
 25

Applying MDA in Developing Intermediary Service
for Data Retrieval

Danijela Boberić Krstićev
University of Novi Sad

Faculty of Sciences
Trg Dositeja Obradovića 4, Novi Sad

Serbia
+381214852873

dboberic@uns.ac.rs

ABSTRACT

In this paper, service for data retrieval from existing library
management system is described. This service intermediates
between library management system which provides data and
system which requires that data. The main idea is that this service
should support various protocols for data retrieval. Also, this
service should be flexible for future update and simple enough for
integration into any library management system. Service
presented in this paper is developed by using Model Driven
Architecture (MDA) approach. Different models (proposed by
MDA) of this service are presented in this paper. Models are
presented by using UML 2.0 specification. Transformations from
models to Java programming code are done by using AndroMDA
framework.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Data
abstraction

General Terms
Design, Standardization

Keywords
Model-driven architecture, web services, AndroMDA, inform-
ation retrieval

1. INTRODUCTION
Model-driven architecture (MDA) is a software design approach
for the development of software systems. The aim of MDA is to
enhance interoperability, portability and productivity of
computing systems by means of abstract models [9]. Using MDA
MDA it is possible to create design of system which is
independent of its implementation. As result of using MDA
approach we get models that become highly reusable assets.

Models play a major role in MDA and main idea of MDA is to
create different models at different levels of abstraction. Some of
models may be independent of software platforms, while others
will be specific to particular platforms [13]. Precisely, the
Computational Independent Model (CIM), the Platform
Independent Model (PIM) and the Platform Specific Model (PSM)
are the three model types that have been largely adopted by the
software community. For every development life cycle phase of
an application, MDA suggests to elaborate a corresponding model

through a well-defined notation.

MDA separates the business logic from the complexity of the
execution platforms. This separation is done through the efficient
use of models in the software development process where
enterprise architectures are supported by automated model
transformations. In order to represent abstract view of the system
various modelling standards (Unified Modelling Language (UML)
[17], the Meta-Object Facility (MOF)[14] and the XML Metadata
Interchange (XMI)[19]) are used.

The Model-Driven Architecture has been proved as a very
promising approach to accelerate the software development and
there are many papers describing usage of MDA in software
development. MDA approach can be applied in any phase of
software development. For instance, in the paper [7] MDA is
applied to create graphical user interface (GUI) of the Amazon
Integration and Cooperation Project for modernization of
hydrological monitoring. In that paper, GUI source code is
generated from UML models by using the AndroMDA framework
[1]. Also, MDA approach is used in the process of building a
healthcare enterprise information system on Java 2 enterprise
edition (J2EE) platform. The process of developing such system is
described in the paper [15]. In the paper [8], a method that uses
the model transformation technology of MDA to generate unit test
cases from a platform-independent model of the system is
presented. The main idea of that method is to first create UML
sequence diagrams which will be transformed into a general unit
test case model and then transformations are applied on that
general model to generate platform specific (JUnit, SUnit etc.) test
cases that are concrete and executable. Moreover, using MDA
approach provides benefit to the development of system which
solves its problems with cooperative organization consisting of
several heterogeneous computing components and in the paper
[11] is proposed the development process of the multi-agent
community computing system using MDA approach.

In this paper, different models and the standards behind the MDA
are introduced. These concepts are applied in the developing
service for bibliographic record retrieval, following the
AndroMDA methodology to demonstrate how logic
implementation can be reduced to the minimum when core
business functionality is addressed during the modelling phase.
The presentation of this paper proceeds in five sections. At the
beginning of the paper, we described main functionalities of
service for bibliographic record retrieval. Those functionalities are
presented through computation independent model. After that, we
continued by presenting platform independent model of service
for record retrieval. In the fourth Section we discussed
programming code which is generated by AndroMDA framework.

BCI’12, September 16–20, 2012, Novi Sad, Serbia.
Copyright © 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,
University of Novi Sad.

 26

At the end of the paper, we gave brief summary of
the paper's main points.

2. COMPUTATION INDEPENDENT
MODEL

In order to build a large-scale software it is necessary that all
requirements are clearly defined, so the OMG recommends
defining a computation independent model (CIM) in order to
represent the application in its global environment. The CIM
model describes what the system is expected to do, but hides all
details of the system’s structure to remain independent of how that
system will be implemented. In the field of software engineering,
CIM is well known as a domain model created by domain experts.
CIM model may describe system functionalities through
application of use case and activity diagrams and the actors that
interact with the system. The CIM model should act as a
connector between those that are experts about the domain and
those that are experts of the design and construction.

CIM model of service for bibliographic record retrieval is
presented in the figure 1.This service should act as an
intermediary between search protocols and existing library
system. The main aim of this service is to enable search and
retrieval of data from various libraries using different standard
protocols for search and retrieval. Currently, the most known
protocols for searching bibliographic data are Z39.50 [5] and SRU
[16] protocols. Those protocols should provide interoperable
communication between different library management systems.
Namely, one system may search and retrieve data from other
system without knowing software architecture of that other
system. It is only necessary that both systems have
implementation of client and server side of appropriate protocol.
There are ready-to-use open source solutions for client and server
side of Z39.50 and SRU protocols and they just need to be
integrated in an existing library management system. In the figure
1, a server side of Z39.50 and SRU protocols are presented as

actors on the use case diagram. Integration of client side of
protocol should not be a difficult, but implementation of server
side of protocol requires much more effort. In order to integrate
server side of a protocol it is necessary to process massage which
is sent through that protocol. A massage contains query defined
by query language supported by the protocol and that query
language is independent of underlying system, so it is necessary to
transform that query into query which could be understood by
underlying system. Also, in order to provide interoperability it is
necessary that data are exchanged in some standard form, so
system which implements server side of some protocol must
supply mechanism for transformation data in appropriate form. If
system would like to support communication through different
protocols, then those tasks must be done for each protocol.

The main aim of service presented in this paper is to enable
simpler implementation of various protocols for data retrieval.
Namely, service should support search and retrieve of data no
matter which protocol is used. This functionality is presented by
the use case Find records in the figure 1. Furthermore, this service
will accept massages from different protocols and transform
queries into CQL query language [3] (use case Transform to CQL
query). After query transformation, query will be sent to
appropriate components (wrappers) which are responsible for
transformation of CQL query into a query language supported by
underlying system. For instance, wrapper may be responsible for
transformation of CQL language into SQL language in accordance
with architecture of database of underlying system.

This task is represented with use case Delegate CQL to wrapper.
Every underlying system should have its own wrapper, and
wrapper is not part of service presented in this paper. After
executing query and retrieving data from library management
system, the final task of this service will be to transform retrieved
records into form supported by protocol through which query is
sent (use case Transform record).

Transform record

Delegate CQL query
to wrapper

extension points
record is found

Find records

Transform query
to CQL

Z39.50 Server

SRU Server

<<extend>>

(record is found
)

<<include>>

<<include>>

Figure 1: Computation independent model of service for bibliographic records retrieval.

 27

3. PLATFORM INDEPENDENT MODEL

After we got the CIM model of software, the next step in software
development using MDA approach is to create platform
independent model (PIM). The platform independent model
should be considered as independent from the underlying
technology and should give only a view of the system regardless
on execution platform. In other word, PIM is model of system
designed in such way that it can execute on technologically
independent virtual machine [6]. However, the PIM model must
contains enough information in order to enable code generation
using appropriate CASE tool.

PIM model for service for bibliographic records retrieval is given
in the figure 2. The Mediator class provides a unique interface to
communicate with different server components that implement the
appropriate protocols. This class accepts query from server side of
protocols and returns bibliographic records in the format which is
defined by server. In this way it is enabled that regardless of
protocol which is used, we always use the same method to submit
query and retrieve search results. That means that our system
becomes more scalable and it is possible to add some new search
and retrieval protocols without refactoring this service.

The Mediator class can accept queries defined by different query
languages and all those queries should be transformed in an
internal query language which will be further forward to wrapper
components. The QueryConverter interface is responsible for
transformation of query. This interface has two implementation
classes: CQLConverter and RPNConverter. In this implement-
ation, it was chosen that accepted queries will be transformed into
object representation of CQL query language which is defined by
SRU standard. If we are going to add support for new query
language it is necessary just to add new class which will

implement interface QueryConverter shown in the Figure 2, but
architecture of service remains the same.

One of the reasons for choosing CQL query language as a query
that will be forwarded to library system is that concepts defined in
the Z39.50 standard query language could be easily mapped to the
corresponding concepts defined by CQL query language. CQL
query language has very rich semantic, so it could be used for
creating various types of queries. Also, because it is based on the
concept of Context set, it is extendable and it allows usage of
various types of Context sets for different purposes. So, we don’t
need to use CQL just for the purpose of searching bibliographic
material it could be, for example, used for searching geographical
data. According to those facts, we assumed that CQL is general
query language and that probably any query language could be
transformed in it. In the case that there is a new query language, it
is necessary to perform mapping of this new query language into
CQL query language or if it is not feasible to extend the object
model of CQL query language with new concepts.

The next tasks of this service is to return records in the format
which was defined by the client which sent request, and this task
is delegated to the RecordSerializer interface. Bibliographic
records which are retrieved after executing query should be in the
form of an XML document.

Current implementation of service should support transformation
of bibliographic records into XML document which can be
instance of UNIMARCslim XML schema [18], MARC21slim
XML schema [12] or Dublin Core XML schema [4] and because
of that currently there are three classes which implement interface
RecordSerializer (UnimarcSerializer, Marc21Serializer and
DublinCoreSerializer). Adding support for new format would
require creating a new class which would implement interface
RecordSerializer.

Figure 2: Platform independent model of service for bibliographic records retrieval.

 28

4. ANDROMDA AND CODE GENERATION

Once the platform independent model has been accurately
defined, platform specific details can be handled in the platform
specific model (PSM). The role of PSM model type is to ease
code generation that fit the underlying execution platform. MDA
suggests using UML profiles to create language-specific code
models. For example, an UML profile for a Java EE platform
allows code models creation that ensures Java EE development
after code generation.

However, this step can be skipped by using AndroMDA [1]. This
is an open source, Java-based tool supporting model driven
development. It has an open and pluggable design, such that many
of its components can be extended easily. The core concept of
AndroMDA is the use of so called cartridges. A cartridge
describes the transformation rules from PIM over PSM to
implementation code. AndroMDA is mostly used by developers
working with J2EE technologies. Out-of-the-box AndroMDA can
setup a new J2EE project from scratch, in which code is generated
from a UML model.

In order to transform model into programming code, AndroMDA
requires usage of stereotypes and tagged values which will be
considered during the process of code generation. Choosing
appropriate stereotypes and tagged value AndroMDA can
generate code for Hibernate, EJB, Spring, WebServices, and
Struts. Also, it is necessary to have installed Java 2 Virtual
Machine (Java 2 SDK), at least version 1.5, and Maven or Ant. It
is recommended to use Maven because most of the AndroMDA
tools come with a Maven plugin.

After environment is set up, the next step is to use AndroMDA to
create empty project for chosen technology. That project can be
later imported into integrated development environment, such as
Eclipse. The most significant sub-directories in the project
structure are as follows:

• <projectDir>/mda/src -where the UML model file is
located.

• <projectDir>/mda/conf -where the AndroMDA engine
configuration file is located.

• <projectDir>/core/target -where the code generator
places most of the resulting files. Those files will be
overwritten on subsequent runs of the code generator so
we should not make any modifications to them.

• <projectDir>/core/src -source files that require manual
implementation go here. Files in this directory will not
be overwritten on subsequent runs of the code
generator.

This service for data retrieval is implemented in Java
programming language and it is implemented as XML Web
Service using CXF JAX-WS framework [2], so those options
must be specified when AndroMDA creates initial project.
Furthermore, elements of the PIM model described in the previous
section should have stereotypes describing which class will be
transformed into web service. AndroMDA has its own UML
profile which should be used when it comes to modelling of web
service. Namely, class which is going to be web service must have
stereotype <<WebService>> and its operations which will be
exposed as web service operations must have stereotype
<<WebServiceOperation>>. In the figure 2, class Mediator and
its operation getRecords(String query, String format):String[] has
those stereotypes. Also package containing Mediator class must
have stereotype <<XMLSchema>>. This stereotype defines a

package which is mapped to a schema namespace, so that an .xsd
file is created for this package and imported by the wsdl files that
reference the schema. The default values for style and use of web
service are wrapped and literal, respectively, but using tagged
values andromeda_webservice_style and
andromeda_web_service_use those values can be changed.

AndroMDA does not require using any specific UML tool but it is
necessary that PIM model can be exported as XMI document. For
creating PIM model for this service we used MagicDraw case tool
[10] version 16.6, which support exporting UML model into XMI
format. When PIM model is completed, we can start code
generator and following documents are created:

• Mediator.wsdl and intermediary.xsd document – WSDL
document which describes web service and XML
schema document describing data types.

• MediatorSEI.java -the service endpoint interface (SEI)
• MediatorSEIImpl.java -the class which implements the

SEI
• MediatorSEIImplTest.java - UnitTest for the

MediatorSEIImpl (does not require deployment to web
service container/runtime)

• MediatorWSDelegate.java - the class that the
MediatorSEIImpl delegates to, for each method
implementation

• GetRecordsImpl.java – the class that the
MediatorWSDelegate delegates to. For each operation
of web service one class is generated. This class should
contain actual implementation of web service.

• Mediator_WSClient.java - Java service client which
calls each web service.

After implementing business logic of web service, this service
could be deployed on any runtime environment, like a JBoss.
AndroMDA creates build files which will be used in process of
deployment and developer does not need to think about that.

5. CONCLUSION

In this paper, we presented the development of an illustrative
example of service for information retrieval using different
protocols based on applications of a Model-Driven Architecture
(MDA) approach. Our main idea was to present usage of
AndroMDA framework in generating programming code based on
UML models.

In this paper, we described functionality of service through
computation independent model and then we presented
architecture of service through platform independent model. Our
idea was to implement that service in Java programming language
as XML web service and AndroMDA provide mechanism for
generating such code. It is just necessary to use appropriate
stereotypes and tagged values in the process of modelling.
AndroMDA has specific UML profile containing all stereotypes
and tagged values needed for web services modelling.

It is general impression that AndroMDA framework can generate
application which could be deployed on some runtime
environment, but still it is expected that developers must
implement business logic by themselves. AndroMDA could be
very useful to less seasoned developers because they do not need
to think about software architecture. That task can be delegate to
AndroMDA.

 29

6. ACKNOWLEDGMENTS
The work is partially supported by Ministry of Education and
Science of the Republic of Serbia, through project no. OI174023:
"Intelligent techniques and their integration into wide-spectrum
decision support".

7. REFERENCES
[1] AndroMDA, http://www.andromda.org

[2] Apache CXF: An open-source services framework,
http://cxf.apache.org/

[3] CQL – Contextual Query Language,
http://www.loc.gov/standards/sru/specs/cql.html

[4] DublinCore XML Schema,
http://www.loc.gov/standards/sru/resources/dc-schema.xsd

[5] Information Retrieval (Z39.50): Application Service
Definition and Protocol Specification,
http://www.loc.gov/z3950/agency/Z39-50-2003.pdf

[6] Gašević, D., Đurić, D., Devedžić, V., 2006, Model driven
architecture and ontology development, Springer

[7] J. de Almeida Monte-Mor, Ferreira, E.O., Campos, H. F.,
Marques da Cunha, A., Vieira Dias, L. A. ,2011, Applying
MDA Approach to Create Graphical User Interfaces, Eighth
International Conference on Information Technology: New
Generations, Las Vegas, Nevada, USA

[8] Javed, A. Z., Strooper, P. A. and Watson, G. N., 2007,
Automated generation of test cases using model-driven
architecture, In AST’07, page 3, Washington, DC, USA,
IEEE Computer Society.

[9] Kleppe, A., Warmer J. and Bast, W., 2003, MDA Explained:
The Model Driven Architecture—Practice and Promise,
Addison-Wesley Professional.

[10] MagicDraw case tool, https://www.magicdraw.com/

[11] Maalal, S., Addou, M., 2011, A new approach of designing
Multi-Agent Systems, International Journal of Advanced
Computer Science and Applications, Vol. 2, No. 11.

[12] Marc21Slim XML Schema,
http://www.loc.gov/standards/marcxml/schema/MARC21sli
m.xsd

[13] Mellor, Stephen J., Scott, K., Uhl A., Weise, D., 2004, MDA
Distilled: Principles of Model Driven Architecture, Addison-
Wesley

[14] Meta-Object Facility, http://www.omg.org/spec/MOF/2.4.1/

[15] Ramljak, D. Pukšec, J., Huljenić, D., Končar, M., Šimić, D.,
2003, Building enterprise information system using model
driven architecture on J2EE platform, in Proceedings of the
7th International Conference on Telecommunications, IEEE,
pp. 521–526.

[16] SRU – Search/Retrieval using URL,
http://www.loc.gov/standards/sru/

[17] Unified Modelling Language, http://www.uml.org/

[18] UNIMARCSlim XML Schema,
http://www.bncf.firenze.sbn.it/progetti/unimarc/slim/docume
ntation/unimarcslim.xsd.

[19] XML Metadata Interchange,
http://www.omg.org/spec/XMI/2.4.1/

