
Mining periodic patterns in time-series databases 

 
© Ekaterina Ivannikova 

Saint Petersburg State University 

ivannikovae@gmail.com 

 

 

Abstract 
 
Periodicity detection is an important temporal 

data mining problem with different 

applicability. In this paper, we raise a problem 

of periodic sets detection and suggest the 

method for its solution. Several existing 

algorithms for the mining of periodic events 

are considered in detail and a new approach is 

proposed in the paper. The comparison of the 

algorithms and their performance are 

demonstrated through a series of experiments. 

1 Introduction 

Pattern mining is an important area of data mining, 

and it has been growing rapidly over the two past 

decades. The initial stimulus for the development of 

methods was the problem of market basket analysis, 

that requires to determine which products are usually 

purchased together by using a transaction database of 

supermarket buying. The new knowledge could be used 

for the correct placement of goods or for the advertising 

purpose. The first efficient algorithm for finding 

frequent patterns has been proposed in [1]. Now there 

are many algorithms for detecting the patterns that are 

applied in various fields. For example, they are used in 

biology to identify the sequences of nucleotides, in the 

analysis of log files for the detection of failures or 

attacks, in medicine for diagnosis, in marketing for 

advertising or tips for users, etc. 

Many kinds of the data in the real world are time 

series or temporal databases. Periodic pattern mining is 

the problem that regards temporal regularity. Periodic 

patterns are characterized by a certain persistence and 

predictability. Information about such regularity can be 

used for many tasks: for the purpose of personal 

promotion to the users, for the timely reminders about 

the future events or forecasting. 

By the periodic pattern we mean the set of items that 

frequently occur together at regular time intervals. 

There are two ways for prediction if the pattern and its 

period p are known. If the pattern has occurred during 

some time interval (tbeg, tend) then it is likely to repeat 

during (tbeg+ p, tend + p). And if several events of the 

pattern have occurred then other events of the pattern 

are likely to happen soon. Therefore, it is important to 

identify and describe the periodicity. 

There are several types of periodic patterns 

considered in literature. Most of the studies on their 

mining apply the Apriori property heuristic and adopt 

some variations of Apriori-like mining methods [9].  

Apriori property is used to reduce the search space and 

formulated as “All nonempty subsets of a frequent 

itemset must also be frequent”, i.e. an itemset is 

frequent only if all of its sub-itemsets are frequent. This 

observation applies to construct k+1-patterns based on 

the found k-patterns set. But 1-patterns are generally 

detected by a simple search and are not consider in 

detail. In addition, in most of the previous works the 1-

pattern consists of a single item while the pattern that 

consists of a number of events may be interested in 

some tasks. In this work we present an algorithm for 

such periodic 1-patterns finding and discuss several 

approaches to periodic event detection. We propose a 

new algorithm to the periodic event mining as well. The 

experiments show that our method is the more 

advantageous in some cases. 

The remainder of this paper is organized as follows. 

In section 2 the previous works on the frequent and 

periodic pattern mining will be discussed. In section 3 

the notation used throughout the paper and the formal 

definition of periodic patterns are introduced. Section 4 

describes the several possible ways of patterns detection 

and section 5 presents the experimental results. The 

conclusion and future research directions are contained 

in section 6. 

2 Related Works 

Our study combines frequent pattern mining and 

periodic pattern mining in periodic sets finding. We will 

review the related works in these areas below.  

2.1 Frequent pattern mining  

There are a huge number of studies in this field in 

literature. The existing algorithms can be classified into 

three main groups: 

 

- iterative Apriori-like level-wise mining 

techniques 

- pattern mining methods without candidate 

generation 
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- mining techniques with the vertical data format 
 

As mentioned above, the concept of frequent itemset 

and the first algorithm for finding frequent patterns by 

using downward closure property, called Apriori, were 

introduced by Agrawal and Srikant in [1]. This 

approach requires candidate set generation and scanning 

the database to check each candidate. Such techniques 

as hashing [14], partitioning [15], upper bound of the 

number of candidate patterns that can be generated in 

the level-wise approach [5] were developed for 

improvements and extensions of algorithms in that 

category [7]. 

In paper [10] a problem of finding long frequent 

patterns is considered and a new FP-growth approach 

that mines frequent itemsets without candidate 

generation was devised. At the first step items are 

ordered in frequency-descending order and according to 

this list, the database is compressed into a special FP-

tree and after that the tree is mined in some way. An 

alternative approach is proposed in [6]. 

These methods are used to discover patterns from a 

set of transactions in a horizontal data format (i.e. 

{Transaction_id :itemset}). An example of alternative 

class of the algorithms that first transforms the data into 

a vertical data format (i.e. {item :Transaction_id set}) is 

Eclat [18]. These methods don’t require scanning the 

database to count the support of (k+1)-candidates. 

2.1 Periodic pattern mining 

The problem of mining periodic patterns can be 

viewed from different perspectives [9]: depending on 

the coverage of the pattern there are full- and partial-

periodic patterns. Basing on the precision of the 

periodicity synchronous and asynchronous pattern can 

be identified. And a pattern can also be precise or 

approximate.  

Generally, in the works related with our, the 

following notation of periodic pattern is used. Let S be 

the sequence S = S1, S2, …. , Sn.   A pattern p is the 

nonempty sequence p = p1 … pk, where {*}.ji Sp 

The additional event {*} – symbol that matches any 

event and is used to represent the “don’t care” position 

in the pattern. The frequency of a pattern p is the count 

of j such that the string s is true in Si|p|+1 …Si|p|+|p|. If the 

frequency of the p exceeds a minimum support 

threshold, then this pattern is named periodic. A pattern 

with the k non-{*} positions is also called an i-pattern. 

Cyclic association rules that display regular cyclic 

variation over time were first introduced in [13]. These 

rules are based on partial-periodic patterns with perfect 

periodicity in the sense that each pattern reoccurs in 

every cycle. In the article several techniques called 

cycle-pruning, cycle-skipping and cycle-elimination 

were proposed to optimize mine periodic patterns with 

100% support. 

General partial-periodic patterns with imperfect 

periodicity studied in [3, 4, 8] are more common in real 

world. In  work [3] a new structure named abbreviated 

list table (ALT) that maintains the occurrence counts of 

all symbols and corresponding periods was proposed. 

Using this structure only a small number of data 

sequence passes are required to compute the periods 

and the patterns of size 1. Han et al [8] explored 

interesting properties such as the Apriori property and 

the max-subpattern hit set property related to partial 

periodicity and proposed several methods for efficient 

mining of k-patterns. Another original algorithms for 

symbol and segment periodicity detection based on 

mapping scheme and convolution may be found in [4].  

The above methods were used to discover  potential 

periods from the entire time-series data. In paper [16] 

the authors presented the dense periodic patterns that 

may exist only in a limited range of the time-series. 

Most of the works are concentrated on the k-patterns 

constructing and use a base line algorithm for 1-patterns 

mining. To the best of our knowledge only paper [3] 

represents the way to improve 1-patterns mining. In our 

work we propose a new approach to the 1-patterns 

mining and perform a comparison analysis with the 

existing base line and ATL approaches. In addition, 

most of the existing studies focused on the detection of 

such patterns where Si and pj are single events while we 

explore the patterns where pi may be a set of events. 

Another group of works [11, 12, 17] is focused on 

the regular activities that occur with a calendar-based 

periodicity. In [12] the calendar schema is proposed to 

construct periodic patterns. Calendar-based approach 

allows to specify multiple time granularities. For 

example, schema (2010, *, 1) means that the pattern 

occurred on the first day of each month in 2010. A 

fuzzy periodic calendar and an algorithm for mining 

fuzzy periodicity are developed in [11]. 

 

3 Problem Defenition 

Let E be a set of events. Time-series S is a sequence of 

records (ti, ei) with an event ei ∈ E and a time stamp ti 

when the event occurred. 

We assume that the pattern time interval is limited 

by user-specified window W, i.e. all events in pattern 

occur within the interval W. Time-series S can be 

presented as S = S1 S2 … Sn, where Si are sequential 

disjoint sets of the events happening during the 

window. For example, for W equal to an hour, S1 may 

contain the events which occurred from 12 am to 13 am, 

S2 contains the events that took place from 13 to 14 am, 

and so on. 

Let T be a subset of E. The set T is contained in Si, 

if all the events of T are in Si. 

The binary sequence for itemset T (BinSeqT) is 

constructed as follow: BinSeqT[i] = 1 if T is contained 

in Si, and BinSeqT[i] = 0 otherwise. 

The candidate pair (p, o) with period p and offset o 

has a support Sup of the period (p, o) for the set T: 
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The notation (p, o, sup) will be used if it is known that 

the candidate pair (p, o) has the support sup. 

We say that the set T is a periodic 1-pattern with 

period p and offset o if Sup(p, o) is not less than a 

specified minimum support. 

The length of a 1-pattern is the number of elements 

in the pattern. The 1-pattern of length 1 we will also be 

called a periodic event and the 1-pattern of length k 

greater than 1 we will be referred to as a periodic k-set 

for short.  Our goal is to find all possible periodic sets 

in a given time-series. 

4 Algorithm 

Our algorithm belongs to a group of methods using an 

iterative approach known as a level-wise search. This 

approach uses k-patterns to generate (k+1)-patterns. At 

the first step of the algorithm the set of periodic events 

is found by searching the binary sequences. Further, the 

periodic sets with two items can be constructed and 

tested for the periodicity (i.e. which of them satisfy a 

minimum support), and so on, until no more periodic k-

sets can be detected. 

The following predefined parameters are used in the 

algorithms: minimum period (P_min), maximum period 

(P_max), minimum support (Sup_min). 

4.1 Periodic items 

Three methods for the periodic events detection will be 

discussed below. The first method is the base line 

algorithm that is used in most of existing works. In the 

second approach we adopt the idea of ATL structure 

described in [3]. The third approach represents a new 

way to periodic item detection. The periodic 1-sets or 

periodic events are found using binary sequences of 

events. So, for each event it is needed to construct the 

binary sequence as described in section 3.   

 

Base line approach. 

 

This method requires counting the support value for all 

possible periods-candidates as shown in fig. 1. 

 

 

 

 

 

 

 

 

Fig. 1 

 

Such an approach requires the full scan of the binary 

sequence for the testing of some period. To check all 

the candidates (P_max – P_min + 1) passes are needed 

for each event. If n is the length of the binary sequence, 

⌊n/p⌋ steps are required to check one candidate (p, o). 

There are p candidate pairs with period p and different 

offsets. To test them p * ⌊n/p⌋ ~ n steps are required. 
And the number of interesting periods is (P_max-
P_min+1). So, the algorithm is performed in time 
O((P_max-P_min+1) * n). 
 
ATL-based approach. 

 

In this case only one full scan of the sequence is 

required. The number of times each candidate pair 

occurs is counted by scanning.  

Initially, count is equal to 0 for all the candidates. 

When a position i is considered, if BinSeq[i] = 1 then 

the count of the occurrences increases by one for all the 

cycles (p, o = i mod p).  

For example, consider a binary sequence: 

BinSeq = 01001011001, P_min = 2, P_max = 5.  

Let the algorithm scan sequence at position i=4: BinSeq 

[4]=1 => (2, 0).count++, (3, 1).count++, (4, 0).count++, 

(5, 4).count++, and so on while i less than the sequence 

length.  

After the occurrences numbers of candidate periods 

have been counted the supports of pairs are calculated 

as follow:  

%
p

BinSeqSize
ounts = (p, o).cSup(p, o) 100*

)(
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This method is described below in Fig 3. 

 

 

 

 

 

 

 

Fig. 3 

 

 

 

 

 

Fig. 3 

 

Time complexity of this approach is O(n). 

 

Divider-based pruning approach. 

 

This method is based on the following observation: 

if there is a triple (p, o, sup), then a triple (p1, d1, sup1) = 

(p/d, o, sup/d) with smaller period and support also 

exists. To be more precise d is a divider of p and sup1 

no less than sup/d. So, in order for a triple (p, o, sup) to 

exist, the existence of triple (p1 = p/d, o, sup1 ≥ sup/d) 

calculated at the previous steps is necessary. Support 

values that were counted for smaller periods can be 

used to reduce computing at the next iterations for 

larger periods mining. If for some candidate (p, o) the 

support is equal to sup and sup < Sup_min, then the 

forP_min ≤ p ≤P_max 

for 0 ≤ o < p 

 if (Sup(p, o) ≥ Sup_min) then  

 Result.AddPeriod(p, o) 
 

Result; // the set of finding periods 

for  0 ≤ I < Size(BinSeq) 

if(BinSeq[i]=1) then 

 forP_min ≤ p ≤ P_max 

  (p, i mod p).count++; 

forP_min ≤ p ≤P_max 

for 0 ≤ I < p  

 if(sup(p, o) ≥ Sup_min) then 

 Result.Add(p, o); 

 



candidate (p*i, o) is not suitable in case p*i < P_max 

and sup*i < Sup_min. 

For example, at some iteration of the algorithm a 

candidate pair (4, 3) is tested on periodicity with the 

minimum support 80 %. If the support of the candidate 

is 30% then candidate (8, 3) may be excluded from 

further consideration. 

The second observation we will use is that if the 

period (p, o) is found, then the multiple periods (p*i, o) 

are not so interesting.  

At the beginning of the algorithm we assume that 

there are all possible periods, i.e. pairs (p, o). Denote 

this set as Cand. Pseudocode of the algorithm is given 

in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2 

 

Algorithm evaluation: 

 

1) In the algorithm a check of all candidates with the 

prime periods is required. Such pairs couldn’t be 

removed from the set of candidates at the previous steps 

of the algorithm. 

The number of primes less than N is estimated 

approximately as N/ln(N). Consequently, the number of 

prime periods in the range of P_min to P_max equal to 

K = P_max/ln(P_max) – P_min/ln(P_min). To compute 

the support of pairs with period p and all possible 

offsets the scan of the entire binary sequence is 

required. Thus, to test all prime periods, we need to 

perform K*n steps. 

 

2)Let’s consider what candidates with the composite 

periods should be treated on the average. There are 

(P_min + P_max)/2 * (P_max - P_min +1) pairs with 

period p from P_min to P_max and the corresponding 

offset from 0 to p-1. 

The number of prime periods is equal to K. The 

mean period is (P_min + P_max)/2 and the number of 

candidates with this period and different offsets is 

(P_min + P_max)/2 also. We estimate the count of 

candidates with prime periods as K*(P_min + 

P_max)/2. Therefore, the number of candidates with the 

composite periods may be computed like that: 

 
               

 
                   

   
               

 
  

 
               

 
                 

 

We assume that a half of these pairs on the average 

are excluded from consideration, i.e. from the candidate 

set, at the previous steps of the algorithm. To check a 

candidate with period p it is required to scan n/p 

elements of the binary sequence. Consequently, to 

check a candidate with the mean period it is required n / 

(P_min+P_max) / 2 = 2*n / (P_min+P_max) elements. 

So, to check the candidates with composite periods it is 

needed to take 

 

 
 

 
 
               

 
                

 
   

            
 

 

=
 

 
 *(P_max – P_min + 1 - K)*nsteps on the average. 

 

3) So, summing the results in 1) and 2) for evaluating 

prime and composite periods respectively we conclude 

that the algorithm perform K*n +  
 

 
 *(P_max – P_min 

+ 1 - K)*n = 
 

 
 *(P_max – P_min + 1+K)*n steps. And 

the time complexity of the PA approach is  

O(
 

 
 *(P_max – P_min + 1+K)*n)  in the mean. 

 

 

4.2 Periodic k-sets 

 

The Apriori property can be adapted to periodic sets: 

All nonempty subsets of a periodic set must also be 

periodic sets with the same periods and offsets. So, for 

k+1-sets generation we will use the k-sets.    

Let Pk(p, o) be the collection of k-sets having period 

p with offset o. This set contains the patterns with their 

binary sequences. The order of elements in the patterns 

is not significant, and we will keep items in 

lexicographic order. In this case we apply the join step 

proposed by Agrawal, etc. in [1] to the candidate k+1-

sets (denote this set as Ck+1(p, o)) generation. Pk is 

joined with Pk in the following way:  

 

Let p = p1 p2 … pk, q = q1 q2 … qk ∈ Pk 

If p, q such that p1 = q1, … , pk-1 = qk-1, pk < qk, then  

c = p1 p2 … pk qk ∈ Ck+1 

 

We will store k-sets with their binary sequences. 

BinSeqp is the binary sequence for k-pattern P and 

Result; // the set of finding periods 

while (not Cand.Empty()) 

  (p, o) = Cand.GiveNextPair(); 

sup = Sup(p, o); 

if (sup ≥ Sup_min) then 

Result.Add(p, o); 

i  =  1; 
while (p*i ≤ P_max) 

Cand.Remove(p*i, o); 

else 

 i = 1; 

 while (p*i ≤ P_max and  

sup*I < Sup_min) 

 Cand.Remove(p*i, o); 

 i++; 

 



BinSeqqk is the binary sequence of item qk. Support of 

the candidate set c = p1 p2 … pk qk is calculated as: 
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If the support of the candidate c is more than the given 

minimum support, then c ∈ Pk+1(p, o). All k+1-

candidates are tested and the set of k+1-sets is 

composed. Similarly, the collection of k+2-sets is 

obtained from the set of k+1-patterns and so on. 

Let’s estimate the time required to generate Pk+1(p, 

o) from the set Pk(p, o). Let m be the number of the 

patterns in Pk(p, o). The count of the candidate k+1-sets 

deriving at the join step can be evaluated as (m-1) + (m-

2) + … + 1 = m(m-1)/2 in the worst case. If n is the 

binary sequence length, then 2*n/p steps are required to 

check the one candidate. So, the algorithm perform 

m(m-1)*n/p steps during the construction of the Pk+1(p, 

o) set from Pk(p, o).  

So, we have shown the method for periodic k-sets 

mining above. Note, that the periodic k-patterns can be 

obtained from the found periodic sets using known 

methods for periodic pattern mining. 

5 Experiments 

5.1 Data generation 

For our experiments we used synthetic data. The time-

series were generated by tuning the following 

parameters: the beginning date and the end date of the 

sequence, the number of different events (|E|), the 

length of time-series (i.e. total number of entries in a 

file), the count of periodic sets in series, the minimum 

and maximum periods, the minimum and maximum 

window for periodic sets, the minimum and maximum 

support of periodic sets. 

Note that in addition to the known generated 

periodic sets the time-series may contain a number of 

others patterns. These periods are formed by noise 

events, which correspond to the real data. Some of the 

periods may be obvious, well-known or uninteresting, 

but the task of the revelation of interesting and useful 

periodic patterns is not in the scope of this work. 

The events in the data have different frequency. |E| 

is the number of different (noisy) events. We have an 

ordered list of the events. At some moment of the time 

an event with a sequential number N occurs. The 

number N is calculated as  

N = random.Next(random.Next(|E|)) 
So, the smaller the event ordinal number, the more 

frequently it happens. The intervals between successive 

events in the generated data are the same. 

5.2 Experiments performance 

The algorithms described for periodic events detection 

are denoted as BL (Base line Approach), ATL (ATL-

based approach) and DBP (Divider-based pruning 

approach). 

Fig. 1 illustrates that the behavior of the algorithms 

depends on the time-series frequency. Time-series 

frequency (FS) is a value that indicates how many 

events occur in a time unit or a patterns window. The 

other parameters of the data: data for the time span in a 

month, 1200 different events, the window size for 

patterns from 10 minutes to an hour, the periods from 3 

hours to a week, the support of the generated patterns 

ranges from 60 to 100%.  The algorithm works with 

P_min= 3 hour, P_max= 1 week, Sup_min= 70%. 

 

 
 

 
 

Fig. 1 

 

Figure 1 shows a significant efficiency gain by DBP 

and ATL over base line approach BL. These algorithms 

allow to improve the execution time by 1,6-5,4 times. 

ATL is more efficient for a smaller number of entries an 

hour while it is opposite with DBP. We assume that the 

algorithms performance really depends on the ratio of 

different events number and time-series frequency, and 

not only on the frequency of series. It is confirmed by 

the second experiment (Fig. 2), where the size of events 

set E is changed for a fixed frequency (20 events per 

minute). 

For our data if the rate |E|/FS < 0,7 then the 

algorithm ATL is more efficient, and it is otherwise if 

|E|/FS > 0,7 then DBP. 

 

Fig. 3 gives execution time against range of periods. 

The minimum period is set at three hour and the 

maximum period value varies from 24 to 168 hours. All 

algorithms are ecexuted longer with increasing the 

range. But DBP execution time grows slower by 1,3-1,5 

times as compared to the other two.  
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The scalability of the algotithms with respect to the 

analyzed data size is displayed in Fig. 4. We compare 

the performance of each approach for data from 8 to 96 

Mb, which corresponds to the data period from 1 to 12 

months if the time-series has 5 events per minute on 

average and 900 different events. The graphs show that 

three algorithms have scalability close to linear. 

However, ATL execution time increase grows about 1,6 

times more slowly than BL and 2 times more slowly 

than DBP for such data. 

 

 

 
 

Fig. 2 

 

 

 

 
 

Fig. 3 

 

 

Obviously, the generation of k+1-sets depends 

largely on the previous step, i.e. how many k-sets were 

found (the greater the number of k-sets, the more time is 

required for k+1-sets detection) while the generation 

time of the 1-sets relies on the input data size mostly. 

Therefore the stage of the periodic event extracting may 

take a significant part of periodic set mining algorithm 

and the improvement of this step can accelerate the 

algorithm performance as a whole. Fig. 5 shows the 

performance of the algorithm against the number of 1-

sets. For step of 1-sets detection we use the BL 

algorithm. 

 

 
 

Fig. 4 

 

 

 

Fig. 5 

 

 

Unlike the BL and ATL methods, using the 

introduced DBP approach in order to mine the periodic 

events allows to reduce the time of the k-patterns 

discovery as well. It is achieved due to the removal of 

multiple periods. For the same data in previous 

experiment the k-sets generation after the first step with 

DBP is 2-12% faster than after BL. 

6 Conclusion 

In this work the problem of periodic 1-patterns finding 

was considered. We represent the approach to periodic 

sets generation relying on the methods of frequent 

pattern mining. The  new algotithm DPA for the 

periodic item mining was introduced as well as its 

evaluation was determined. We considered in detail the 

other existing approaches and compared them with the 

proposed one. The series of experiments shows that the 
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proposed algorithms DPA can give up to a hundreds 

percent increase in performance of 1-patterns mining 

over the base line approach used in most of the previous 

studies. The our algorithm is the more advantageous 

then ATL in some cases also. The experimental 

comparison of the existing methods with different data 

and parameters is described in the paper. 

In the future work it is interesting to analyze the 

memory management and explore the algorithms 

performance on the real and big data. Although the BL 

requires more time, it is no need to store the additional 

structures as DBP or ATL. Other directions for the 

future work are the solution of useful periodic patterns 

detection problem and developing the parallel 

extensions of the algorithms. 
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