
Mining periodic patterns in time-series databases

© Ekaterina Ivannikova

Saint Petersburg State University

ivannikovae@gmail.com

Abstract

Periodicity detection is an important temporal

data mining problem with different

applicability. In this paper, we raise a problem

of periodic sets detection and suggest the

method for its solution. Several existing

algorithms for the mining of periodic events

are considered in detail and a new approach is

proposed in the paper. The comparison of the

algorithms and their performance are

demonstrated through a series of experiments.

1 Introduction

Pattern mining is an important area of data mining,

and it has been growing rapidly over the two past

decades. The initial stimulus for the development of

methods was the problem of market basket analysis,

that requires to determine which products are usually

purchased together by using a transaction database of

supermarket buying. The new knowledge could be used

for the correct placement of goods or for the advertising

purpose. The first efficient algorithm for finding

frequent patterns has been proposed in [1]. Now there

are many algorithms for detecting the patterns that are

applied in various fields. For example, they are used in

biology to identify the sequences of nucleotides, in the

analysis of log files for the detection of failures or

attacks, in medicine for diagnosis, in marketing for

advertising or tips for users, etc.

Many kinds of the data in the real world are time

series or temporal databases. Periodic pattern mining is

the problem that regards temporal regularity. Periodic

patterns are characterized by a certain persistence and

predictability. Information about such regularity can be

used for many tasks: for the purpose of personal

promotion to the users, for the timely reminders about

the future events or forecasting.

By the periodic pattern we mean the set of items that

frequently occur together at regular time intervals.

There are two ways for prediction if the pattern and its

period p are known. If the pattern has occurred during

some time interval (tbeg, tend) then it is likely to repeat

during (tbeg+ p, tend + p). And if several events of the

pattern have occurred then other events of the pattern

are likely to happen soon. Therefore, it is important to

identify and describe the periodicity.

There are several types of periodic patterns

considered in literature. Most of the studies on their

mining apply the Apriori property heuristic and adopt

some variations of Apriori-like mining methods [9].

Apriori property is used to reduce the search space and

formulated as “All nonempty subsets of a frequent

itemset must also be frequent”, i.e. an itemset is

frequent only if all of its sub-itemsets are frequent. This

observation applies to construct k+1-patterns based on

the found k-patterns set. But 1-patterns are generally

detected by a simple search and are not consider in

detail. In addition, in most of the previous works the 1-

pattern consists of a single item while the pattern that

consists of a number of events may be interested in

some tasks. In this work we present an algorithm for

such periodic 1-patterns finding and discuss several

approaches to periodic event detection. We propose a

new algorithm to the periodic event mining as well. The

experiments show that our method is the more

advantageous in some cases.

The remainder of this paper is organized as follows.

In section 2 the previous works on the frequent and

periodic pattern mining will be discussed. In section 3

the notation used throughout the paper and the formal

definition of periodic patterns are introduced. Section 4

describes the several possible ways of patterns detection

and section 5 presents the experimental results. The

conclusion and future research directions are contained

in section 6.

2 Related Works

Our study combines frequent pattern mining and

periodic pattern mining in periodic sets finding. We will

review the related works in these areas below.

2.1 Frequent pattern mining

There are a huge number of studies in this field in

literature. The existing algorithms can be classified into

three main groups:

- iterative Apriori-like level-wise mining

techniques

- pattern mining methods without candidate

generation

Proceedings of the Spring Young Researcher's

Colloquium On Database and Information Systems

SYRCoDIS, Moscow, Russia, 2012

mailto:ivannikovae@gmail.com

- mining techniques with the vertical data format

As mentioned above, the concept of frequent itemset

and the first algorithm for finding frequent patterns by

using downward closure property, called Apriori, were

introduced by Agrawal and Srikant in [1]. This

approach requires candidate set generation and scanning

the database to check each candidate. Such techniques

as hashing [14], partitioning [15], upper bound of the

number of candidate patterns that can be generated in

the level-wise approach [5] were developed for

improvements and extensions of algorithms in that

category [7].

In paper [10] a problem of finding long frequent

patterns is considered and a new FP-growth approach

that mines frequent itemsets without candidate

generation was devised. At the first step items are

ordered in frequency-descending order and according to

this list, the database is compressed into a special FP-

tree and after that the tree is mined in some way. An

alternative approach is proposed in [6].

These methods are used to discover patterns from a

set of transactions in a horizontal data format (i.e.

{Transaction_id :itemset}). An example of alternative

class of the algorithms that first transforms the data into

a vertical data format (i.e. {item :Transaction_id set}) is

Eclat [18]. These methods don’t require scanning the

database to count the support of (k+1)-candidates.

2.1 Periodic pattern mining

The problem of mining periodic patterns can be

viewed from different perspectives [9]: depending on

the coverage of the pattern there are full- and partial-

periodic patterns. Basing on the precision of the

periodicity synchronous and asynchronous pattern can

be identified. And a pattern can also be precise or

approximate.

Generally, in the works related with our, the

following notation of periodic pattern is used. Let S be

the sequence S = S1, S2, …. , Sn. A pattern p is the

nonempty sequence p = p1 … pk, where {*}.ji Sp

The additional event {*} – symbol that matches any

event and is used to represent the “don’t care” position

in the pattern. The frequency of a pattern p is the count

of j such that the string s is true in Si|p|+1 …Si|p|+|p|. If the

frequency of the p exceeds a minimum support

threshold, then this pattern is named periodic. A pattern

with the k non-{*} positions is also called an i-pattern.

Cyclic association rules that display regular cyclic

variation over time were first introduced in [13]. These

rules are based on partial-periodic patterns with perfect

periodicity in the sense that each pattern reoccurs in

every cycle. In the article several techniques called

cycle-pruning, cycle-skipping and cycle-elimination

were proposed to optimize mine periodic patterns with

100% support.

General partial-periodic patterns with imperfect

periodicity studied in [3, 4, 8] are more common in real

world. In work [3] a new structure named abbreviated

list table (ALT) that maintains the occurrence counts of

all symbols and corresponding periods was proposed.

Using this structure only a small number of data

sequence passes are required to compute the periods

and the patterns of size 1. Han et al [8] explored

interesting properties such as the Apriori property and

the max-subpattern hit set property related to partial

periodicity and proposed several methods for efficient

mining of k-patterns. Another original algorithms for

symbol and segment periodicity detection based on

mapping scheme and convolution may be found in [4].

The above methods were used to discover potential

periods from the entire time-series data. In paper [16]

the authors presented the dense periodic patterns that

may exist only in a limited range of the time-series.

Most of the works are concentrated on the k-patterns

constructing and use a base line algorithm for 1-patterns

mining. To the best of our knowledge only paper [3]

represents the way to improve 1-patterns mining. In our

work we propose a new approach to the 1-patterns

mining and perform a comparison analysis with the

existing base line and ATL approaches. In addition,

most of the existing studies focused on the detection of

such patterns where Si and pj are single events while we

explore the patterns where pi may be a set of events.

Another group of works [11, 12, 17] is focused on

the regular activities that occur with a calendar-based

periodicity. In [12] the calendar schema is proposed to

construct periodic patterns. Calendar-based approach

allows to specify multiple time granularities. For

example, schema (2010, *, 1) means that the pattern

occurred on the first day of each month in 2010. A

fuzzy periodic calendar and an algorithm for mining

fuzzy periodicity are developed in [11].

3 Problem Defenition

Let E be a set of events. Time-series S is a sequence of

records (ti, ei) with an event ei ∈ E and a time stamp ti

when the event occurred.

We assume that the pattern time interval is limited

by user-specified window W, i.e. all events in pattern

occur within the interval W. Time-series S can be

presented as S = S1 S2 … Sn, where Si are sequential

disjoint sets of the events happening during the

window. For example, for W equal to an hour, S1 may

contain the events which occurred from 12 am to 13 am,

S2 contains the events that took place from 13 to 14 am,

and so on.

Let T be a subset of E. The set T is contained in Si,

if all the events of T are in Si.

The binary sequence for itemset T (BinSeqT) is

constructed as follow: BinSeqT[i] = 1 if T is contained

in Si, and BinSeqT[i] = 0 otherwise.

The candidate pair (p, o) with period p and offset o

has a support Sup of the period (p, o) for the set T:

%100*
|]*[|

|1]*[:|
),(

opiBinSeq

opiBinSeqi
opSup

T

T

where

p

BinSeqSize
 = opiBinSeq

T

T

)(
|]*[|

 BinSeqSizeo pi T)(*

The notation (p, o, sup) will be used if it is known that

the candidate pair (p, o) has the support sup.

We say that the set T is a periodic 1-pattern with

period p and offset o if Sup(p, o) is not less than a

specified minimum support.

The length of a 1-pattern is the number of elements

in the pattern. The 1-pattern of length 1 we will also be

called a periodic event and the 1-pattern of length k

greater than 1 we will be referred to as a periodic k-set

for short. Our goal is to find all possible periodic sets

in a given time-series.

4 Algorithm

Our algorithm belongs to a group of methods using an

iterative approach known as a level-wise search. This

approach uses k-patterns to generate (k+1)-patterns. At

the first step of the algorithm the set of periodic events

is found by searching the binary sequences. Further, the

periodic sets with two items can be constructed and

tested for the periodicity (i.e. which of them satisfy a

minimum support), and so on, until no more periodic k-

sets can be detected.

The following predefined parameters are used in the

algorithms: minimum period (P_min), maximum period

(P_max), minimum support (Sup_min).

4.1 Periodic items

Three methods for the periodic events detection will be

discussed below. The first method is the base line

algorithm that is used in most of existing works. In the

second approach we adopt the idea of ATL structure

described in [3]. The third approach represents a new

way to periodic item detection. The periodic 1-sets or

periodic events are found using binary sequences of

events. So, for each event it is needed to construct the

binary sequence as described in section 3.

Base line approach.

This method requires counting the support value for all

possible periods-candidates as shown in fig. 1.

Fig. 1

Such an approach requires the full scan of the binary

sequence for the testing of some period. To check all

the candidates (P_max – P_min + 1) passes are needed

for each event. If n is the length of the binary sequence,

⌊n/p⌋ steps are required to check one candidate (p, o).

There are p candidate pairs with period p and different

offsets. To test them p * ⌊n/p⌋ ~ n steps are required.
And the number of interesting periods is (P_max-
P_min+1). So, the algorithm is performed in time
O((P_max-P_min+1) * n).

ATL-based approach.

In this case only one full scan of the sequence is

required. The number of times each candidate pair

occurs is counted by scanning.

Initially, count is equal to 0 for all the candidates.

When a position i is considered, if BinSeq[i] = 1 then

the count of the occurrences increases by one for all the

cycles (p, o = i mod p).

For example, consider a binary sequence:

BinSeq = 01001011001, P_min = 2, P_max = 5.

Let the algorithm scan sequence at position i=4: BinSeq

[4]=1 => (2, 0).count++, (3, 1).count++, (4, 0).count++,

(5, 4).count++, and so on while i less than the sequence

length.

After the occurrences numbers of candidate periods

have been counted the supports of pairs are calculated

as follow:

%
p

BinSeqSize
ounts = (p, o).cSup(p, o) 100*

)(
/

This method is described below in Fig 3.

Fig. 3

Fig. 3

Time complexity of this approach is O(n).

Divider-based pruning approach.

This method is based on the following observation:

if there is a triple (p, o, sup), then a triple (p1, d1, sup1) =

(p/d, o, sup/d) with smaller period and support also

exists. To be more precise d is a divider of p and sup1

no less than sup/d. So, in order for a triple (p, o, sup) to

exist, the existence of triple (p1 = p/d, o, sup1 ≥ sup/d)

calculated at the previous steps is necessary. Support

values that were counted for smaller periods can be

used to reduce computing at the next iterations for

larger periods mining. If for some candidate (p, o) the

support is equal to sup and sup < Sup_min, then the

forP_min ≤ p ≤P_max

for 0 ≤ o < p

 if (Sup(p, o) ≥ Sup_min) then

 Result.AddPeriod(p, o)

Result; // the set of finding periods

for 0 ≤ I < Size(BinSeq)

if(BinSeq[i]=1) then

 forP_min ≤ p ≤ P_max

 (p, i mod p).count++;

forP_min ≤ p ≤P_max

for 0 ≤ I < p

 if(sup(p, o) ≥ Sup_min) then

 Result.Add(p, o);

candidate (p*i, o) is not suitable in case p*i < P_max

and sup*i < Sup_min.

For example, at some iteration of the algorithm a

candidate pair (4, 3) is tested on periodicity with the

minimum support 80 %. If the support of the candidate

is 30% then candidate (8, 3) may be excluded from

further consideration.

The second observation we will use is that if the

period (p, o) is found, then the multiple periods (p*i, o)

are not so interesting.

At the beginning of the algorithm we assume that

there are all possible periods, i.e. pairs (p, o). Denote

this set as Cand. Pseudocode of the algorithm is given

in Figure 2.

Fig. 2

Algorithm evaluation:

1) In the algorithm a check of all candidates with the

prime periods is required. Such pairs couldn’t be

removed from the set of candidates at the previous steps

of the algorithm.

The number of primes less than N is estimated

approximately as N/ln(N). Consequently, the number of

prime periods in the range of P_min to P_max equal to

K = P_max/ln(P_max) – P_min/ln(P_min). To compute

the support of pairs with period p and all possible

offsets the scan of the entire binary sequence is

required. Thus, to test all prime periods, we need to

perform K*n steps.

2)Let’s consider what candidates with the composite

periods should be treated on the average. There are

(P_min + P_max)/2 * (P_max - P_min +1) pairs with

period p from P_min to P_max and the corresponding

offset from 0 to p-1.

The number of prime periods is equal to K. The

mean period is (P_min + P_max)/2 and the number of

candidates with this period and different offsets is

(P_min + P_max)/2 also. We estimate the count of

candidates with prime periods as K*(P_min +

P_max)/2. Therefore, the number of candidates with the

composite periods may be computed like that:

We assume that a half of these pairs on the average

are excluded from consideration, i.e. from the candidate

set, at the previous steps of the algorithm. To check a

candidate with period p it is required to scan n/p

elements of the binary sequence. Consequently, to

check a candidate with the mean period it is required n /

(P_min+P_max) / 2 = 2*n / (P_min+P_max) elements.

So, to check the candidates with composite periods it is

needed to take

=

 *(P_max – P_min + 1 - K)*nsteps on the average.

3) So, summing the results in 1) and 2) for evaluating

prime and composite periods respectively we conclude

that the algorithm perform K*n +

 *(P_max – P_min

+ 1 - K)*n =

 *(P_max – P_min + 1+K)*n steps. And

the time complexity of the PA approach is

O(

 *(P_max – P_min + 1+K)*n) in the mean.

4.2 Periodic k-sets

The Apriori property can be adapted to periodic sets:

All nonempty subsets of a periodic set must also be

periodic sets with the same periods and offsets. So, for

k+1-sets generation we will use the k-sets.

Let Pk(p, o) be the collection of k-sets having period

p with offset o. This set contains the patterns with their

binary sequences. The order of elements in the patterns

is not significant, and we will keep items in

lexicographic order. In this case we apply the join step

proposed by Agrawal, etc. in [1] to the candidate k+1-

sets (denote this set as Ck+1(p, o)) generation. Pk is

joined with Pk in the following way:

Let p = p1 p2 … pk, q = q1 q2 … qk ∈ Pk

If p, q such that p1 = q1, … , pk-1 = qk-1, pk < qk, then

c = p1 p2 … pk qk ∈ Ck+1

We will store k-sets with their binary sequences.

BinSeqp is the binary sequence for k-pattern P and

Result; // the set of finding periods

while (not Cand.Empty())

 (p, o) = Cand.GiveNextPair();

sup = Sup(p, o);

if (sup ≥ Sup_min) then

Result.Add(p, o);

i = 1;
while (p*i ≤ P_max)

Cand.Remove(p*i, o);

else

 i = 1;

 while (p*i ≤ P_max and

sup*I < Sup_min)

 Cand.Remove(p*i, o);

 i++;

BinSeqqk is the binary sequence of item qk. Support of

the candidate set c = p1 p2 … pk qk is calculated as:

%100*
|]*[|

|| 1]*[&1]*[:

opiBinSeq

(p, o) =Sup

p

qkp

c

opiBinSeqopiBinSeqi

p

BinSeqSize
 = opiBinSeq

p
p

)(
|]*[|

If the support of the candidate c is more than the given

minimum support, then c ∈ Pk+1(p, o). All k+1-

candidates are tested and the set of k+1-sets is

composed. Similarly, the collection of k+2-sets is

obtained from the set of k+1-patterns and so on.

Let’s estimate the time required to generate Pk+1(p,

o) from the set Pk(p, o). Let m be the number of the

patterns in Pk(p, o). The count of the candidate k+1-sets

deriving at the join step can be evaluated as (m-1) + (m-

2) + … + 1 = m(m-1)/2 in the worst case. If n is the

binary sequence length, then 2*n/p steps are required to

check the one candidate. So, the algorithm perform

m(m-1)*n/p steps during the construction of the Pk+1(p,

o) set from Pk(p, o).

So, we have shown the method for periodic k-sets

mining above. Note, that the periodic k-patterns can be

obtained from the found periodic sets using known

methods for periodic pattern mining.

5 Experiments

5.1 Data generation

For our experiments we used synthetic data. The time-

series were generated by tuning the following

parameters: the beginning date and the end date of the

sequence, the number of different events (|E|), the

length of time-series (i.e. total number of entries in a

file), the count of periodic sets in series, the minimum

and maximum periods, the minimum and maximum

window for periodic sets, the minimum and maximum

support of periodic sets.

Note that in addition to the known generated

periodic sets the time-series may contain a number of

others patterns. These periods are formed by noise

events, which correspond to the real data. Some of the

periods may be obvious, well-known or uninteresting,

but the task of the revelation of interesting and useful

periodic patterns is not in the scope of this work.

The events in the data have different frequency. |E|

is the number of different (noisy) events. We have an

ordered list of the events. At some moment of the time

an event with a sequential number N occurs. The

number N is calculated as

N = random.Next(random.Next(|E|))
So, the smaller the event ordinal number, the more

frequently it happens. The intervals between successive

events in the generated data are the same.

5.2 Experiments performance

The algorithms described for periodic events detection

are denoted as BL (Base line Approach), ATL (ATL-

based approach) and DBP (Divider-based pruning

approach).

Fig. 1 illustrates that the behavior of the algorithms

depends on the time-series frequency. Time-series

frequency (FS) is a value that indicates how many

events occur in a time unit or a patterns window. The

other parameters of the data: data for the time span in a

month, 1200 different events, the window size for

patterns from 10 minutes to an hour, the periods from 3

hours to a week, the support of the generated patterns

ranges from 60 to 100%. The algorithm works with

P_min= 3 hour, P_max= 1 week, Sup_min= 70%.

Fig. 1

Figure 1 shows a significant efficiency gain by DBP

and ATL over base line approach BL. These algorithms

allow to improve the execution time by 1,6-5,4 times.

ATL is more efficient for a smaller number of entries an

hour while it is opposite with DBP. We assume that the

algorithms performance really depends on the ratio of

different events number and time-series frequency, and

not only on the frequency of series. It is confirmed by

the second experiment (Fig. 2), where the size of events

set E is changed for a fixed frequency (20 events per

minute).

For our data if the rate |E|/FS < 0,7 then the

algorithm ATL is more efficient, and it is otherwise if

|E|/FS > 0,7 then DBP.

Fig. 3 gives execution time against range of periods.

The minimum period is set at three hour and the

maximum period value varies from 24 to 168 hours. All

algorithms are ecexuted longer with increasing the

range. But DBP execution time grows slower by 1,3-1,5

times as compared to the other two.

0

5000

10000

15000

20000

25000

30000

35000

40000

3
0

6
0

3
0
0

6
0
0

1
2
0
0

1
8
0
0

2
4
0
0

3
6
0
0

Ex
e

cu
ti

o
n

 t
im

e
 (

m
se

c)

Events/hour

BL

DBP

ATL

The scalability of the algotithms with respect to the

analyzed data size is displayed in Fig. 4. We compare

the performance of each approach for data from 8 to 96

Mb, which corresponds to the data period from 1 to 12

months if the time-series has 5 events per minute on

average and 900 different events. The graphs show that

three algorithms have scalability close to linear.

However, ATL execution time increase grows about 1,6

times more slowly than BL and 2 times more slowly

than DBP for such data.

Fig. 2

Fig. 3

Obviously, the generation of k+1-sets depends

largely on the previous step, i.e. how many k-sets were

found (the greater the number of k-sets, the more time is

required for k+1-sets detection) while the generation

time of the 1-sets relies on the input data size mostly.

Therefore the stage of the periodic event extracting may

take a significant part of periodic set mining algorithm

and the improvement of this step can accelerate the

algorithm performance as a whole. Fig. 5 shows the

performance of the algorithm against the number of 1-

sets. For step of 1-sets detection we use the BL

algorithm.

Fig. 4

Fig. 5

Unlike the BL and ATL methods, using the

introduced DBP approach in order to mine the periodic

events allows to reduce the time of the k-patterns

discovery as well. It is achieved due to the removal of

multiple periods. For the same data in previous

experiment the k-sets generation after the first step with

DBP is 2-12% faster than after BL.

6 Conclusion

In this work the problem of periodic 1-patterns finding

was considered. We represent the approach to periodic

sets generation relying on the methods of frequent

pattern mining. The new algotithm DPA for the

periodic item mining was introduced as well as its

evaluation was determined. We considered in detail the

other existing approaches and compared them with the

proposed one. The series of experiments shows that the

0

5000

10000

15000

20000

25000

30000

2
5
0

3
5
0

4
5
0

6
0
0

9
0
0

1
5
0
0

2
1
0
0

Ex
e

cu
ti

o
n

 t
im

e
 (

m
se

c)

Number of different events

BL

DBP

ATL

0

5000

10000

15000

20000

25000

30000

35000

2
4

4
8

7
2

9
6

1
2
0

1
4
4

1
6
8

Ex
e

cu
ti

o
n

 t
im

e
 (

m
se

c)

Max period

BL

DBP

ATL

0

10000

20000

30000

40000

50000

8 24 40 56 72 88

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Data size(Mb)

BL

DBP

ATL

0

20000

40000

60000

80000

100000

4
0
0

7
0
0

1
0
0
0

1
3
0
0

1
9
0
0

2
8
0
0

Ex
e

cu
ti

o
n

 t
im

e
 (

m
se

c)

Count of 1-patterns

k-patterns

1-patterns
(NA)

proposed algorithms DPA can give up to a hundreds

percent increase in performance of 1-patterns mining

over the base line approach used in most of the previous

studies. The our algorithm is the more advantageous

then ATL in some cases also. The experimental

comparison of the existing methods with different data

and parameters is described in the paper.

In the future work it is interesting to analyze the

memory management and explore the algorithms

performance on the real and big data. Although the BL

requires more time, it is no need to store the additional

structures as DBP or ATL. Other directions for the

future work are the solution of useful periodic patterns

detection problem and developing the parallel

extensions of the algorithms.

References

[1] RakeshAgrawal and RamakrishnanSrikant. Fast

algorithms for mining association rules in large

databases. In VLDB, pages 487-499, 1994.

[2] Juan M. Ale and Gustavo Rossi. Discovering

association rules in temporal databases. In

Encyclopedia of Database Technologies and

Applications, pages 195-200. 2005.

[3] Huiping Cao, David W. Cheung, and Nikos

Mamoulis. Discovering partial periodic patterns in

discrete data sequences. In PAKDD, pages 653-

658, 2004.

[4] Mohamed G. Elfeky, Walid G. Aref, and Ahmed K.

Elmagarmid. Periodicity detection in time series

databases. IEEE Trans. Knowl. Data Eng.,

17(7):875-887, 2005.

[5] FlorisGeerts, Bart Goethals, and Jan Van den

Bussche. A tight upper bound on the number of

candidate patterns. In ICDM, pages 155-162, 2001.

[6] GöstaGrahne and Jianfei Zhu. E-ciently using prex-

trees in mining frequent itemsets. In FIMI, 2003.

[7] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng

Yan. Frequent pattern mining: current status and

future directions. Data Min. Knowl.

Discov.,15(1):55-86, 2007.

[8] Jiawei Han, Guozhu Dong, and Yiwen Yin. E-cient

mining of partial periodic patterns in time series

database. In ICDE, pages 106-115, 1999.

[9] Jiawei Han and MichelineKamber. Data Mining:

Concepts and Techniques, second edition. Morgan

Kaufmann, 2000.

[10] Jiawei Han, Jian Pei, and Yiwen Yin. Mining

frequent patterns without candidate generation.

In SIGMOD Conference, pages 1-12, 2000.

[11] Wan-Jui Lee, Jung-Yi Jiang, and Shie-Jue Lee.

Mining fuzzy periodic association rules. Data

Knowl. Eng., 65(3):442_462, 2008.

[12] Yingjiu Li, PengNing, Xiaoyang Sean Wang,

and SushilJajodia. Discovering calendar-based

temporal association rules. In TIME, pages 111-

118, 2001.

[13] BanuÖzden, Sridhar Ramaswamy, and Abraham

Silberschatz. Cyclic association rules. In ICDE,

pages 412-421, 1998.

[14] Jong Soo Park, Ming-Syan Chen, and Philip S.

Yu. An effective hash-based algorithm for

mining association rules. In Proceedings of the

1995 ACMSIGMOD international conference on

Management of data, SIGMOD '95, pages 175-

186, New York, NY, USA, 1995. ACM.

[15] Ashok Savasere, Edward Omiecinski, and

Shamkant B. Navathe. An effcient algorithm for

mining association rules in large databases. In

VLDB, pages 432-444, 1995.

[16] Chang Sheng, Wynne Hsu, and Mong-Li Lee.

Mining dense periodic patterns in time series

data. In ICDE, page 115, 2006.

[17] KeshriVerma and Om PrakashVyas. E-cient

calendar based temporal association rule.

SIGMOD Record, 34(3):63-70, 2005.

[18] Mohammed JaveedZaki. Scalable algorithms for

association mining. IEEETrans. Knowl.

DataEng., 12(3):372-390, 2000.

