
Enabling Semantic Search in Large
Open Source Communities

Gregor Leban, Lorand Dali, Inna Novalija

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana
{gregor.leban, lorand.dali, inna.koval}@ijs.si

Abstract. This paper describes methodology used for building a domain specif-
ic ontology. Methods that allow automatic concept and relation extraction using
domain-related glossaries are presented in this research. The constructed ontol-
ogy contains vocabulary related to computer science and software development.
It is used for supporting different functionalities in the ALERT project, which
aims to improve software development process in large open source communi-
ties. One of the uses of the ontology is to provide semantic search functionality,
which is a considerable improvement over the keyword search that is common-
ly supported.

1 Introduction

Open source communities and software development organizations in general are
often using several different communication channels for exchanging information
among developers and users. Beside a source code management system (SCMS),
these software developing communities also frequently use an issue tracking system
(ITS), a forum, one or more mailing lists and a wiki. Each of these channels typically
serves a different purpose. Issue tracking system allows the users of the software to
report to the developers issues they encountered or to suggest new features. Forums
and mailing lists have a similar purpose which is to allow open discussions between
the members of the community. Wikis are commonly used as platforms for providing
software documentation, user guides and tutorials for the users.

A problem that is common for the present day and that is becoming more and more
troubling for large and medium open source communities is the information overload.
Users are generating large amounts of information on different communication chan-
nels and it is difficult to stay up-to-date. For illustration, consider the KDE communi-
ty [1], which is offering a wide range of open source products. In April 2012 KDE
had approximately 290.000 bug reports in their ITS, 126.000 posts on their forum and
163 active mailing lists where according to one of the KDE developers between 30-80
emails are exchanged per day.

Providing help in processing and managing such large amounts of information is
one of the main goals of the ALERT1 project [2]. ALERT is a European project that

1 ALERT is acronym for Active support and reaL-time coordination based on Event

pRocessing in open source software development

aims to develop a system, which will be able to help users (especially developers) in
large open source communities. The system, once finished, will be able to collect and
process all the posts (emails, issues, forum posts, etc.) that are generated in different
communication channels used by the community. The information will be processed
and stored in a way so that it will provide support for different features of the system.

One of the features that were specified as very important by the use-case partners
of the project was advanced search functionality. Search that is supported on commu-
nication channels such as ITS and forums is only a simple Boolean keyword search. A
fundamental problem with keyword search is that different people use different words
(synonyms) to refer to the same concept. Therefore not all posts that discuss the same
concept can be retrieved by a simple keyword-based search.

As an improvement to keyword search we would like to provide in the ALERT
system semantic search. What we mean by semantic is that the search is performed
using the actual concept that the search term represents. Consider, for example, that
the user performs a search for “dialog”. The concept of the dialog can be represented
also with other terms, such as “window” or “form”. Instead of returning the results
that directly mention “dialog” we therefore also want to return results that contain any
of the term synonyms. Additionally, since search is based on the actual concepts we
can also exploit the fact that concepts can be related to each other. When searching
for one concept we can therefore also consider including results about some closely
related concepts. In KDE domain, for example, searching for “email client” should
also return posts containing concept “KMail” which is the KDE’s email application.

In order provide semantic search we have to use an ontology. Each class in the on-
tology should represent a concept that can have one or more labels (synonyms). When
a new post is created in one of the communication channels, the ALERT system anno-
tates or tags it with the concepts that are mentioned in the post. These annotations are
stored in a knowledge base, which allows us then to quickly find all posts tagged with
a particular concept.

The main question that needs answering is what ontology should be used for anno-
tating the posts. Since we are providing support for software developing communities
the important concepts that should be annotated are the ones related to computer sci-
ence and software development. Since we were not able to find any such existing
ontology we had to construct it ourselves. The process that we used to construct such
an ontology is the main contribution of the paper. The steps in the process are general
and can be reused also for constructing other domain specific ontologies.

The remainder of this paper is organized as follows. Section 2 provides details of
the methodology used for building the Annotation ontology. The process consists of
two main steps – (a) identifying the computer science specific terminology that we
wish to represent in the ontology, and (b) constructing the relations between the con-
cepts. In Section 3 we describe how the ontology can be used in ALERT to provide
the semantic search functionality. Section 4 describes related work and Section 5
provides the conclusions.

2 Building the Annotation ontology

2.1 Creating ontology concepts

As stated before, the concepts that we wish to have in the Annotation ontology are
related to computer science and software development. In order to obtain a relevant
set of terms we searched online for glossaries related to computer science. The two
web sites that we found to be most up-to-date and relevant for our purpose were
webopedia.com [5] and whatis.techtarget.com [6]. For each of the terms we were also
able to obtain a description of the term which in most cases contained links to several
related terms. To identify terms especially related to software development we used
the stackoverflow website [7], which is a Q-A system with more than 2.5 million
questions related to software development. Stackoverflow contains an up-to-date list
of tags that are used to tag the questions. Most popular tags together with their de-
scriptions were also included in the starting set of concepts.

After obtaining the set of terms, our first goal was to merge synonyms. Merging of
terms was performed in two ways. First way was using a synonym list that we were
able to obtain from the stackoverflow website and which contained around 1,400
synonym pairs. The second way was by using the term descriptions and searching in
them for patterns such as “X also known as Y” or “X (abbreviated Y)”. In cases when
such patterns were identified, terms X and Y can be considered as synonyms and be
represented as the same concept. In this way we obtained a set of concepts where each
concept has one or more labels that represent the concept.

In the next step we wanted to link the concepts to corresponding Wikipedia arti-
cles. This allows us to obtain more information about the concepts and potentially
also extend the ontology with new related concepts. By using a semi-automatic ap-
proach, we make the repetition of the process relatively easy to do, such that future
updates of the ontology are not too costly. By identifying a corresponding Wikipedia
article we are also able to implicitly create links to well-known knowledge bases
which are extracted from Wikipedia, such as DBpedia, Yago and Freebase.

Our approach for mapping concepts to Wikipedia articles has several steps. First,
we link the concept labels to Wikipedia articles. We do this by automatically match-
ing the labels to the titles of articles to see which article corresponds to each label. In
this process, the following two challenges were identified:

a) The article with the matching title is a disambiguation page i.e. a page con-
taining links to pages which each describe one of the meanings of the concept. For
example TTL is mapped to a page which contains links to Time to Live, Transistor
Transistor Logic, Taiwan Tobacco and Liquor, etc.

b) Some of the computer science concepts are so frequently used in common
language that they are not considered ambiguous. In this case a computer science
concept can be mapped on Wikipedia to something completely unrelated to computer
science. An example of such a concept is ant which in computer science refers to
Apache ant, a software tool for automatic build processes, but is mapped to the Wik-
ipedia article about the ant insect.

The disambiguation pages were not difficult to identify since they typically contain
phrases such as ‘X may mean…’ or ‘X may refer to…’. We have defined rules to au-

tomatically match these patterns and exclude disambiguation pages from further anal-
ysis.

After mapping labels to the corresponding Wikipedia pages we used the content of
these pages to identify new terms which were not covered by the glossaries. To do
this, we only used the first paragraph of each article, which usually gives a short defi-
nition of the term. Often it also contains links to articles describing closely related
concepts. We used the articles linked in the first paragraph as candidates for new
terms and sorted them by their frequency. We expect that if an article was linked to by
many articles that we know are about computer science, then this article is very likely
about a computer science concept as well. Based on this assumption, titles of the
frequently appearing articles were added to the ontology as new concepts.

After obtaining the final set of concepts we also wanted to organize the concepts
into a hierarchy of categories. For this purpose we used text mining techniques and in
particular the OntoGen [8] toolbox which interactively uses k-means clustering [9] to
group the concepts into a hierarchy and extracts keywords to help the user in assign-
ing a name to each category. In this way we were able to semi-automatically define
31 categories such as “operating systems”, “programming languages” and “compa-
nies”.

2.2 Creating relations between the ontology concepts

An important part of the ontology are also relations between the concepts. With re-
gard to our task of semantic search, the relations allow us to expand the search to also
include closely related concepts.

To create the relations between the concepts we can use the information that was
available on the online glossaries. As we mentioned, the descriptions of the terms
usually contained several links to other related terms. These links can be used to au-
tomatically create relations between the corresponding ontology concepts. Since hy-
perlinks don’t contain any additional semantic information about the type of relation
we can only create some general kind of relation between the concepts. In our ontolo-
gy we represented them using a linksTo relation.

In order to obtain more specific and usable relations we decided to apply natural
language processing (NLP) techniques on term descriptions with the goal of identify-
ing semantic relations between the concepts. Consider, for example, the following
sentence from the “C#” concept description:

“C# is a high level, general-purpose object-oriented programming language
created by Microsoft. “

If “C#” and “Microsoft” are concepts in the ontology then it is possible using NLP
techniques to identify that the verb connecting the two concepts is “created by”. The
task of creating relations between concepts is in this way reduced to simply defining a
mapping from verbs to appropriate relations.

A detailed list of steps involved in creating the relations is as follows. The input to
the procedure was the list of ontology concepts and all the descriptions of the con-
cepts. First we identify in the descriptions sentences that mention two or more con-
cepts. Next we use Stanford parser [10] to generate a dependency parse of the sen-
tence. The dependencies provide a representation of grammatical relations between

words in a sentence. Using the dependency parse and the co-occurring ontology con-
cepts, we can extract the path from one ontology concept to another one. As a next
step, we used Stanford Part-Of-Speech (POS) tagger [11] to tag the words in the sen-
tence. Of all the tags we are only interested in the verb (with or without preposition)
that connects the two concepts. As a result we can obtain triples, such as:

XSLT, used by, XML schema
WSDL, describes, Web Service
Microsoft, created, Windows
Apple Inc., designed, Macintosh
In the next step we use WordNet [12] and group the obtained verbs into synsets

(synonym sets). From all the sentences we obtained verbs that can belong to around
750 different WordNet synsets. Of all these synsets we only considered those that can
be mapped to relations isPartOf, hasPart, creator and typeOf. We decided to include
these relations because they are mostly hierarchical and can be used to expand the
search conditions. WordNet synsets that were used to obtain these relations were:
- isPartOf and hasPart relations were obtained from “include” and “receive have”

synsets
- creator relations were obtained from “make create”, “form constitute make”, “im-

plement”, “construct build make”, “produce bring forth”, “introduce present ac-
quaint”, “make do” and “plan project contrive design” synsets

- typeOf relations were obtained from “establish base ground”, “include”, “exist be”
and “integrate incorporate” synsets

In addition to these relations we also included a few other types of relations:
- subclass and superclass relationships have been obtained by using the OntoGen

[8] text mining tool
- sameAs relationships provide links to the identical DBpedia resources.
- linksTo relations were used for all relations that we extracted but were not mapped

to some more specific type of relation (like isPartOf, creator, etc.).

2.3 Filtering and publishing the ontology as RDF

Before the ontology was finished we wanted to make sure that it doesn’t contain
any unnecessary concepts. By checking the terms on the online glossaries we noticed
that some of them are obsolete and therefore irrelevant for our ontology. To determine
if a concept is relevant or not we decided to again use the stackoverflow website. For
each concept we searched in how many questions the concept is mentioned. If the
concept was mentioned in less than 10 questions we decided to treat it as irrelevant
and we removed the concept and its relations from the ontology. The value 10 was
chosen experimentally by observing which concepts would be removed at different
thresholds. An example of a concept that was removed by this procedure is HAL/S
(High-order Assembly Language/Shuttle) which was found only in one question on
the stackoverflow website.

The final version of the generated ontology contains 6,196 concepts and 91,122 re-
lationships and is published in the Resource Description Framework (RDF) format.

3. Using the Annotation ontology for semantic search

The created ontology can be used to annotate all the posts that are generated in the
communication channels monitored by the ALERT system. When a new post is creat-
ed we annotate it with concepts that are mentioned in the text. We do this by checking
the labels of the concepts and determining if any of them appears in the text. The post
with its annotations is then stored in the Knowledge base and can be used for search-
ing.

Since the ALERT project is still in progress we currently only have a preliminary
version of the search interface. A screenshot of the interface is shown in Figure 1. The
search form in the top left corner allows the user to specify a rich set of search condi-
tions. Beside the keyword search the conditions can also include:

- Concepts. The user can specify a concept from the Annotation ontology in order
to find posts that are annotated with this concept.

- Authors of the posts. All posts from the communication channels have authors
and they can be specified as a condition.

- Source code (files, classes, methods). By monitoring source code management
systems used by the community we are aware of all the files, classes and methods
developed in the project. The information is stored in the knowledge base and can be
used to find all the commits where a particular file/class/method was modified.

- Time constraints. All posts have an associated time stamp. The search interface
allows us to set a particular time period that we are interested in.

Figure 1. Search interface provided by the ALERT system

- Filters by post type. The user can specify what type of posts (issues, emails, fo-
rum posts, etc.) he would like to see in the list of results.

After performing the search, the list of posts that match the query is displayed be-
low the search form. Along with the list of results, the system also provides two visu-
alizations of the results. Social graph of the people involved in the resulting posts is
displayed on the right side of the screen. It shows who is corresponding with whom
and highlights the most active people. Below the social graph is the timeline visuali-
zation that shows the distribution of results over time. It is an important aggregated
view of the results since it can uncover interesting patterns.

4. Related work

The automatic and semi-automatic ontology learning methods usually include a
number of phases. Most approaches define the set of the relevant ontology extension
sources, preprocess the input material, build ontology according to the specified
methodology, evaluate and reuse the composed ontology.

As Reinberger and Spyns [13] state, the following steps can be found in the ma-
jority of methods for ontology learning from text: collecting, selecting and prepro-
cessing of an appropriate corpus, discovering sets of equivalent words and expres-
sions, establishing concepts with the help of the domain experts, discovering sets of
semantic relations and extending the sets of equivalent words and expressions, vali-
dating the relations and extended concept definition with help of the domain experts
and creating a formal representation.

As suggested in [14], ontology learning from text is just one phase in the method-
ology for semi-automatic ontology construction preceded by domain understanding,
data understanding and task definition and followed by ontology evaluation and on-
tology refinement.

In our approach we have utilized the traditional steps for ontology development,
like terms extraction, synonyms extraction, concepts definition, establishment of
concept hierarchies, relations identification [15].

Fortuna et al. [8] developed an approach to semi-automatic data-driven ontology
construction focused on topic ontology. The domain of interest is described by key-
words or a document collection and used to guide the ontology construction. OntoGen
[8] uses the vector-space model for document representation. In current work, the tool
has been utilized for defining the hierarchical relationships between concepts.

Learning relations in the ontology was addressed by a number of researchers. Tax-
onomic relations have been extracted by Cimiano et al. [16]. Moreover, Maedche and
Staab [17] contributed to the approach, which allowed discovering conceptual rela-
tions from text.

5. Conclusions

In this paper we have proposed an approach for building a domain specific ontolo-
gy related. The methods for concept and relation extraction have been suggested and

applied in order to build an ontology related to computer science and software devel-
opment. The generated ontology is used in the ALERT project among other things to
provide semantic search functionality. The advantages of the semantic search over
keyword search are (a) the avoidance of issues with synonyms, and (b) the ability for
expanding the search by including related concepts in the search. The current version
of the ALERT system provides a preliminary interface for performing the semantic
search by entering the concept name. In future we plan to improve the interface to
allow the user also to extend the search to related concepts.

Acknowledgements

This work was supported by the Slovenian Research Agency, European Social Fund
and ALERT (ICT-2009.1.2)

References

[1] KDE, http://www.kde.org.
[2] ALERT project, http://www.alert-project.eu.
[3] OW2, http://www.ow2.org.
[4] Morfeo project, http://www.morfeo-project.org.
[5] Webopedia, http://www.webopedia.com.
[6] Computer Glossary, Computer Terms, http://whatis.techtarget.com.
[7] Stack Overflow, http://www.stackoverflow.com.
[8] B. Fortuna, M. Grobelnik, D. Mladenic, OntoGen: Semi-automatic Ontology Editor, HCI, 9

(2007), 309-318.
[9] J.B. MacQueen, Some Methods for classification and Analysis of Multivariate Observa-

tions. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability.
University of California Press. pp. 281–297.

[10] M-C. de Marneffe, B. MacCartney and C. D. Manning, Generating Typed Dependency
Parses from Phrase Structure Parses, in: LREC 2006, 2006.

[11] K. Toutanova, C.D. Manning, Enriching the Knowledge Sources Used in a Maximum
Entropy Part-of-Speech Tagger, in: Proceedings of the Joint SIGDAT Conference on Empir-
ical Methods in Natural Language Processing and Very Large Corpora, 2000, pp. 63-70.

[12] WordNet, http://wordnet.princeton.edu.
[13] M. L. Reinberger, P. Spyns, Unsupervised Text Mining for the Learning of DOGMA-

Inspired Ontologies, in: Buitelaar P.; Handschuh S.; Magnini B. (Eds.), Ontology Learning
from Text: Methods, Evaluation and Applications, IOS Press, 2005.

[14] M. Grobelnik, D. Mladenic, Knowledge Discovery for Ontology Construction, in: Davies,
J.; Studer R.; Warren P. (Eds.), Semantic Web Technologies: Trends and Research in Ontol-
ogy-Based Systems, John Wiley & Sons, 2006, 9–27.

[15] P. Buitelaar, P. Cimiano, B. Magnini (Eds.), Ontology Learning from Text: Methods,
Evaluation and Applications, IOS Press, 2005.

[16] P. Cimiano, A. Hotho, S. Staab, Learning Concept Hierarchies from Text Corpora using
Formal Concept Analysis, Journal of Artificial Intelligence Research (JAIR), 24 (2005),
305-339.

[17] A. Maedche, S. Staab, Discovering conceptual relations from text, in: W. Horn (Ed.),
ECAI 2000. Proceedings of the 14th European Conference on Artificial Intelligence, Berlin,
August 21-25, 2000, IOS Press, Amsterdam, 2000, 321-324.

	1 Introduction
	2 Building the Annotation ontology
	2.1 Creating ontology concepts
	2.2 Creating relations between the ontology concepts
	2.3 Filtering and publishing the ontology as RDF

	3. Using the Annotation ontology for semantic search
	4. Related work
	5. Conclusions
	Acknowledgements

	References

