
Learning from the History of Distributed Query
Processing

A Heretic View on Linked Data Management

Heiko Betz1, Francis Gropengießer1, Katja Hose2, and Kai-Uwe Sattler1

1 Ilmenau University of Technology, Germany,
{first.last}@tu-ilmenau.de

2 Dept. of Computer Science, Aalborg University, Denmark,
khose@cs.aau.dk

Abstract. The vision of the Semantic Web has triggered the devel-
opment of various new applications and opened up new directions in
research. Recently, much effort has been put into the development of
techniques for query processing over Linked Data. Being based upon
techniques originally developed for distributed and federated databases,
some of them inherit the same or similar problems. Thus, the goal of this
paper is to point out pitfalls that the previous generation of researchers
has already encountered and to introduce the Linked Data as a Service
as an idea that has the potential to solve the problem in some scenar-
ios. Hence, this paper discusses nine theses about Linked Data processing
and sketches a research agenda for future endeavors in the area of Linked
Data processing.

1 Introduction
The vision of the Semantic Web [2], i.e., the idea of having data on the Web
defined and linked in a way that it can be used by machines (and humans),
which automatically integrate and reuse data across various applications, has
triggered the development of various new applications, and has opened up new
directions in research. Basic requirements to turn this vision into reality is to
use certain standards, establish links, and describe relationships between data
sets that are available on the Web. The term Linked Data, or Linked Open Data
(LOD) respectively, refers to a set of best practices for publishing and connecting
structured data on the Web3. Tim Berners-Lee outlined a set of rules (often
referred to as the “Linked Data principles” or “Design Issues”) that describe
how the data should be published – in practical use RDF and SPARQL have
become the de-facto standards.

With the growing popularity, the number of data sources and the amount of
data has been growing very fast in recent years. In its current state the Linking
Open Data cloud, i.e., the cloud of available data sets published as Linked Open
Data, consists of 295 data sets with a total of about 31 billion triples (as of
November 2011) – making the concept of Linked Data one of the most successful
trends in the Semantic Web community.

3 http://www.w3.org/DesignIssues/LinkedData.html



Despite this success, working with Linked Data and its application still has to
overcome several challenges. In addition to the problems of publishing data and
assessing data quality, querying and analyzing Linked Data are ongoing research
issues. With the data being distributed among multiple sources, query answer-
ing usually involves multiple nodes. Current research on query processing over
Linked Data can be roughly split up into three categories: Lookup-based Query
Processing (LQP), Federated Query Processing (FQP), and Materialization-
based Query Processing (MQP).

However, many of the proposed LQP and FQP approaches rely to some
extent on techniques from classic distributed query processing or even resemble
techniques developed decades ago. So, instead of reinventing the wheel again,
we propose to pay attention to lessons already learned from existing database
research on distributed and federated query processing.

Hence, the goal of this paper is to point out what we can learn from federated
query processing in database research and make the reader aware of several
myths and open research questions. Thus, Section 2 discusses the state of the art
in Linked Data query processing and distributed/federated query processing in
databases. Section 3 presents nine theses discussing myths and pitfalls in Linked
Data query processing. Section 4 proposes Linked Data as a Service (LDaaS) as
a direction of future research and identifies several challenges that have to be
addressed to achieve this goal. Finally, Section 5 concludes the paper.

2 State of the Art in Query Processing

Linked Data Query Processing As already mentioned in the introduction
there are three main approaches towards evaluating structured queries over
Linked Data: Lookup-based Query Processing (LQP), Federated Query Pro-
cessing (FQP), and Materialization-based Query Processing (MQP).

LQP approaches download the data from the sources during query process-
ing, i.e., for each query all relevant data is downloaded from the sources and the
query is evaluated at a central instance over all the downloaded data. One of the
techniques proposed in the literature, explorative query processing [18, 23], ex-
ploits the very nature of Linked Data by iteratively evaluating and downloading
data for URIs representing results for parts of the query. This process requires
only little cooperation from the sources. Instead of determining relevant sources
based on intermediate query results, alternatively indexes [17] describing the
data provided by the sources can be used.

In case of FQP and distributed database systems, an optimizer needs to
identify relevant sources and determine subqueries that can be evaluated directly
at the sources without having to transfer the actual data. Several approaches
that all inherit characteristics from federated query processing are proposed for
Linked Data [7, 12,24,32,36], mostly using SPARQL and RDF.

The third class, MQP, adopts the idea of data warehouses, collects all the
data in advance and combines it into a centralized triple store. Centralized
SPARQL query processing has been a hot topic of research in the past couple of
years [27, 39]. Recently, the use of MapReduce [10] and cluster technology has
been proposed to increase efficiency of these centralized solutions [9, 20,21,30].



Distributed and Federated Query Processing in Databases Distributed
query processing in databases dates back to the late 1970ies. In these years,
important prototype systems such as SDD-1, Distributed INGRES, and R* were
developed. SDD-1 pioneered for instance optimization techniques and semijoin
strategies, INGRES and R* contributed further techniques.

The process of distributed query processing – which was already developed
within these systems – follows the conventional query processing strategies in
database systems. For the distributed case, the rewriting and optimization phases
are extended: during rewriting global relations have to be replaced by the cor-
responding fragmentation and reconstruction expression – a step that is called
data localization. The optimization is usually split into conventional local opti-
mization for choosing access strategies and the global optimization where join
ordering and site selection are the main tasks. For site selection two fundamen-
tal options exist: data shipping where the data is transfered from the storing
site to the site executing the query and query shipping where the evaluation of
the (sub-)query is delegated to the storing site. In addition, hybrid strategies
are also possible [11]. Furthermore, caching of results may help to reduce the
communication costs, but requires to balance between the benefit of answering
queries from the local cache and the costs for maintaining the cache [22].

Another important area are strategies for distributed join processing. For
joining two relations stored at different sites two basic strategies can be per-
formed: ship whole and fetch matches. Based on this, special strategies aiming
at reducing the transfer costs were developed, e.g. semijoins and hashfilter joins.
The problem of bursty and delayed arrivals of tuples was also addressed by
particular techniques such as the XJoin [38].

In federated scenarios where heterogeneities at data, schema, and system
level may exist, sometimes some of the source systems (endpoints) do not allow
fetching the whole table or evaluating a join but support only parameterized
selections. For this cases, the bind join [34] was proposed which is a variant of
the fetch matches strategy.

However, none of the classic distributed and federated databases solutions
(including commercial products) was designed to be scalable over hundreds of
nodes. Providing transparent access to remote data and guaranteeing ACID
properties is achieved using global schema information as well as query and
transaction coordinators. Also, estimating query costs to be able to select the
optimal execution plan (or better to avoid worst plans) is a challenging task,
particularly in heterogeneous settings [33]. In the Linked Data scenario with RDF
as a rather loosely structured data model (in contrast to comparatively well-
structured SQL schemas) and SPARQL endpoints implemented in very different
ways (ranging from file-based SPARQL processors to DBMS-based solutions)
this problem is even more complicated.

3 Theses on Linked Data Query Processing
In this section, we list several assumptions, myths, and theses that are frequently
mentioned in the research literature to motivate FQP and that can be consid-
ered hindrances for a Linked Data as a Service approach. For each thesis, we



discuss arguments to refute it and derive research challenges which we present
in Section 4.

(T1) The volume of Linked Data is too big for centralized manage-
ment. Due to the increasing amount of Linked Data, it seems to be almost
impossible to store it in a centralized system in a native uncompressed man-
ner. However, by using certain encoding approaches such as dictionary encoding
and/or prefix encoding, the volume of Linked Data can be reduced tremendously.
As an example, we consider the English DBpedia4 version 3.7. The total num-
ber of triples is 386,546,905, which uncompressed requires 50 GB of disk space.
However, the data contains much redundancy: only 23,645,703 subjects, 51,583
predicates, and 75,867,838 objects are unique. Applying dictionary encoding,
which is comparable to the RDF HDT5 format, reduces the size to 10,016 MB,
4,118 MB for the dictionary, and 5,898 MB for the triple data. Based on the
mentioned dataset, we calculated an average string length of approx. 44 charac-
ters (measured) and assume a character size of one byte. By extrapolating based
on these statistics we can approximate the required space to store an additional
1 million triples by approx. 26.3 MB (15.5 MB for triple data + 10.8 MB for
strings). In consequence, saving the current LOD cloud with 31 billion triples
results in approx. 800 GB. Thus, even in consideration of additional Linked
Data sources and formats, by applying advanced compression techniques the
data could be handled using the MQP approach in a single instance or small
cluster database.

(T2) Materialization in centralized repositories violates data author-
ity. Having a closer look at the LOD cloud, one can observe that many authors
are not interested in giving up their copyrights6. Hence, it is not possible to
materialize and integrate the affected data sets in centralized repositories. One
reason for this behavior is the fear of losing data authority. A possible solution
to overcome this problem is the application of multi-tenant techniques which are
already used in Cloud services like Amazon S3. In this way, the owner of the data
has the ability to control access to the data in a fine-grained manner. Another
solution would be to change the license model. The Creative Commons license7

(CC) keeps the name or source of the author and therefore allows common us-
age. To use this technique, each triple has to be expanded to a quad tuple with
the fourth value describing the origin/source of the triple.

(T3) Scalability can be achieved only by distributed query process-
ing. A widely spread assumption is that scalable query processing can only be
achieved in a distributed environment. A main precondition in order to hold this
assumption is that global query optimization can take place. Therefore, control
about the participating nodes is necessary [19]. In a federated system, each node
(source) acts autonomously, which makes it difficult to apply typical optimization
techniques like, for example, pipelining. A main consequence is that additional

4 http://dbpedia.org
5 http://www.w3.org/Submission/2011/03/
6 http://thedatahub.org/group/lodcloud
7 http://creativecommons.org/



data shipping between the coordinator and the participating nodes is necessary.
In [16] several approaches to federated query processing are discussed and com-
pared to the central (warehouse) solution. On average, the centralized approach
provides better query performance. Only simple, highly selective queries profit
from the parallel execution within a federated system. At the latest, if complex
joins have to be processed, query performance decreases dramatically in a feder-
ated system that does not allow cooperation beyond the standard. Here, network
latency hampers the transport of big data volumes leading to non-predictable
query response times.

In order to mitigate the problems of data shipping over high-latency networks
in world-wide distributed query processing scenarios, cluster-based approaches
are a promising solution. Infrastructure as a Service solutions like Amazon EC2
provide high-throughput inter-machine-connections as well as fast access to Stor-
age as a Service solutions like Amazon S3. They combine parallelism as well as
reliability and availability.

(T4) Linked Data processing is only about SPARQL processing. Al-
though a remarkable fraction of Linked Data processing consists of SPARQL
processing, data analyzing and reasoning scenarios – which in fact go far beyond
simple SPARQL processing – are gaining more and more importance. Especially,
the analysis of the increasing amount of spatial, temporal as well as stream data
is a big research challenge. Current work in this research area shows that there is
a need for appropriate SPARQL language extensions as well as for efficient and
scalable implementations of operations such as spatial and temporal joins. Ex-
amples are stSPARQL (implemented in the STRABON system8) and SPARQL-
ST [31], which constitute first language extensions that support spatio-temporal
queries. [15] proposes a first approach for an RDF stream engine. Furthermore,
C-SPARQL [1], SPARQLStream [8], CQELS [25], and [4] are first language ex-
tensions which introduce the ability to query linked data streams.

(T5) The problem of semantic heterogeneity can be solved by using
ontologies. The problem of semantic heterogeneity is a well-known problem in
the context of data integration systems; whenever the data of multiple indepen-
dent sources needs to be merged, we have to consider the problem of integrat-
ing the data correctly into one consistent data set. To solve this problem, some
schema integration approaches make use of ontologies, where each ontology mod-
els the interpreter’s understanding of the world. Exploiting mappings of terms
used in schema definitions to an ontology, the similarity of schema elements can
be determined based on the explicit definitions and relationships defined in the
ontology. In case different sources provide mappings to different ontologies, an
additional mapping between the ontologies is needed. In this sense, ontologies
can also help to identify duplicate entities modeled in heterogeneous sources.

Similar problems also arise for Linked Open Data. Different sources use dif-
ferent ontologies to model their RDF knowledge bases so that when trying to
build a consistent merged knowledge base or answering queries over multiple
sources, classes and predicates need to be mapped. However, so far Linked Data

8 http://www.strabon.di.uoa.gr



links are mostly considered only on instance level (connecting entity URIs via
owl:sameAs), establishing links between classes and predicates is less common.

Thus, when processing queries over Linked Data we have to deal with sim-
ilar problems as data integration systems. When merging the data of multiple
sources, we still have to define one consistent vocabulary by finding mappings
between the involved ontologies. Furthermore, with the two levels (instance and
schema) no longer separated in contrast to classic database systems, the problem
of semantic heterogeneity has not become easier. Thus, similar to data integra-
tion systems the use of ontologies does not completely solve the problem of
semantic heterogeneity but changes it.

(T6) HTTP URIs can be used to identify endpoints. Following Tim
Berners-Lee’s rules for Linked Data, information should be published with HTTP
URIs, so that people can find them. In RDF as a widely used format for Linked
Data, it is only required that subjects and predicates are deferenceable URIs,
objects might only be described with literals without involving URIs. As a conse-
quence, looking up additional information for literal objects leads to the problem
of selecting relevant sources. Therefore, additional meta information is required.
Although most data sources offer meta information describing the stored data
sets, this information is mostly not intended for automatic processing. In these
cases, the decision whether a data source contains desired information or not
can only be made by the user. Building indexes summarizing the content is
a possible solution [17, 28]. An alternative solution is centralized caching and
materialization of frequently used data.

(T7) The freshness of data is guaranteed only with distributed query
processing. It is a commonly known fact that in order to get the freshest
data, one has to query the source directly. Hence, in contrast to centralized
repositories, federated solutions can guarantee that the data is always up-to-
date. However, there are also ways to guarantee the freshness of the data in
centralized solutions. One of the main observations is that many data sources
in the LOD cloud are updated only rarely. Examples are US Census (no up-
date since creation), Linked Sensor Data (no update since 2008), and Source
Code Ecosystem Linked Data (SECOLD) (update once per year). In addition,
retrieving the data from the sources can be done very efficiently using source
scheduling [28]. The source is only revisited after certain waiting times and
if the content has changed. Change detection is performed by using the HTTP
last-modified-since header or some content hash – if provided by the sources.
Integrating the new data into the centralized repository is a well-known problem
in the context of the ETL process in data warehouse applications. Furthermore,
data sources such as DBpedia started publishing live incremental updates, con-
taining new triples and removed triples in separate files. These updates can easily
be applied to the repository.

An alternative to these pull strategies is to extend sources with a push func-
tionality. Each change is directly pushed into the central repository so that
data freshness is guaranteed. Some libraries implementing the functionality are
already available. Still, the extend to which existing solutions can be applied
depends on the degree of cooperation offered by the sources.



(T8) Open Data is accessible as Linked Data. As already stated in the
introduction, both the Open Data and Linked Data movements are a great
success. Even governments and public agencies have started to publish data of
common interest. The number of publicly available data sources is continuously
growing. Obviously, this data is open but is it really linked? Does it fulfill the
necessary rules to be processed in an automatic fashion?

The Open Data Survey9 examined more than fifty Open Data platforms,
driven by governments and international organizations. A key finding of this
endeavor is that many open data sources available today do not meet the rules
originally stated by Tim Berners-Lee. Particularly, they strongly vary in techni-
cal aspects. Data sources vary for example in the used file formats, access APIs,
and schemas. Only 8% of the examined data sources actually act as SPARQL
or SQL endpoints.

In this environment, enabling users to search for information in a convenient
way instead of browsing through thousands of non-linked documents in different
file formats requires data integration. Techniques for schema integration, data
cleaning, and data transformation – already known from ETL processes – are
necessary to overcome the data source heterogeneity.

(T9) Centralized Linked Data is not Linked Data anymore. One could
argue that Linked Data is inherently distributed data because the rules state
among others that URIs should be used for naming things and that HTTP
URIs are used to allow to look up these names. Although this principle allows
to identify and refer to remote data sources, it does not necessarily mean that
URIs have to describe a real physical location. In fact, URIs can be interpreted
just as keys and used for indexing data items and therefore provide a way to par-
tition huge datasets. Hence, Linked Data processing does not necessarily require
distributed processing of queries or even fetching data from different files.

4 A Research Agenda towards Linked Data as a Service
Based on the observations discussed in Section 3 we propose to consider Linked
Data not as distributed data per se. Instead, Linked Data can alternatively be
considered as an example of Data as a Service where commonly used data is
stored at a central place (MQP) and made available to consumers in a timely
and cost effective manner. Of course, there are limits of applicability and this
might not work for all sources but it represents an alternative for a large number.

The success of sites such as Flickr and YouTube, which pioneered this princi-
ple with very specific data collections, has inspired similar approaches for general
datasets. Examples of Data as a Service are Windows Azure Marketplace Data-
Market10 (formerly known as Dallas), where various sets of data are offered
ranging from aggregated stock market data over weather data, open data collec-
tions from organizations and governments to sports statistics. Further examples
are InfoChimps11 or Factual12.

9 http://wwwdb.inf.tu-dresden.de/opendatasurvey/
10 http://datamarket.azure.com/browse/Data
11 http://www.infochimps.com/marketplace
12 http://www.factual.com/data-apis/places



Providing the LOD cloud as a nucleus for Open Data on such a platform
and combine it with sophisticated SPARQL processing capabilities as well as
additional support beyond the current standard protocols such as OData13 or
GData14 would open new opportunities for data producers and consumers but
also raise challenges for data management techniques. Such a Linked Data as a
Service (LDaaS) platform could play multiple roles: a central registry and market
place for datasets, but also a cache and data processing service decoupling the
data producers who are not willing or able to provide processing capacities for
data consumers. In the following paragraphs, we discuss a list of challenges that
we think have to be addressed towards achieving this goal.

(C1) Linked Data Processing beyond SPARQL processing. As already
mentioned in Section 3 (thesis T4), Linked Data processing requires much more
than only SPARQL processing. Although several approaches for stream data
as well as spatial and temporal data processing have been proposed, those
approaches have two drawbacks. First, current techniques for reasoning over
Linked Data in a distributed fashion are iterative and hence very expensive.
Second, currently available SPARQL extensions lack standardization. The cur-
rent SPARQL standard does not contain any aggregation functions as well as
support for nested, spatial, and temporal queries. Aggregation functions and
nested query support will be included in SPARQL 1.115 – but this is still a
draft. The vision is to have an LDaaS platform, which integrates all necessary
techniques for analyzing and reasoning over spatial, temporal, and stream data
into one environment that is accessible via a standardized language.

(C2) Exploit newly available Infrastructure/Platform as a Service.
Within the past few years, research mainly focused on developing solutions for
different kinds of problems that can be solved on commodity hardware in unre-
liable environments. Much effort has been spent on distributed query processing
in unreliable P2P environments and MapReduce [10]. The reasons mainly were
the costs for the purchase and maintenance of big clusters. Currently, the idea
of clusters and data centers experiences a rebirth under the term Cloud, offering
new benefits and opportunities. Cloud providers such as Amazon, Microsoft, or
Google offer infrastructure, storage, and even software as a service to customers
following a pay-per-use model. They provide the illusion of infinite resources and
guarantee availability and reachability. The computational power of a big cluster
can be rented for the time for which it is actually needed.

There are some advantages that come along with the infrastructure as a
server paradigm, e.g., Amazon EC2. Due to virtualization techniques, inter-
virtual-machine-communication-costs are reduced tremendously either because
they are run on the same physical host or because they are transparently con-
nected via high capacity networks. Hence, they can mitigate the problems stated
in Section 3 (thesis T3). Moreover, because of availability guarantees of over 99%,
system failures can almost be neglected. In the unlikely event of a virtual machine

13 http://www.odata.org
14 http://developers.google.com/gdata
15 http://www.w3.org/TR/sparql11-query



failure, monitoring services such as Amazon CloudWatch and virtual machine
controller tools such as Amazon Command Line Tools enable easy system re-
covery. Thus, it is not necessary to deal with fail-stop failure scenarios. Further
advantages of infrastructure as a service are that usually automatic load balanc-
ing (Amazon EC2) and scalability (Google AppEngine) as well as fast access to
infinite storage such as Google BigTable or Amazon S3 are provided.

First steps in using these new Cloud services are already made with the
CommonCrawl Project16. Here, Amazon’s Elastic MapReduce Service can be
used to analyze Web content stored in Amazon S3.

(C3) Address the opportunities of modern hardware architectures for
query processing. For databases, processing big data sets is still a challenge.
First, IO costs are still the dominating factor – there is a big gap in access time
between external disks and main memory. Database researchers and vendors
have addressed this issue with the following approaches:

(1) Reduce the amount of data to be read and fetch the data as fast as pos-
sible from disk. Examples of such strategies are index structures but also
specialized data layout strategies such as column stores.

(2) Avoid IO operations completely by keeping and processing all data in main
memory [5]. Today, single machines with more than 2 TB of RAM are avail-
able and new architectures such as RAMCloud [29] have been proposed,
which can easily store the LOD cloud based on the estimation given in Sec-
tion 3 (thesis T1). However, as shown in [6], there is another gap in access
time between main memory and cache, which has to be also taken into ac-
count by cache-aware algorithms.

(3) Finally, as stated in [37], further improvements of performance require the
exploitation of concurrency and parallelization.

Although parallel query processing is a well-studied problem [13, 14], modern
multi-core and many-core architectures pose new challenges and opportunities
for fine-grained parallelization at all levels ranging from intra-operator level up
to the workload level.

(C4) Realistic benchmarking and metrics. Benchmarking is an essential
task to evaluate query processing techniques. Benchmarks are important not only
to compare different approaches but also to improve performance of systems.
This can be seen in the relational database world, where the benchmarks of the
Transaction Processing Council (TPC) are widely accepted by the major vendors
and help to improve performance by orders of magnitude. For processing RDF
data in general as well as particularly Linked Data, also several benchmarks
have been proposed in recent years. Examples are the DBpedia benchmark,
its successor the Berlin SPARQL benchmark (BSBM), and FedBench [35] for
federated systems.

However, compared to the maturity of the commercial TPC benchmarks,
query processing benchmarks for RDF and Linked Data might have to be im-
proved. First, a benchmark should model a representative scenario – in case of
TPC these are, among others, TPC-C for transaction processing and TPC-H

16 http://commoncrawl.org



for analytical queries. Though, BSBM allows to measure the performance of
storage systems that expose SPARQL endpoints [3], it models an e-commerce
scenario and the query mix does not really reflect the patterns of typical queries
on Linked Data. Second, appropriate metrics are needed to capture the perfor-
mance goals, e.g., execution times for queries in isolation, throughput in terms of
queries per time in case of concurrent queries as the composite Query-per-Hour
Performance Metric at a given database size (QphH@Size) in TPC-H, or even
price/performance metrics similar to TPC-H’s $/QphH@Size.

A first step towards appropriate benchmarking of Linked Data query process-
ing is done with FedBench [35]. This comprehensive benchmark suite particularly
addresses the heterogeneity in federated systems. Still, with the vision of LDaaS
and aspects such as aggregation, reasoning, and streams, it will be necessary to
develop further benchmarks.

(C5) Simplify publishing and exploit crowdsourcing. The first obstacle
for publishing Linked Data, which was already mentioned in Section 3 (thesis
T8), is that the native data format for many datasets is not RDF. Instead,
the data needs to be converted into RDF, e.g., from relational databases, Excel
files, or by applying information extraction on text documents. In the ideal
case, before publishing the data, it should also be cleaned, contradicting or false
triples should be removed, duplicates should be detected and merged, etc. When
merging data from different sources, this can become an expensive and time-
consuming process, which might also interfere with licensing issues as mentioned
in Section 3 (thesis T2) .

The problem is that all these steps are very time-consuming and involve
human interaction to run properly. Whereas data cleaning creates added value
for the data owner, this is not always true for links to other data sets. Usually,
only links to a subset of available data sets are interesting for the publisher, links
to others are therefore not detected and encoded. Consumers of the published
data, however, might be interested in the links to other sources but they cannot
easily add links to the original data set. Finally, making the data accessible
via SPARQL endpoints involves hardware and resources and does not directly
represent any added value to the publisher.

The whole publishing process could very much benefit from crowdsourcing
in different ways. In today’s web of data, if missing or wrong information is
detected, the only way to change the data is to communicate with the publisher
– which is often unsuccessful. First initiatives17 and visions on collaborative
knowledge networks [26] are already available but it is still a long way until
crowdsourcing can be used efficiently and the process of publishing the data
is easy enough with low effort so that more people are encouraged to publish
Linked Data.

5 Conclusion

In this paper, we have discussed the state-of-the-art in Linked Data query pro-
cessing and pointed out several pitfalls that research in the context of distributed

17 http://pedantic-web.org/



and federated query processing has already identified. We have also discussed
nine wide-spread myths about Linked Data query processing that researchers and
practitioners occasionally encounter. Based on these observations and myths, we
proposed a Linked Data as a Service (LDaaS) platform and a research agenda
towards reaching this goal. The next few years will show to what extent re-
searchers learned from the history of distributed and federated query processing
and which parts of the research agenda were the most challenging ones.

References

1. D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. Querying
RDF streams with C-SPARQL. SIGMOD Rec., 39(1):20–26, Sept. 2010.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 29–37, 2001.

3. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

4. A. Bolles, M. Grawunder, and J. Jacobi. Streaming SPARQL - Extending SPARQL
to process data streams. In ESWC’08, 2008.

5. P. A. Boncz. Main Memory DBMS. In Encyclopedia of Database Systems, pages
1669–1670. 2009.

6. P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Commun. ACM, 51(12):77–85, 2008.

7. C. Buil-Aranda, M. Arenas, and Ó. Corcho. Semantics and Optimization of the
SPARQL 1.1 Federation Extension. In ESWC (2), pages 1–15, 2011.

8. J.-P. Calbimonte, O. Corcho, and A. J. G. Gray. Enabling ontology-based access
to streaming data sources. In ISWC’10, pages 96–111, 2010.

9. H. Choi, J. Son, Y. Cho, M. K. Sung, and Y. D. Chung. SPIDER: a system for
scalable, parallel / distributed evaluation of large-scale RDF data. In CIKM, pages
2087–2088, 2009.

10. J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clus-
ters. Commun. ACM, 51(1):107–113, January 2008.

11. M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance Tradeoffs for Client-
Server Query Processing. In SIGMOD Conference 1996, pages 149–160, 1996.

12. O. Görlitz and S. Staab. SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions. In COLD’11, 2011.

13. G. Graefe. Encapsulation of Parallelism in the Volcano Query Processing System.
In SIGMOD Conference 1990, pages 102–111, 1990.

14. G. Graefe. Parallel Query Execution Algorithms. In Encyclopedia of Database
Systems, pages 2030–2035. 2009.

15. S. Groppe, J. Groppe, D. Kukulenz, and V. Linnemann. A sparql engine for
streaming rdf data. In SITIS’07, pages 167–174. IEEE, 2007.

16. P. Haase, T. Mathäß, and M. Ziller. An evaluation of approaches to federated
query processing over linked data. In I-SEMANTICS’10, pages 5:1–5:9, 2010.

17. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, and J. Umbrich. Data
summaries for on-demand queries over linked data. In WWW’10, pages 411–420,
2010.

18. O. Hartig. Zero-Knowledge Query Planning for an Iterator Implementation of Link
Traversal Based Query Execution. In ESWC (1), pages 154–169, 2011.

19. K. Hose, R. Schenkel, M. Theobald, and G. Weikum. Database Foundations for
Scalable RDF Processing. In Reasoning Web, volume 6848 of Lecture Notes in
Computer Science, pages 202–249. Springer, 2011.



20. J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF
Graphs. PVLDB, 4(11):1123–1134, 2011.

21. M. F. Husain, J. P. McGlothlin, M. M. Masud, L. R. Khan, and B. M. Thurais-
ingham. Heuristics-Based Query Processing for Large RDF Graphs Using Cloud
Computing. IEEE Trans. Knowl. Data Eng., 23(9):1312–1327, 2011.

22. D. Kossmann, M. J. Franklin, and G. Drasch. Cache investment: integrating
query optimization and distributed data placement. ACM Trans. Database Syst.,
25(4):517–558, 2000.

23. G. Ladwig and T. Tran. SIHJoin: Querying Remote and Local Linked Data. In
ESWC (1), pages 139–153, 2011.

24. A. Langegger and W. W. M. Blöchl. A Semantic Web middleware for virtual data
integration on the Web. In ESWC, pages 493–507, 2008.

25. D. Le-Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and
adaptive approach for unified processing of linked streams and linked data. In
ISWC’11, pages 370–388, 2011.

26. S. Metzger, K. Hose, and R. Schenkel. Colledge - A Vision of Collaborative Knowl-
edge Networks. In SSW’12, 2012.

27. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. VLDB J., 19(1):91–113, 2010.

28. E. Oren, R. Delbru, M. Catasta, R. Cyganiak, H. Stenzhorn, and G. Tummarello.
Sindice.com: a document-oriented lookup index for open linked data. Int. J. of
Metadata and Semantics and Ontologies, 3:37–52, 2008.

29. J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for RAMCloud. Commun. ACM,
54(7):121–130, July 2011.

30. N. Papailiou, I. Konstantinou, D. Tsoumakos, and N. Koziris. H2RDF: adaptive
query processing on RDF data in the cloud. In WWW, pages 397–400, 2012.

31. M. Perry, P. Jain, and A. P. Sheth. SPARQL-ST: Extending SPARQL to Sup-
port Spatiotemporal Queries. In Geospatial Semantics and the Semantic Web,
volume 12, pages 61–86, 2011.

32. B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL.
In ESWC, pages 524–538, 2008.

33. M. T. Roth, F. Ozcan, and L. M. Haas. Cost Models DO Matter: Providing Cost
Information for Diverse Data Sources in a Federated System. In VLDB 1999, pages
599–610, 1999.

34. M. T. Roth and P. M. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture
for Legacy Data Sources. In VLDB ’97, pages 266–275, 1997.

35. M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran. FedBench:
a benchmark suite for federated semantic data query processing. In ISWC’11, pages
585–600, 2011.

36. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization
Techniques for Federated Query Processing on Linked Data. In ISWC, pages 601–
616, 2011.

37. H. Sutter. The Free Lunch is Over. Dr. Dobb’s Journal, 30(3), March 2005.
38. T. Urhan and M. J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join Op-

erator. IEEE Data Engineering Bulletin, 23:2000, 2000.
39. L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore: answering SPARQL

queries via subgraph matching. Proc. VLDB Endow., 4(8):482–493, May 2011.


