A Loose Coupling Approach for Combining
OWL Ontologies and Business Rules

Amina Chniti,"? Patrick Albert,! Jean Charlet?3

L CAS France, IBM
{amina.chniti,albertpa}@fr.ibm.com
2 INSERM UMRS 872, Eq 20, 15, Rue de I’école de médecine, 75006, Paris, France
Jean.CharletQupmc.fr
3 AP-HP, Paris, France

Abstract. In this demonstration we will show two prototypes based
on the BRMS (Business Rule Management System) WODM, (1) The
OWL plug-in and (2) the change-management plug-in. The OWL plug-
in enables authoring and executing business rules over OWL ontologies.
It consists of importing OWL ontologies into WODM and using the all
the functionalities offered by this BRMS to author and execute rules. The
change-management plug-in enables the evolution of business rules with
respect to the ontology changes. This component, implemented basically
using an OWL ontology and rules, detects inconsistencies that could be
caused by an ontology evolution and proposes solution(s), called repair,
to resolve them.

Keywords: Ontology, Business Rule, Consistency maintenance, incon-
sistency.

1 Challenges faced

In the majority of BRMS, Business Models are represented using Object Models
while OWL Ontologies offer a better power of expressiveness. The purpose of
the proposed challenge is to bring the expressiveness of OWL ontologies to busi-
ness users by means of business rules authored in a natural controlled language.
For this, we exploited the infrastructure offered by the BRMS WebSphere Op-
erational Decision Management (WODM) and developed two prototypes : The
OWL Plug-in and the change-management plug-in for WODM. the OWL plug-in
enables authoring and executing business rules over OWL ontologies. It consists
of importing OWL ontologies into WODM and using the all the functionali-
ties offered by this BRMS to author and execute rules. The change-management
plug-in enables the evolution of business rules authored over OWL ontology with
respect to the ontology changes. This component, implemented basically using
OWL ontology and rules, detects rules inconsistencies that could be caused by
an ontology change and proposes solution(s), called repair, to resolve them.

During the development of this work we have been faced to the following
challenges :

— how to enable business users to deal with their business knowledge formalized
using OWL Ontologies?

— How to import OWL ontology into WODM?

— WODM is object model based, how to import the expressiveness and the
reasoning capacity of OWL into such a BRMS?

— How to minimize the loose of information?

Ontologies evolve during their life cycle :
— What is the impact of such evolution on the rules?
— How to make the rule set evolving with respect to the ontology?
— How to maintain its consistency while it evolves?
— How to detect the impact of the ontology evolution on rules?

2 Method

In this section, we will describe the methods we developed to resolve the chal-
lenges described above. These methods are based on WODM.

WODM offers an infrastructure that enables business users to author - in a
controlled natural language - execute and mange business rules in a collaborative
way. As the majority of BRMS, it uses an object oriented models to formalize
the domain knowledge. In WODM, this object oriented model is called BOM
(Business Object Model). The BOM represents the entities of a given business
(e.g. Client, age). It is generated over from the XOM (eXecutable Object Model)
then verbalized. The XOM is the model enabling the execution of rules. It ref-
erences the application objects and data, and is the base implementation of the
BOM. The XOM can be built from compiled Java classes (Java execution object
model) or XML Schema (dynamic execution object model). The verbalization of
the BOM consists of generating a controlled natural language vocabulary (VOC)
which enables to edit the business rules. The VOC, add a layer of terminology
on top of the BOM (e.g. “the client”, “the age of the client”). This vocabulary
is used to compose the text of the rules.

2.1 OWL plug-in

To enable business users to author business rules over OWL ontologies, we de-
veloped the WODM OWL plug-in. This plug-in exploits infrastructure offered
by WODM to import OWL ontologies within it. The main component for au-
thoring rules in WODM is the BOM. For this, we performed a mapping of OWL
concepts (TBox) into the BOM. Thus, when we import an OWL ontology within
WODM, the BOM is automatically generated and the functionalities offered by
the BRMS can be used [1].

Among these functionalities, we will focus on authoring and executing rules.
Once we have the BOM, its verbalization is also available and the business users
are able to edit the business rules in a natural controlled language or using the
decision tables or the decision tree.

To execute business rules authored over ontologies, we performed a second
mapping of OWL/BOM entities to a XOM using Jena . Jena is a Java frame-
work, including an ontology API for handling OWL ontologies, which allows to
generate Java objects from the entities of the ontology. These Java objects then
constitute the XOM. The use of Jena provides an execution layer for the OWL
ontologies. This execution layer provides inference mechanisms on this model
and the mapping of OWL concepts, properties, and individuals to a Java object
model. When the business user launches the rule execution process, the ontology
individuals (ABox) are loaded into the working memory of the rule engine and
mapped into java objects. The rule engine evaluates the rule conditions against
these objects and fires the rules for the objects that meet the condition. During
this process, the ABox mapped into Java Objects, is updated with respect to the
action parts of the fired rules. At the end of the execution process, the “new”
ABox is loaded into the ontology.

Another important point in the process of executing rules is the interaction
between the classification engine and the rule engine. In the following we will
present some examples of this kind of interaction as achieved with the system
presented in this work. The classification engine assigns the type of the individ-
uals, then the rule engine uses this inferred knowledge to trigger a computation
that could not be easily represented in an ontology. In other words, the rule en-
gine asks the classification engine for the type of the individual, then it executes
the rule(s) matching with the returned type.

Ezxample 1: In the ontology, we define the concept CarDriver as a Driver who
has a CarDrivingLicense :

CarDriver = hasDrinvingLicense some CarDrivingLicense
and we declare the following individuals :

Driver(Joe); hasAge(Joe, 20) ; hasName(Joe, ”Joe”)

Person(Toto); hasAge(Toto, 8) ; hasName(Toto, ”Toto”)

Driver(John); hasAge(John, 25) ; hasName(John, ”John”)

then we author the following rule (i.e.car driving license)

car driving license :
IF the age of the driver is more than 18
THEN add the car driving license to the driving licenses of the driver ;

After the execution of this rule, we see in the ontology that for each driver
who is more 18 (i.e. John and Joe), a car driving license is attributed. Then,
we execute the car driver rule, that lists the names of all the car driver in the
ontology. The result is : Joe is a car driver and John is a car driver because of
the reclassification of Joe and John after executing the car driving license rule.

car driver :
THEN print the name of the car driver + 7 is a car driver” ;

Ezxample 2 : In the ontology, we also define a concept ChildCarDriver, sub-
class of a concept Child. A ChildCarDriver is a Child who has as father a

CarDriver. Then we define Toto who has father John.

ChildCarDriver subclass0f Child subclass0Of Person
ChildCarDiver = hasFather only CarDriver
hasFather(Toto, John)

after executing the car driving license rule, we execute the child car driver
rule that lists the names of all the child car driver. The result is that Toto is a
child car driver because that in the ontology we define a child car driver as a
person who has a car driver as father.

child car driver :
THEN print the name of the child car driver + ” is a child car driver” ;

In the ontology, we also define the concept Contravention that has an
amount, a driver could have 0 or more contraventions and a contravention
amount to pay.

Contravention(cl), Contravention(c2)
hasContravention (John, c1), hasContravention (John, c2)

Using this definition, we author the remove car license rule that removes the
car driving license for each car driver who has a contravention and calculates the
contravention amount to pay. After executing this rule, John will loose his car
license. Thus, when we re-execute the car driver rule and the child car driver
rule, we will only have Joe is a car driver.

remove car license :

definitions

set ’a contravention’ to a contravention ;

set ’a car driver’ to a car driver where the contraventions of this car driver
contain a contravention;

IF ’a car driver’ is not null

THEN remove the car driving license from the driving licenses of ’a car driver’;
for each contravention in the contraventions of ’a car driver’ :

- set the contravention amount to pay of ’a car driver’ to the contravention
amount to pay of ’a car driver’ + the contravention amount of this contraven-
tion ;

In this example, the rule engine uses this inferred knowledge to trigger a
computation that could not be easily represented in an ontology

Ezample 8 In the ontology, we define the concept Contravention and the
concept RiskyDriver as a Driver who has more than 3 Contravention (a
cardinality restriction), Frank as a RiskyDriver and we give to John 4 Con-
traventions.

RiskyDiver = hasContravention min 3

RiskyDriver(Frank) ; hasName(Frank, "Frank”)

hasContravention (John, c1), hasContravention (John, ¢2), hasContravention
(John, c2), hasContravention (John, c¢4) such as Contravention(cl), Contra-
vention(c2), Contravention(c3). Contravention(c4).

If we execute the risky driver rule that lists the name of the risky driver
we will only see that Frank is a risky driver which means that the classification
engine is not able to classify John, who has four contraventions, as a risky driver.

risky driver :
THEN print the name of the risky driver + 7 is a risky driver” ;

2.2 Change-Management plug-in

The change-Management plug-in is for WODM enables to analyse the impact
of ontology evolutions on business business rules. Ontology evolutions consist
of changes that impact an ontology. These changes may be structural changes,
conceptual changes, entity definition changes,. .. Business rules depends on the
entities of the ontology and its evolution has an impact on the rule set that
may causes inconsistencies. Thus, we developed the MDR approach (Model,
Detect, Repair), which ensures the consistency maintenance of business rules
while ontology evolution [3].

The MDR approach is based on design patterns and especially Change
Management Patterns (CMP). This approach has been inspired from ONTO-
EVOAL [2], which deals with the consistency maintenance of OWL ontologies
while they evolve. In our approach the CMPs are proposed to guide the evolu-
tion process of a rule set while maintaining its consistency. They consist of three
categories of patterns :

1. Change Pattern : used to model the ontology change knowledge that are
important to detect its impact;

2. Inconsistency Pattern : used to detect the inconsistencies caused by a change;

3. Repair Pattern : used to propose solutions, called repair, to resolve the in-
consistencies.

The consistency maintenance process that we propose in our approach con-
sists of three steps :

1. Model the change to apply to the ontology using the change pattern;

2. Detect the eventual inconsistency that could be caused using the inconsis-
tency pattern;

3. Propose repair to solve the inconsistency using the repair pattern.

Change pattern is designed using an OWL ontology, called MDROntology,
which model the ontology changes and their description, the inconsistencies that
impact a rule set and their repairs. Each change has constraints to verify to avoid
inconsistencies. Depending on the violated constraint the inconsistencies are
detected using the inconsistency pattern. Thus, the inconsistency patterns are
designed using a set of rules, called Inconsistency Detection Rules (IDR),

which in their condition part define the constraint that each change should ver-
ify and in their action parts define the inconsistency that will be caused by the
change. The repair patterns are also designed using rules, called Repair Rules
(RR), which in their condition parts test on the detected inconsistency and on
the modelled change then, in their action parts assign the repair(s) to apply.
The rules designing the inconsistency and repair patterns have been authored
over the MDROntology using the OWL plug-in (see section 2.1).

Figure 1 illustrates the M'DR process. As input of our system, the user mod-
els the change description as MDROntology individuals. The change description
consists of :

— Change type : add, remove, modify;

Change object : conceptual change (1.e. subclass change, add concept, remove
property,...) or entity definition change (enumeration change, restriction
change, rename entity. ..);

— Change entities : concept or property that will be impacted by the change;
— Impacted rules and the scope of the impact (1.e. the impacted rule part).

The change type, the change object and the change entities must be provided
manually by the user. The impacted rules and the impacted rule parts are de-
tected automatically. Nevertheless, depending on the change to apply other in-

User Change
Model

) [ontology concept
R Betocton Fule. E Py
(IDR) <> Property range
Inconsistency Rule | hyasrﬂme'\‘amer
(b) Rule filter

< string > (automatically)

haslmpact < haslmpactOn

ehangeType >+ Ghange |~ raschangety >~ Eniity

hasChangeObject hasLocalName
Remove'

ChangeObject

(a) The user model
(manually)

Fig.1. MDR process

formation should be given. For example, the new collection of the enumeration

in case of an enumeration change, the new name of an entity in case of a rename
entity change or the new range of a property in case of a range change. ... In
the following, the general template of a change pattern (see Fig. 1).

When the user launch the consistency maintenance plug-in within WODM,
the modelled changes (MDROntology individuals) are loaded into the working
memory and shown to the user through a user interface. When the user select
one or more changes to apply, the IDRs are fired and detect the inconsistencies
that will be caused. A general template of the inconsistency pattern is given
below :

IF change.changeObject = changeObject

&& change.type = changeType

&& changeConstraint.satisfied = false
THEN change.inconsistency = inconsistency;

After the inconsistency detection and depending on the change to apply,
the RRs are fored and one or more repair are proposed to the user, who will
choose the repair to apply. The chosen repair will be automatically applied after
verifying that it will not causes other inconsistencies. A template of the repair
pattern is given below :

IF change.changeObject = changeObject
&& change.inconsistency = inconsistency
THEN inconsistency.repair = inconsistencyRepair;

3 Discussion

In section 1, we introduced the challenges we faced. In this section we discuss
the challenges we resolved and those that we are trying to resolve.

To enable business users to deal with their business knowledge formalized
using OWL Ontologies, we proposed an approach that consists of importing
OWL ontologies into WODM. This approach enables authoring, in a natural
controlled language, and executing rules over ontologies. Thus, business users
are able to use the domain entities defined in the ontology to define business
decisions using rules.

To import OWL ontologies into WODM, we performed an OWL to BOM
mapping. Thus, when the users import an OWL ontology into WODM, the BOM
is automatically generated and all the functionalities offered by the BRMS can
be used.

WODM, or more specifically the BOM, is an Object Model. We cannot im-
port all the expressiveness provided by OWL into such a model. Some con-
structs, such as rdfs:subClassOf, owl:allValuesFrom, owl:inverseOf...are
mapped. Some others, such as owl:someValuesFrom, owl: SymmetricProper-
ty, owl:TransitiveProperty cannot be mapped into the BOM but they are
processed at runtime (see Example 2 in section 2.1). Other constructs are neither
mapped into the BOM nor processed at runtime such as owl:minCardinality

(see Example 3 in section 2.1), owl:maxCardinality, owl:complementOf... A
complete description of the mapping can be found in [1].

Ontologies evolve during their life cycle. Rules are authored over the ontology
entities and depend on them; this is why an ontology evolution may make the
rule set inconsistent. To make the rule set evolve with respect to the ontology
while maintaining its consistency, we developed the MDR approach, which is a
pattern based approach. The general idea of this approach is that the user mod-
els the ontology change he wants to apply using the change pattern. Then, using
the inconsistency patterns, inconsistencies that may be caused by the change
are detected automatically. Finally, repairs that resolve the inconsistencies are
proposed automatically thanks to the repair Pattern. Nevertheless, in the actual
state of the work, the inconsistency patterns detect only two types of inconsis-
tencies from six. A definition of business rules inconsistencies is done in [3].

There are other challenges to be taken up; how to bring all the power of
expressiveness of OWL to business users without loosing information? In the
MDTR approach the inconsistency and repair patterns are defined manually
which is a costly and not an easy task. Is it possible to automatically generate
these patterns depending on the change to apply in a way that we will be able
to detect all the inconsistencies that could impact business rules.

References

1. A. Chniti, S. Dehors, P. Albert, and J. Charlet. Authoring business rules grounded in
owl ontologies. In M. Dean et al. (Eds.), editor, RuleML 2010 : The 4th International
Web Rule Symposium: Research Based and Industry Focused. LNCS 6403, Springer-
Verlag Berlin Heidelberg 2010, 2010.

2. R. Djedidi and M.A. Aufaure. ONTO-EVO“L an ontology evolution approach
guided by pattern modelling and quality evaluation. Proceedings of the Sixth Inter-
national Symposium on Foundations of Information and Knowledge Systems (FolKS
2010), 2010.

3. M. Fink, A. El Ghali, A. Chniti, R. Korf, A. Schwichtenberg, F. Lévy, J. Piihrer,
and T. Eiter. D2.6 consistency maintenance. final report. ONTORULE Delivrable,
http://ontorule-project.eu/deliverables., 2011.

