
Developing Software Agents Using Enterprise JavaBeans

Dejan Mitrović
Department of Mathematics

and Informatics
Faculty of Sciences

University of Novi Sad
Novi Sad, Serbia

dejan@dmi.uns.ac.rs

Mirjana Ivanović
Department of Mathematics

and Informatics
Faculty of Sciences

University of Novi Sad
Novi Sad, Serbia

mira@dmi.uns.ac.rs

Milan Vidaković
Faculty of Technical Sciences

University of Novi Sad
Novi Sad, Serbia

minja@uns.ac.rs

Ali Al-Dahoud
Al-Zaytoonah University of

Jordan
P.O.Box 130 Amman

11733 Jordan
aldahoud@zuj.edu.jo

ABSTRACT

Enterprise JavaBeans (EJBs) represent one of the most
widely-used server-side component architectures for devel-
oping the business logic of enterprise-scale applications. Be-
cause of their runtime properties, such as scalability, secu-
rity, and transactional integrity, Enterprise JavaBeans are
also an excellent tool for building software agents. This pa-
per outlines an architecture for developing and deploying
EJB -based agents. The presented approach is designed in
a way that employs all the benefits of EJBs, while, at the
same time, it hides the underlying complexity from agent
developers.

Categories and Subject Descriptors

I.2.11 [Computing Methodologies]: Distributed Artifi-
cial Intelligence—Multiagent systems

General Terms

Design, Performance

Keywords

Software agents, multi-agent systems, Java EE

1. INTRODUCTION
Extensible Java EE-based Agent Framework (XJAF) [7] is

a FIPA-compliant [2] multi-agent system (MAS). Its main
tasks are to provide an efficient runtime environment for
its agents, as well as to provide external clients with an
easy access to the agent technology. Being implemented in
Java EE , XJAF harnesses many benefits of enterprise-scale
applications, such as scalability and runtime load-balancing,
security, data integrity, etc.

A recent improvement of XJAF , named SOA-based MAS
(SOM) [4], brings a high level of interoperability to the sys-
tem. By offering its functionalities in form of web services,

BCI’12, September 16–20, 2012, Novi Sad, Serbia.

Copyright c© 2012 by the paper’s authors. Copying permitted only for private and

academic purposes. This volume is published and copyrighted by its editors.

Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,

University of Novi Sad.

SOM can be easily used by a wide variety of external clients.
Because it is a specification of web services, their functional-
ities and interactions, SOM can be implemented using many
modern programming languages and platforms. The default
implementation is still provided in Java EE , including the
same set of benefits as the original XJAF .

SOM is accompanied by an agent-oriented programming
language named Agent Language for SOM (ALAS) [5]. The
two main goals of ALAS are to provide developers with pro-
gramming constructs that hide the complexity of agent de-
velopment, and to support truly heterogeneous agent mo-
bility [6]. During the migration process, the ALAS source
code of a mobile agent is recompiled, on-the-fly, into the ex-
ecutable code of the target platform. Currently supported
platforms include SOM , JADE, and PySOM, a Python-based
implementation of SOM .

This paper presents recent improvement of theALAS com-
piler that enables the full utilization of Enterprise JavaBeans
(EJB). SOM agents are now defined as stateless session
EJBs, and then passed on to the enterprise application server.
In this way, many advanced EJB functionalities, such as
scalability and object pooling, can be exploited with a min-
imum programming effort. At the same time, the ALAS
programming language hides this complexity from the agent
developer.

The rest of the paper is organized as follows. Section 2
provides an overview of the EJB technology. Recent perfor-
mance improvements of SOM and its agents are described in
Section 3. Finally, general conclusions and future research
directions are given in Section 4.

2. EJB TECHNOLOGY OVERVIEW
Enterprise JavaBeans (EJB) represent one of the most

important Java EE technologies for developing server-side
components. EJBs incorporate the business logic of “dis-
tributed, transactional, secure and portable” [1] enterprise
applications based on Java EE . And yet, they are relatively
simple to develop and use.

In general, there are two categories of EJBs (or, simply,
beans): message-driven, and session beans. Message-driven
beans are used in the context of Java Message Service JMS

147

[3], a Java EE technology for asynchronous messaging. In
XJAF and SOM , the agent communication infrastructure
is based heavily on exactly message-driven beans and JMS.

Session beans can further be categorized into singleton,
stateless, and stateful. As its name suggests, there is a sin-
gle instance of a singleton bean per Java EE application.
Concurrent access is managed by the EJB container and
can be fine-tuned by the developer. Stateless beans main-
tain no conversational state between distinct invocations.
They are well-suited for operations that can be executed in
a single method call. A stateful bean, on the other hand, is
used when the conversational state between different method
calls needs to be preserved.

When it comes to the runtime efficiency of Java EE appli-
cations, stateless session beans offer the best performance.
This is because modern enterprise application servers offer
the EJB pooling technique. The server maintains a pool
of pre-initialized stateless beans. Once a client request is
made, the server selects an instance from the pool, executes
the method, and then returns the bean instance back to the
pool. Therefore, an instance is recycled from the pool for
each new request, rather than having to be (re)allocated,
used, and then deallocated. The pool size is also automati-
cally adjusted to fit the number of concurrent requests. In
this way, only a small number of stateless EJBs can be used
to serve a large number of external clients.

To achieve the best performance, and utilize the object
pooling technique, SOM agents are based on stateless ses-
sion EJBs.

3. SOM AGENTS
Originally, SOM (and its predecessor XJAF) featured a

single stateless session EJB class named AgentHolder [4].
When a request for a task execution is made, the system
first finds an agent that can solve the required task. Then,
it looks-up an instance of AgentHolder, passing it the refer-
ence to the created agent object (a Plain Old Java Object -
POJO). The agent life-cycle is then managed by the enter-
prise application server.

This approach was convenient from the point of view of
agent developers. They were able to develop agents as POJOs,
without any knowledge or understanding of EJBs and the
whole enterprise application architecture. An obvious dis-
advantage, however, is the extra allocation/deallocation of
the agent object – the exact step EJB pooling avoids.

With the recent development of ALAS , this disadvantage
can be alleviated. The language compiler has now been mod-
ified to output an EJB directly, and thus avoid the process
of “packing” a POJO inside of the AgentHolder bean.

As an example, Listing 1 shows the source code of a simple
PingAgent written in ALAS . The agent exposes a single
service named ping which outputs the received parameter.

Listing 1: ALAS source code of PingAgent

package examples ;
agent PingAgent {

service void ping (S t r ing msg) {
l og (msg) ; } } // ou tpu t s the message

From the given source code, the ALAS compiler produces
a stateless session EJB shown in Listing 2. The bean, also
marked as local-only features a single handler for all incom-
ing messages.

Listing 2: Auto-generated EJB for PingAgent

@State l e s s @LocalBean
public class PingAgent implements Agent {
public void onMessage (ACLMessage msg) {

i f (msg . getCommand () . equa l s (”Ping ”)) {
// unmarshal the a c tua l content
Ping task = XMLMapper . unmarshal lPing (

message . getContent ()) ;
S t r ing param = task . getMsg () ;
a l a s . s t d l i b . java . common . Log . wr i t e (

param) ;
return ; } } }

This simple example demonstrates how ALAS represents
a solution that achieves the best runtime performance, while
hiding the complexity of enterprise applications from agent
developers.

4. CONCLUSIONS AND FUTURE WORK
Enterprise JavaBeans represent one of the most widely-

used technologies for developing the server-side business logic
of large-scale applications. A category of EJBs, known as
stateless session EJBs, provide the best runtime performance
due to advanced object pooling and load-balancing tech-
niques offered by modern enterprise application servers. This
paper presents a solution for developing and deploying soft-
ware agents that are based exactly on stateless session EJBs.
At the same time, the ALAS agent-oriented programming
language hides the complexity of enterprise applications from
agent developers, allowing them to focus on problem-solving
tasks.

Further improvements of the system will be focused on
efficient approaches and algorithms for preserving the agent
state between distinct running sessions. Additionally, the
existing JMS -based system will be replaced by a new and
recommended technique of asynchronous bean invocation.
The goal is to continuously improve the system’s perfor-
mance, while following the modern standards and technolo-
gies.

5. ACKNOWLEDGMENTS
This work is partially supported by Ministry of Education

and Science of the Republic of Serbia, through project no.
OI174023: “Intelligent techniques and their integration into
wide-spectrum decision support.”

6. REFERENCES
[1] Enterprise JavaBeans technology homepage.

http://www.oracle.com/technetwork/java/javaee/

ejb/index.html. Retrieved on July 15, 2012.

[2] FIPA homepage. http://www.fipa.org/. Retrieved on
July 15, 2012.

[3] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java Message Service (JMS) specification.
http://www.oracle.com/technetwork/java/jms/

index.html, April 2002. Retrieved on July 15, 2012.

[4] M. Ivanović, M. Vidaković, D. Mitrović, and
Z. Budimac. Evolution of Extensible Java EE-Based
Agent Framework. In G. Jezic, M. Kusek, N.-T.
Nguyen, R. Howlett, and L. Jain, editors, Agent and
Multi-Agent Systems. Technologies and Applications,
volume 7327 of Lecture Notes in Computer Science,
pages 444–453. Springer Berlin / Heidelberg, 2012.

148

[5] D. Mitrović, M. Ivanović, and M. Vidaković.
Introducing ALAS: a novel agent-oriented programming
language. In T. E. Simos, editor, Proceedings of
Symposium on Computer Languages, Implementations,
and Tools (SCLIT 2011) held within International
Conference on Numerical Analysis and Applied
Mathematics (ICNAAM 2011), AIP Conf. Proc. 1389,
pages 861–864, September 2011. ISBN
978-0-7354-0956-9.

[6] B. J. Overeinder, D. R. A. D. Groot, N. J. E.
Wijngaards, and F. M. T. Brazier. Generative mobile
agent migration in heterogeneous environments.
Scalable computing: practice and experience,
7(4):89–99, 2006.

[7] M. Vidaković, B. Milosavljević, Z. Konjović, and
G. Sladić. EXtensible Java EE-based agent framework
and its application on distributed library catalogues.
Computer science and information systems, ComSIS,
6(2):1–16, 2009.

149

