurrent issue in software development processes are develop-

er’s deviations from the process model. This problem is amplified in the context

of multi-viewpoint-based development of complex systems where the system’s

specification comes in form of different and intertwined viewpoints. Without a

methodological support, these deviations become inevitable. They can be of dif-

ferent kinds: 1) behavioral deviations related to inappropriate actions performed

by the developer when realizing process’s activities or 2) structural deviations

due to inconsistencies in deliverables, which can be in conflict with other view-

point’s outcomes. This paper proposes an approach to overcome these issues.

To demonstrate the approach, a prototype was developed and the RM-ODP

standard and a viewpoint-based development process were used.

1 Introduction

Recently, multi-viewpoint modeling appeared to be a promising approach for dealing

with system’s complexity. The system is described through the composition of differ-

ent viewpoints, each one focusing on a precise concern such as security, persistency,

GUI, and so on. The main idea is to focus the developer’s attention on a specific as-

pect of the system thus, abstracting away all the irrelevant details. Different modeling

languages can be used for the specification of the system’s viewpoints and they can

be at different levels of abstraction. This inevitably raises problems related to the

heterogeneity of the viewpoints, the overlapping of the concepts between them, and

the fact that consistency should be constantly maintained between them. Large-scale

systems span multiple and intertwined viewpoints; involve long and multidisciplinary

design activities which are not supposed to be known by all project’s developers.

In such context, it becomes essential to provide a methodological support during

the development process. Indeed, when a developer is performing modeling actions

inside a process’s activity on a given viewpoint, he usually does not have a global

view of the whole system design and is far away from assessing instantly the effects

of his actions on the other system’s viewpoints

Many approaches provide methodological support with the help of process execu-

tion and monitoring engines, also called PSEE (Process-centered Software Engineer-

mailto:%7breda.bendraou,%20marcos.almeida%7d

ing Environment) [2][3]. They mainly ensure that the process is correctly applied by

the developers by verifying that the activities are executed in the appropriate order

and timing, and that the roles are correctly assigned to the right developers. However,

if the developer is performing inappropriate actions inside a given activity, this will

not be reported by the PSEE. Moreover, if these actions are in contradiction with the

process guidelines, they will straightforwardly impact the other viewpoints. As a con-

sequence, the effects are discovered very late, and hence will require costly mainte-

nance actions. Detecting such deviations as soon as they occur can improve the pro-

cess organization and prevent from risks of project failure and unnecessary delays.

In this work we propose an approach for providing a process support in the context

of multi-viewpoint development processes. This support is manifold. First it ensures

that developers perform the process in the specified order. Second, it makes sure that

in each viewpoint, the developers are following the process guidelines and that they

are not violating the project’s methodological constraints. It also enforces that devel-

oper’s actions in a viewpoint do not impact negatively the other system’s viewpoints.

Finally, it is able to detect developer’s deviations from the process model as soon as

they occur and to warn the developer of the deviation’s cause.

To illustrate our approach, we use RM-ODP (Reference Model of Open Distribut-

ed Processing) [5,7], a multi-view-based standard for the specification of distributed

systems. The next section categorizes the kinds of process deviations that may occur

in such a context and their effects on the process execution. Section 3 presents in

details our approach. It is based on Praxis Rules, our language for expressing process

and methodological constraints in the context of multi-viewpoint design. The ap-

proach is then evaluated in Section 4 through a case study using RM-ODP. Section 5

concludes this paper and sketches some perspectives of this contribution.

2 Categorization of process deviations

Developer’s deviations that may occur during a development process can be catego-

rized into four kinds. The first one is what we call organizational deviations. They

occur when an activity’s deadline is not respected, when a role is not fulfilled or as-

signed to inappropriate developer. The second kind is called micro behavioral devi-

ations. These deviations occur when a developer is performing inappropriate actions

inside a modeling activity and thus, violating methodological guidelines or business

constraints (e.g. a developer is applying a design pattern in a wrong way). This kind

of deviation may be the consequences of developer’s misunderstanding of the work to

accomplish or his willingness to perform the activity by following his intuitions and

experience. In the context of multi-viewpoint modeling, if developers are performing

modeling actions that are in complete contradiction with what was specified in other

related viewpoints, they won’t be notified with the eventual conflicts until the end of

the activity i.e., until they submit their deliverables to the PSEE for a structural check.

We believe that the early detection of micro behavioral deviations can avoid rework

actions which represents a considerable gain in terms of time and efforts. Our propo-

sition aims at detecting them as soon as they occur in order to prevent project manag-

ers from process failures.

Structural deviations are triggered when a model delivered by an activity has

some inconsistencies. In the context of multi-viewpoint modeling the fact that differ-

ent modeling languages can be used in each viewpoint adds more complexity in main-

taining the structural consistency between the different deliverables. The challenge is

then to provide an independent-modeling language approach to ensure such con-

sistency. In section 3 we present our proposition to this problem.

 Finally, macro behavioral deviations occur when a developer decides to execute

process’s activities in a different order than the one prescribed by the process model.

This can be due to an expected project’s constraints. In all cases, it is primordial that

deviations, whatever their kind, have to be captured by the PSEE and reported instant-

ly to the project manager in order to assist him in taking the appropriate decisions.

3 Praxis and Praxis Rules

Praxis and Praxis Rules are the building blocks of our approach. Due to the lack of

space, in the following we focus on demonstrating their use for detecting only struc-

tural and micro behavioral deviations. The same principle applies for the other kinds

of deviations.

3.1 Praxis

Praxis is used to represent each elementary modeling action performed by a developer

within a modeling tool [1]. This representation has already been used in the context of

artifacts described in different languages like EMF, UML, XML and Java
1
. It consists

of six classes of atomic actions inspired from the MOF reflexive API [4]. The cre-

ate(me, mc, t) and delete(me; t) actions respectively create and delete a model element

me, that is an instance of the meta-class mc at the timestamp t. The addProperty(me,

p, value, t) and remProperty(me, p, value, t) add or remove the value value to or from

the property p of the model element me at timestamp t. Similarly, the actions

addReference(me, r, target, t) and remReference(me, r, target, t) add or remove the

model element target to or from the reference r of model element me at timestamp t.

In the present work, we extend every Praxis action with an extra parameter v to

represent the viewpoint in which it has been performed. For example, the action cre-

ate(me, mc, t, v) represents the creation of the model element me, an instance of the

metaclass mc, in the timestamp t in the viewpoint v. The same applies for the other

kinds of actions. With this extension, we can then represent the different actions per-

formed by developers over different kinds of models. Figures 2 and 3 exemplify two

different viewpoints in a given system. The former represents its structural viewpoint

with the package Azureus and the Client and Server classes. The second figure repre-

sents the behavioral viewpoint by means of a sequence diagram.

Now suppose that a modeler renames server role in the behavioral viewpoint from

Role2 to MainServer and that, later, another modeler deletes an operation from the

structural viewpoint. These low level actions can be represented by the sequence of

Praxis actions below. Notice that Praxis is able to represent changes in different

viewpoints in a way that is independent of the meta-models used to represent them.

1 http://code.google.com/p/harmony.

remProperty(role2, name, ‘Role2’, 12, ‘behavioral’).

addProperty(role2, name, ‘MainServer’, 13, ‘behavioral’).

delete(op1, operation, 14, ‘structural’).

3.2

3.2 Praxis Rules

PraxisRules is the rule based language that is used by the PSEE to detect both struc-

tural and behavioral deviations during process execution. This language has already

been used to detect structural deviations in industrial multi-view models [6] and in

structural and behavioral deviations in single viewpoint PSEEs [9]. The PSEE detects

deviations by comparing each rule with a Praxis trace captured from the process exe-

cution. There are two kinds of rule in PraxisRules, 1) activity post-condition rules that

define structural constraints over a sequence of praxis actions and, 2) activity invari-

ant rules that define behavioral constraints over a sequence of praxis actions.

Activity post-condition rules have the form “ruleName(Variables)

<=>expression.” where ruleName is the name of the rule, Variables is a list of varia-

bles in the rule and expression is a logical expression. The meaning of such rule is

that ruleName(Variables) is true in the sequence if and only if expression holds. In

the expression, a combination of logic predicates such as and{…} for conjunctions,

or{…} for disjunctions and not{…} for negations and references to Praxis actions

(such as create(ME,MC,T,VP)) is allowed.

Activity invariant rules have the form “ruleName(Variables) @ action <=> ex-

pression.”, where ruleName represents the name of the rule and Variables list of vari-

ables in the rule. @action is an action variable that refers to a particular action in the

sequence. The expression expression is then used to validate the presence of @action

in the sequence or to define the allowed order of other actions taking it as reference.

The order of actions is defined by temporal operators like @before{…} and

@after{…}. For example, the expression @before{ action1 @ addReference(A, B, C),

action2 @ remReference(A, B, C) } means that the action matching addReference(A,

B, C), represented by the action variable @action1, should appear before the action

matching remReference(A, B, C),represented by the action variable @action2, in the

Praxis sequence. Notice that variables are represented by words starting in uppercase

letters and in lower case letters for action variables; that timestamps may be omitted

from Praxis actions; and that the syntax [@action] call ruleName(Parameters) is used

Fig. 2. Structural viewpoint: a UML package with

 its content

Azureus

ServerClient

send()

Attribute : real

Operation()

Attribute : char

Fig. 3. Behavioral viewpoint : Sequence Diagram

to call the rule ruleName with the parameters Parameters and with the action @action

for activity invariant rules.

In order to check a constraint that may span multiple models i.e. inter-model con-

straints, in this paper we allow the viewpoint information in the Praxis representation

of actions to be used in PraxisRules. Indeed, contrarily to languages like OCL [8],

PraxisRules does not impose unique context constraints and can be used to express

constraints over a sequence of editing actions among a set of viewpoints. Thus, every

time a developer performs a modeling action in a specific viewpoint, the latter is cap-

tured by Praxis and annotated with the timestamp and the viewpoint information.

Inter-model constraints represented in the form of a PraxisRule are then checked over

the combination of the entire viewpoints’ sequences of actions. If the rule does not

hold, a deviation is triggered.

For instance, let us consider the structural viewpoint given in Figure 2 and the be-

havioral viewpoint given in Figure 3. In this example, one inter-model behavioral

constraint could be that during an activity called renameMessages, the developer

would be asked to rename the messages in the behavioral viewpoint, but that the

names he provides need to correspond to names of operations in the structural view-

point. Using Praxis Rule this is how such a constraint is expressed:

renameMessagesInv(M) @ action <=> or {

 action @ remProperty(E, name, Name, ‘behavioral’),

 and {

 action @ addProperty(E, name, Name, ‘behavioral’),

 call existsElementInViewpointByName(Name, operation, ‘structural’)

 }}

existsElementInViewpointByName(Name, MC, V) {

 create(E, MC, V),

 addProperty(E,name, Name)

}

This rule called renameMessagesInv states that an action @action should be either

a remProperty(E, name, Name, ‘behavioral’), meaning a removal of a name of some

element in the behavioral viewpoint, or an addProperty(E, name, Name, ‘behavior-

al’), meaning the addition of a name for some element in the behavioral viewpoint.

The addProperty action is further constrained by the existence of an operation OP in

the structural viewpoint having the same Name as the element E renamed by the de-

veloper. This extra constraint is enforced by the rule called

existsElementInViewpointByName. This rule is verified by the PSEE by replacing the

action variable @action with every action executed during the activity. A micro be-

havioral deviation is then raised if the developer executes any action that does not

conform to the constraint. That is the case when he renames a message with the name

of inexistent operation or when other actions like creating new elements are per-

formed.

4 Evaluation

In order to evaluate the feasibility of our approach we developed a prototype and

tested it in the context of a development process. We used RM-ODP, a multi-

viewpoint-based standard for the specification of distributed systems [7]. As a process

example, we borrowed the one presented in the UML4ODP profile specification [5].

It describes the design process of the “Templeman Library system” using RM-ODP.

In the case study presented in Section 4.2, Praxis Rules are used 1) to specify RM-

ODP consistency rules and to illustrate the occurrence of a structural deviation (inter-

viewpoints) and its detection in case of one of these rules is violated; 2) to define the

set of allowed actions during the modeling of a given viewpoint of the Library sys-

tem. The process part consisting in defining the Enterprise viewpoint was taken as an

example to illustrate the occurrence of micro behavioral deviations and how our pro-

totype detects them. The RM-ODP defines 5 viewpoints, namely the Enterprise, the

Information, the Computational, the Engineering and the Technology viewpoints. For

the interested reader, more details can be found on RM-ODP in [7]. In the following,

we present our prototype.

4.1 Prototype

In our prototype, we adopted MagicDraw
2
 as a modeling tool. Our choice was influ-

enced by the fact that MagicDraw provides a UML Profile for RM-ODP called

UML4ODP. Each viewpoint is specified as a stereotyped package (e.g., <<Enter-

prise_spec>>). Of course, any modeling tool can be used in place of MagicDraw.

The following picture displays a screenshot of our prototype (c.f., Figure 4). It

shows a scenario of a process enactment. The parts (1), (2) and (3) represent an exten-

sion to MagicDraw in order to display the RM-ODP viewpoint that the developer is

working on. Part (4) is also an extension that shows the activity being enacted by the

developer. In this sample scenario, the developer executed an action that was not al-

lowed by the process model. That is why a dialog box (5) is prompted to indicate that

a deviation occurred due to the execution of an action that violates the process model-

ing rules. The same kind of dialog box is used to display guidelines during process

enactment.

4.2 Case Study

The case study consisted in running a multi-viewpoint-based process on top of our

prototype. During the process enactment, we deliberately caused different kinds of

deviations i.e. structural and micro behavioral and we controlled if the tool succeeded

in detecting all of them instantly. In the following, we present the process modeling

rules represented using PraxisRules.

The process model and modeling rules.

As an example of a development process using RM-ODP, we used the one initially

described in natural language in the UML4ODP specification, page 68 of [5]. For the

sake of clarity, we focus on the part of the process activities required for the specifica-

tion of the Enterprise viewpoint of the library application. A first step was to map

each activity of the process to Eclipse cheat sheet steps. The second step consisted in

representing the consistency rules between the different viewpoints in form of Praxis

Rules (i.e., Activity post-condition or invariant rules).

Let us take the first activity of the process as an example i.e., “Identify the com-

munities, with which the system is involved, and their objectives”. For this activity, a

process modeling rule was defined using Praxis Rule (see Figure 5). This rule comes

2
 Site, http://www.magic-draw.com

in the form of an activity invariant rule that states that in the Enterprise viewpoint,

one can only create elements that relate to that viewpoint. Additionally, it states that

only three kinds of elements can be created: communities, objectives and “objective

of” associations, which link communities to objectives. These elements are represent-

ed in UML respectively by components tagged with the EV_Community stereotype;

classes tagged with the EV_Objective stereotype and associations tagged with the

EV_ObjectiveOf stereotype. During the process execution, if the developer performs

an action not allowed by this rule, a micro behavioral deviation is triggered instantly

and its cause is displayed to the developer.

For brevity reasons, since we need one activity post-condition and an activity in-

variant rule per activity, which would account for 16 rules for the selected process, we

are not able to present all the praxis rules in this paper. However, the complete source

code of our prototype, along with the process model that was used to detect structural

and micro/macro behavioral deviations is available at our WebSite
3

Fig. 4. Screenshot of a process sample executed in our prototype

public IdentifyCommunities() @ a <=> and {

 a @ call inViewpoint(“enterprise”),

 not { t @ create(C,MC),
 not { or { and { addProperty(C, stereotype, S),
 call goodCombination(MC,S) },

 MC = property }}
 }
}.

goodCombination(MC, S) <=> or { and { MC = “component”, S = “ev_community” }, … }

inViewpoint(V) @ action <=> or { action @ create(E,MC,V), … }

Fig. 5. Sample of process modeling rule

3 (http://lip6.fr/Marcos.Almeida/publications.html).

4.3 Discussion

The realization of the prototype and the case study was an important step for us and

revealed the feasibility of the approach. Most of all, we were able to ensure the detec-

tion of both structural and behavioral deviations. These deviations are detected in-

stantly and the developer is informed with the cause of its deviations. Regarding

structural deviations, we were able to detect both intra- and inter-viewpoint inconsist-

encies, which is of prime importance in the context of multi-viewpoint modeling. In

our case study, the language used for defining the different viewpoint was the same

but thanks to Praxis Rule, having different modeling languages would not change

anything to our solution

A step further in the validation process would be to conduct an empirical study to

assess the benefits, in terms of time and quality, of offering such support to the devel-

opers. In a previous work, we realized such a study but this was done with a process

example which did not include the modeling of a system with several viewpoints [10].

We assessed the “effort of adoption” by considering the coding efforts required for

extending the MagicDraw case tool to implement our approach. Thanks to

MagicDraw Open API, implementing the MAL component has been implemented as

a 360 lines of Java (PropertyChangeListener). This component took one day of work

for a Java experimented developer. When it comes to the PEE, our approach is mostly

independent from it. During this experiment it consisted in a simplistic extension of

MagicDraw interface which amounted to less than 200 lines of Java code. The only

dependency of the other components to this one is that the DDE needs to know which

is the current activity being executed by the developer so that it can verify the chosen

behavioral and structural rules. Our approach would then be able to be reused by any

existing PEE that is able to provide these pieces of information to the other compo-

nents of our approach.

5 Conclusion

In the context of multi-viewpoint-based projects, the risks that developers deviate

during the development process are amplified. The heterogeneity of the viewpoints,

there overlapping and the need to ensure consistency between them inevitably intro-

duce many chances for developer deviations. If not handled on time, these deviations

may cause the failure of the project in terms of reliability of the project’s outcome,

delays and costs. In this paper we proposed an approach that allows capturing devel-

oper’s deviations during process realization. Whatever their kind i.e., behavioral or

structural, these deviations are detected instantly as they occur and their causes are

reported to the developer or project manager. They can then take the appropriate deci-

sions and anticipate the risks that may penalize the course of the project.

As a perspective of this work we are currently studying the resolution of the opti-

mal path to reconcile the developer with the process description in case of late devia-

tion detections i.e. the early deviation detection is turned off by the developer. We

also plan to put in place a more important empirical study for validating our approach.

References

1. X. Blanc, et al. Detecting model inconsistency through operation-based model construction. In

Robby, editor, Proc. Int. Conf. Software engineering (ICSE’08), volume 1, pages 511–520. ACM,

2008.

2. G. Cugola. Tolerating deviations in process support systems via flexible enactment of process

models. IEEE Trans. Software Eng., 24(11):982–1001, 1998.

3. M. Kabbaj, R. Lbath, and B. Coulette. A deviation management system for handling software

process enactment evolution. In Q. Wang, D. Pfahl, and D. M. Raffo, editors, ICSP, volume 5007

of Lecture Notes in Computer Science, pages 186–197. Springer, 2008.

4. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)

5. Information technology — Open distributed processing — Use of UML for ODP system

specifications ITU-T Recommendation X.906, ISO/IEC 19793. At:

http://www.lcc.uma.es/~av/download/UML4ODP_IS_V2.pdf

6. J. Le Noir, O. Delande, D. Exertier, M. A. A. da Silva, and X. Blanc. 2011. Operation based mod-

el representation: experiences on inconsistency detection. In Proceedings of ECMFA'11, Spring-

er-Verlag, Berlin, Heidelberg, 85-96.

7. ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology –

Open Distributed Processing – Reference Model: Foundations.

8. OMG: UML 2.0 OCL Specification, November 2003

9. M. A. A. da Silva, R. Bendraou, X. Blanc, and M.-P. Gervais. Early deviation detection in model-

ing activities of mde processes. In Petriu et al. [11], pages 303–317.

10. M. A. A. da Silva, A. Mougenot, R. Bendraou, J. Robin, and X. Blanc. Artifact or process guid-

ance, an empirical study. In Petriu et al. [11], pages 318–330.

11. D. C. Petriu, N. Rouquette, and Ø. Haugen, editors. Model Driven Engineering Languages and

Systems - 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010, Pro-

ceedings, Part II, volume 6395 of LNCS. Springer, 2010.

