
One Graph to Rule Them All
Software Measurment and Management

Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

Institute of Informatics
Warsaw University

Banacha 2, 02-097 Warsaw, Poland
{r.dabrowski,k.stencel,g.timoszuk}@mimuw.edu.pl

Abstract. For a software-intensive system, software architecture is typ-
ically defined as the fundamental organization of the system embodied
in its components, their relationships to one another and to the system’s
environment, and the principles governing the system’s design and evo-
lution. In this paper we propose a unified approach to the problem of
managing knowledge about the architecture of a software system. We
postulate that only a holistic model that supports continuous integra-
tion and verification for all system artifacts is the one worth taking, and
we formally define it. Then we demonstrate that our approach facilitates
convenient project measurement. First we show how existing software
metrics can be translated into the model in a way that is independent
of the programming language. Next we introduce new metrics that cross
the programming language boundaries and are easily implemented using
our approach. Eventually we show that other concerns for architectural
knowledge can be also dealt with using our approach. We conclude by
demonstrating how the new model can be implemented using existing
tools. In particular, graph databases are a convenient implementation
of an architectural repository, and graph query languages and graph al-
gorithms are an effective way to define metrics and specialized graph
views.

Keywords: software measurement, architectural knowledge, software architec-
ture

1 Introduction

Modern software projects are typically developed by multiple teams that are
scattered around the world. Moreover the programmers frequently use a signifi-
cant number of programming languages, sometimes even more than one dialect
of a single language. Despite applying different software development method-
ologies, the project still face similar problems. First of all, when a project ap-
proaches certain complexity level, its documentation, models, unit tests etc. tend
to become unsynchronized with its source code. This happens regardless to agile
or formal development methodology. At the same time, the quality of source

2 Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

code drops. Usually, the reason is that the architectural knowledge is stored
separately from source code and is not revised. Changes in the source code are
not reflected in the architectural documents (and vice versa). There are no links
from the architectural decisions and restrictions to the source code. When issues
arise (requests for change, bugs, code refactorings, library upgrades), the lack of
traceability escalates the problems and further increases the number of issues.
The change impact is hard to estimate and regression problems appear. Multiple
models are created (e.g. to present architecture, to measure the quality, cost or
reliability) and they habitually are not kept in sync with current state of the
source code. Most of the problems are due to the significant cost and complexity
of preserving the architectural model up-to-date.

The correct direction is the graph approach [8] and in this paper we take a
step forward. First of all there is a need for a holistic solution that integrates
all artifacts developed during a software project. By an artifact we understand
everything that contains a part of the project knowledge. This includes code
artifacts like classes or methods, as well as their dependencies from external li-
braries, as well as UML diagrams or use cases, as well as software configuration
and description of development processes that define how project is organized
and developed. It is worth noting that sometimes one artifact can carry knowl-
edge from multiple areas. For example a change request has both architectural
knowledge (depicts changes to be made) and management knowledge (impacts
cost or project timeline). In the approach we propose all artifacts created during
project development (source code, documentation, issues, metrics) are stored in
one graph data structure. Each artifact is a vertex and can be described by mul-
tiple tags (or attributes). The vertices are connected by labeled edges depicting
relations between artifacts. Two artifacts can be connected by multiple edges
as they can be in more than one relation. The contributions of this paper is as
follows: we define a graph structure to store the architectural knowledge of a
project that allows to trace dependencies and manage changes and show that
it allows to: 1) define known software metrics independently of programming
languages; 2) define new cross-language metrics. The paper is organized as fol-
lows. In Section 2 we analyze the topic background and the related work that
motivated our approach. In Section 3 we provide a definition of the graph-based
model for architectural knowledge management. In Section 4 we present how
current metrics can be translated into the new graph model and how the model
improves them. Section 6 concludes our reasoning.

2 Motivation and related work

In coming years software engineers must research a new vision of software de-
velopment process, as current visions do not keep up with the scale and pace of
current software projects. Such a research will encompass developing both theo-
retical foundations and supporting tools. We postulate that in this new approach
artifacts created in a software project are organized according to a consistent
graph model [8]. In this paper we show how to translate existing software metrics

One Graph to Rule Them All 3

into the new graph model and how to track changes using graph approach. Our
research follows existing work on software metrics and development models.

The need for quantitative assessment of software quality and software process
predictability inspired measuring of source code and measuring of development
process. At the beginning, metrics quantified the source code. Chidamber and
Kemerer defined a set of metrics [6] that qualified if classes are well designed.
It significantly influenced further research, especially LCOM (lack of cohesion
of methods) has been studied extensively. LCOM tries to check if a class is
following a single responsibility predicate. Otherwise it becomes hard to maintain
and gets error prone. Henderson-Sellers, Constantine and Graham [11] defined
newer versions of LCOM, addressing the existence of call chains. Eventually,
Hitz and Montazeri [12] defined the most advanced version of LCOM (and the
most expensive to compute).

Other cohesion measures, similar to LCOM, have been applied to other soft-
ware artifacts. Emerson defined a cohesion metric for modules [10] that checks
whether a module has a single responsibility. Additionally, Page-Jones defined
several levels of cohesion [17] and described its desirable and undesirable types.
Nowadays LCOM is applied to modern programming paradigms and a good ex-
ample is measuring cohesion in Aspect Oriented Programming [9] presented by
Zhao and Xu [21].

Another set of source code metrics is MOOD (metrics for object-oriented
design). It have been defined by Abreu and Carapuça in [1] and further analyzed
by Abreu, Goulão and Esteves in [2]. MOOD introduces metrics like: method or
attribute hiding factor; method or attribute inheritance factor; coupling factor;
clustering factor; reuse factor. The metrics have been revised by Baroni, Braz and
Abreu in [4] where they formalized them using OCL (object constrain language)
and proposed a framework for testing and comparing other coupling metrics.

The most popular metric defined in MOOD is the coupling factor. Its impor-
tance is increasing: modern systems usually use numerous libraries and domain
sub-systems and unmanaged coupling makes classes difficult to maintain. Briand,
Daly and Wüst presented a unified framework for measuring coupling in [5], they
named and classified the sources of coupling and their impact on software, and
presented many coupling metrics.

Another approach to measuring systems was proposed by Robert Marin in
[14]. He introduced the term software package as a group of related classes. Some
of the metrics defined at the level of software packages are: afferent couplings,
efferent couplings, abstractness, instability. In the last twenty years numerous
other code metrics have been defined, however only a few of those metrics are
still in use and are general enough to work well with C++ as well as with modern
languages like Java or Python.

Concurrently with software metrics, engineers also established requirements
for proper metrics. Roche [18] and Abrieu with Carapuca [1] summarized prin-
ciples of software measurement. The most important properties that a measure
should posses are: having a formal definition; being system size independent;

4 Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

being obtainable early in project life cycle; being down-scalable; being easily
computable; and being independent from particular programming language.

Although the mathematical nature of metrics calls for their clear definitions,
there still exist many contradicting definitions of the same metric depending
on the implementation language. It has been suggested by Mens and Lanza
[15] that metrics should be expressed and defined using a language-independent
metamodel. This approach would allow for an unambiguous definition of generic
object-oriented metrics and higher-order metrics. The authors have also indi-
cated some prototype tools that implemented such idea.

3 Graph model

We recall definition of a model for software projects based on directed labeled
multigraph [8]. According to the model the project graph is an ordered triple
(V,L, E) where V is the set of vertices that reflects all project artifacts. L is
the set of labels which qualify vertices and edges. E ⊆ V × L × V is the set of
directed labeled edges. There can be more than one edge from one vertex to
another vertex, as artifacts can be in more than one relationship.

Vertices of the project graph are created when artifacts are produced during
software development. A vertex can represent a part of the source code like: mod-
ule, class, method, test (a unit test, an integration test, or a stress test). Other
examples of vertices are metrics, documents (requirements, use cases, change
requests), coding guidelines, source codes in higher level languages (i.e. yacc
grammars), configuration files, build recipes, tickets in issue tracking systems
and so on. Therefore, vertices may be of different granularities (densities). There
is a special containment edge to connect vertices representing artifacts for differ-
ent granularities. This can be presented on printed graphs as an arrow or using
vertex nesting.

Each artifact is described by the set of labels with properties. A method
can be described by general labels showing that: this is a part of project source
code (code); it is written in Java programming language (java); its revision
is 456 (r:456). There can be also some language specific labels, e.g. abstract,
public. Edges have labels, too. One of the edge labels is the already mentioned
containment. For example a package (bigger chunk) contains a class (smaller
chunk), while a class is a part of a package. Some other important labels are:
calls, depends, generates, verifies, tests, defines, implements.

Such model for a large project can be too large to be human-tractable as a
whole. However, we are typically interested only in its parts that satisfy given
restrictions. This is the reason for defining subgraphs as model views. Examples
of such views are: the set of methods that call a given method; all public methods
of a class (either including or excluding inherited ones). Queries that create such
subgraphs are computationally inexpensive, as usually we need to traverse only
a small fraction of the graph. More examples are given in Section 4.

One Graph to Rule Them All 5

4 Metrics

In our opinion, the holistic graph approach empowers development teams to
understand and measure their projects better. Nowadays developers use numer-
ous metrics to estimate quality of their products and to spot possible problems.
A noteworthy number of tools has been created in order to automate the compu-
tation of software metrics. Unfortunately most of these tools are limited to only
one programming language. Furthermore, they do not take into consideration the
information stored outside of the source code, e.g. in XML configuration files.
This makes their results incomplete, since in modern frameworks (e.g. Spring,
Hibernate) a significant part of information is stored in configuration files. In
addition, metrics serving different purposes (e.g. cost estimation/tracking and
measuring quality) often use different models and need manual synchronization.
Thus, their maintenance is too expensive.

4.1 Graph metrics are good metrics

The graph approach is in line with best practices for metrics [1, 18]. Graph
metrics depend only on a graph’s structure, thus they are language independent.
Furthermore, they are well-defined, easily computable and available even at the
beginning of a project. The translation of some OO metrics to graph models has
been already analyzed [15], however only metrics based on the source code has
been considered. In our research we take into account significantly more artefacts
and their relationships. Since the formalism proposed in [15] is precise and easy
to understand, we use it in our presentation.

Below we show how to express selected metrics in graph terms. Although this
way the metrics become programming language independent, they still properly
reflect the properties of the source code.

4.2 Chidamber and Kemerer metrics

We start with the first metric defined in [6]. The weighted method per class
(WMC) is defined as:

WMC =

n∑
i=1

ci

Where ci is the complexity of the i-th method in the class. If each method has
the same complexity, WMC is just the number of methods in the class.

In order to translate this metric into the graph model we start with the
definition of the counting function NC. Let n ∈ V and η1 ∈ type(n). Then:

NC(n, η1, η2, Φ, η3) = #{m ∈ V | type(m) 3 η2 ∧ Φ(m)∧
∃e ∈ E : source(e) = n ∧ target(e) = m ∧ type(e) = η3}

6 Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

NC counts the number of nodes m such that (1) the type of m belongs to the
set η2, (2) m satisfies the formula Φ, (3) there is an edge e of the type η2 from
n to m. The number of methods in a class c is easily defined as:

WMC(c) = NC(c, class,method, Φtrue, contains)

NOC (the Number Of Children) is usually understood as the number of direct
subclasses. Using the function NC we define NOC in the following way:

NOC(c) = NC(c, class, class, Φtrue, inherits)

CBO (coupling between objects) has different versions by several authors. We
will use the metric called Fan-out, that is often chosen as a CBO implementation.
The Fan-out of a class c is the number of other classes that are referenced in c.
A reference to another class a is a call to a method or an access to data member
of a. In Fan-out multiple references to a class are counted as one. The graph
definition of FAN-OUT(n) follows:

FAN-OUT(n) = #{m ∈ V | (contains(n,m) ∧ type(m) 3 class)∨
(∃o∈V calls(n, o) ∧ contains(m, o) ∧ type(m) 3 class ∧ type(o) 3 method)}

The notation contains(n,m) is a handy abbreviation of the formula:

∃e∈E source(e) = n ∧ target(e) = m ∧ type(e) 3 contains

LCOM (the lack of cohesion of methods) was originally defined as follows: let c
be the class and {Mi}ni=1 be the set of its methods and Ij be the set of instance
class variables used by method Mi. Let P = #{(Ii, Ij) | Ii ∩ IJ = ∅} and
Q = #{(Ii, Ij) | Ii ∩ IJ 6= ∅}. Then:

LCOM(c) = max(P −Q, 0)

In order to translate LCOM into graph terms we only need to express Ij in graph
terms. Assume j ∈ V and type(j) 3 method. Then we define Ij as follows:

Ij = #{v ∈ V | contains(j, v) ∧ type(v) 3 variable}

Another ways of measuring cohesion were presented in [11]. To analyze them we
need the number m(c) of procedures in a class c, the number a(c) of variables
in a class c and the number of methods that access a variable i of a class c:

m(c) = NC(c, class,method, Φtrue, contains)

a(c) = NC(c, class, variable, Φtrue, contains)

mA(i, c) = #{m ∈ V | (contains(c,m) ∧ type(m) 3 method ∧ uses(m, i))}

Now we can define two improved versions of LCOM:

LCOM2(c) = 1−
∑

i∈cmA(i, c)

m(c)a(c)

LCOM3(c) =
m(c)−

∑
i∈cmA(i, c)/a(c)

m(c)− 1

One Graph to Rule Them All 7

We can also introduce a purely graph-based metric of the cohesion of classes.
Consider a graph of components of a class with the relationships calling, called,
using and used. The value of the metric is the number of strongly connected
components of this graph. A class is cohesive of this metric is 1. The computation
of this metric is cheap as it can be done in linear time with respect to the size
of the graph [7].

4.3 MOOD and MOOD2 metrics

Now we focus on quantitative class measurements. MHF (the method hiding
factor) measures the degree of invisibility of methods in classes. The invisibility
of a method is the fraction of all classes from which the method is not visible.
The general intuition behind this measure is that most methods should be en-
capsulated within a class and not available for use by other objects. High method
hiding factor boosts reusability of code and reduces its complexity. In line with
the down scalability, this metric can be defined on multiple levels: the whole
project, a module and a package.

Here we define it for package level. We assume that all but private meth-
ods are visible. For two vertices w and v, a vertex condition ΦV and an edge
condition ΦE we define the predicate path(w, v, ΦE , ΦV) to be true, iff there ex-
ists a directed path from w to v such that all its edges satisfies ΦE and all its
intermediate vertices fulfil ΦV .

We can use this predicate to define ALLT (v, t) to be the number of nodes of
the type t that are contained transitively in a vertex v and satisfy the condition T :

ΦMC(v) = type(v) 3 package ∨ type(v) 3 class
ALLSETT (v, t) = {m ∈ V | type(m) 3 t ∧ path(v,m, contains, ΦMC ∧ T)}

ALLT (v, t) = #ALLSETT (v, t)

Now we can define one MHF metric that is down scalable, i.e. it works for models,
packages, packages in packages, etc.

MHF (p) =
ALLisPrivate(p,method)

ALLtrue(p,method)

Nowadays the most popular metric from the MOOD set is CF (the coupling
factor). The coupling is a call to other class’s methods or an access to its vari-
ables. The coupling factor is defined as the ratio of actual coupling to maximum
possible coupling. Higher coupling means higher complexity and lower main-
tainability. Additionally it reduces encapsulation and potential reuse. It also
increases the number of potential defects. High coupling should be avoided. We
propose the following graph-based definition of the coupling factor:

CF (p) =
#{c, d ∈ (ALLtrue(p, class) | accesses(c, d)}
0.5(ALLtrue(p, class)− 1)ALLtrue(p, class)

The predicate accesses(c, d) is true, iff c calls a method in d or accesses a variable
in d.

8 Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

4.4 Robert Martin’s metrics

Robert Martin defined metrics that operate on packages, i.e. logical containers
for source code artefacts. NCF (the number of classes and interfaces) in a package
is one of the simplest metrics. Its definition is straightforward using ALLT from
the previous section:

NCF (p) = ALLtrue(p, class) +ALLtrue(p, interface)

AC (the afferent coupling) is the number of classes and interfaces from outside
a package that depend on its classes. It can be defined in the graph-based style
as follows. We subsequently define CPC(p) (classes in the package p), AAC(p)
(classes and interfaces that are not in the package p) and finally AC(p).

CPC(p) = ALLSETtrue(p, class)

AAC(p) = (ALLSETtrue(project, class) ∪ALLSETtrue(project, interface))
\ALLSETtrue(p, class)

AC(p) = #{c ∈ AAC(p), d ∈ CPC(p) | accesses(c, d)}

Similarly EC (efferent couplings) is the number of classes and interfaces from
outside of the package that are used by classes inside the package. EC can be
defined in graph terms as follows:

EC(p) = #{c ∈ AAC(p), d ∈ CPC(p) | accesses(d, c)}

Using AC and EC it is possible to define instability measure:

I(p) =
EC(p)

EC(p) +AC(p)

I(p) estimates the resilience to change of the package p.
The package abstractness is the fraction of abstract classes and interfaces in

a package. In graph terms we can define it as follows:

A(p) =
ALLtrue(p, interface) +ALLisAbstract(p, class)

ALLtrue(p, interface) +ALLtrue(p, class)
.

DMS is the distance from the main sequence. The main sequence is the idealized
line A(p) + I(p) = 1. DMS is the normalized distance to this line:

DMS(p) =
| A(p)− I(p)− 1 |√

2

4.5 New metrics

One place to store and integrate whole architectural knowledge facilitates tracing
not only changes in the source code but also changes of the documentation
and meta-models. This opportunity gives raise to new graph-defined metrics
concerned with software processes.

One Graph to Rule Them All 9

Automatic validation ratio As mentioned above even partial automatic model
translation is extremely hard to achieve in practice. On the other hand, validation
if all project artefacts are in sync is much easier when all of them are stored in
one place. If there is one such place, the development of validators will also be
easier.

Consider the typical problem of synchronization between a UML model and a
Java code. In real life projects this task is too complex. Even in not so big projects
like JLoXiM [19] it has turned out to be impossible. Building a synchronization
tool that keeps in sync these two models is a difficult problem since UML models
do not contain all information about classes. If a UML model contained all the
information, each class definition would have too many dependencies and the
architect would not be able to ever finish modelling.

We propose to introduce a reliability measure AVR (the automatic validation
ratio) that is based on the percentage of automatic validations. A path from a
requirement to the implementation is the subject of this measurement. Such a
path usually contains few nodes that specify more implementation details and
architectural decisions. AVR is the percentage of automatic validation vertices on
a path. In an ideal case it would be 100% but it is hard to achieve, if the language
of business analytical documents is not formal. This measure is scalable as it can
be computed for a single path, for all paths having last vertex in a given package,
a module or in the whole project. Additionally, it is language independent as it
only operates on graph vertices. Moreover, it is available from the very beginning
of the project.

Definition ratio Intuitively everybody understands that there should be clear
path from requirements to the source code and backwards. On the other hand,
this rule is often neglected. Thus, it is hard to track changes and their impact,
especially in software documents and metamodels. With the graph approach we
can easily model even abstract artefacts and define dependencies between them.
Therefore, to check if the process is complete we check whether there is a path
from requirement documents to interfaces and public methods.

The reverse operation of tracking if all interfaces and public methods have
paths to requirements and models (e.g. UML diagrams) can be easily performed
on the project graph. We propose to use DF (definition ratio) as the fraction
of interfaces and public methods that have paths to documentation. A high
definition rate means that our code is not exposing unnecessary methods. This
reduces the coupling and thus increases the maintainability of the code.

One graph to rule them all AV R andDF advocated in this section are facilitated
by the holistic graph of all software artefacts. Without such a repository, it seems
impossible to use such high-level project metrics.

5 Implementation

A pilot version of our graph approach to measuring software projects has been
already implemented. Standard relational databases proved to be not suitable

10 Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

for storing graphs, so it has been build on Neo4J [20] graph database. The
engine fit our needs as: its vertex contains a map of properties; every edge has
a type (besides of a map of parameters) which can be used in graph traversal;
definition like ALL_T are defined as TraversalDescriptions hence can be reused
on multiple vertices. Additional reasons for choosing Neo4J databases were: good
integration with Lucene full text indexer, which can improve significantly typical
searches; and Gremlin graph querying language. Currently we are working on
production version that will offer possibility to import multiple projects and
allows us to run more experiments, like comparing metrics results evaluated by
tools working on Java source code (like JDepend) with ones achieved in our
graph-based environment.

6 Conclusion

We follow the research on architecture of software [13] and software process. We
support the approach that incorporates in one model both software and software
process artefacts, as the only one worth taking [16]. An implementation of such
a model is possible using graph databases [3] as the storage layer for artefact
representation. Graph querying languages and graph algorithms allow to easily
define measures, define graph views and find information in graph.

This paper can be summarized as follows: software artefacts and software de-
velopment process artefacts created during a software project are organized as
vertices of a graph connected by edges that represent multiple kinds of dependen-
cies among those artefacts. Quality assurance of software and predictability of
software development process are supported by metrics that are easily expressed
and calculated in graph terms.

We are aware that the concept is not an entirely novel one, rather it should
be perceived as an attempt to support existing trends with a sound and com-
mon foundation. We hope that many software practitioners perceive such graph-
oriented approach as a next step in evolution of the level of integration of soft-
ware’s architectural knowledge. In our opinion actual software projects continue
to suffer from the lack of visible, detailed and complete setting to govern their
architecture and evolution, despite using many advanced tools that are currently
available. Our model fills this gap and as it integrates in one place areas that
are presently managed independently.

If the graph-based approach gains attraction and recognition, it will establish
common grounds for the integration of currently used concepts, methodologies
and supporting tools and open an interesting opportunity for a new future con-
sistent software development methodologies. Obviously this is the beginning of
a road to such a methodology, and the theoretical foundations, the range of sup-
porting tools, and the extension of its systematic evaluation call for a significant
amount of further research from the software engineering community.

One Graph to Rule Them All 11

References

1. F. Abreu and R. Carapuça. Object-oriented software engineering: Measuring and
controlling the development process. In Proceedings of the 4th International Con-
ference on Software Quality, 1994.

2. F. Abreu, M. Goulão, and R. Esteves. Toward the design quality evaluation of
object-oriented software systems. In Proceedings of the 5th International Confer-
ence on Software Quality, Austin, Texas, USA, pages 44–57, 1995.

3. R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput.
Surv., 40:1:1–1:39, February 2008.

4. A. Baroni, S. Braz, and F. Abreu. Using OCL to formalize object-oriented design
metrics definitions. Proceedings of Quantitative Approaches in Object-Oriented
Software Engineering, 2002.

5. L. C. Briand, J. W. Daly, and J. K. Wüst. A unified framework for coupling mea-
surement in object-oriented systems. IEEE Transactions on Software Engineering,
25:91–121, January 1999.

6. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20:476–493, June 1994.

7. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2nd edition, 2001.

8. R. Dabrowski, K. Stencel, and G. Timoszuk. Software is a directed multigraph. In
I. Crnkovic, V. Gruhn, and M. Book, editors, ECSA, volume 6903 of Lecture Notes
in Computer Science, pages 360–369. Springer, 2011.

9. T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduction.
Communications of the ACM, 44:29–32, October 2001.

10. T. J. Emerson. A discriminant metric for module cohesion. In Proceedings of the
7th international conference on Software engineering, ICSE ’84, pages 294–303,
Piscataway, NJ, USA, 1984. IEEE Press.

11. B. Henderson-Sellers, L. L. Constantine, and I. M. Graham. Coupling and cohesion
(towards a valid metrics suite for object-oriented analysis and design). Object
Oriented Systems, 3:143–158, 1996.

12. M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented
systems. In Proceedings of the International Symposium on Applied Corporate
Computing, volume 50, pages 75–76, 1995.

13. P. Kruchten, P. Lago, H. van Vliet, and T. Wolf. Building up and exploiting
architectural knowledge. In Proceedings of the 5th Working IEEE/IFIP Confer-
ence on Software Architecture, pages 291–292, Washington, DC, USA, 2005. IEEE
Computer Society.

14. R. C. Martin. Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

15. T. Mens and M. Lanza. A graph-based metamodel for object-oriented software
metrics. In Electronic Notes in Theoretical Computer Science, volume 72, pages
57–68, 2002. GraBaTs 2002, Graph-Based Tools (First International Conference
on Graph Transformation).

16. L. Osterweil. Software processes are software too. In Proceedings of the 9th inter-
national conference on Software Engineering, pages 2–13, Los Alamitos, CA, USA,
1987. IEEE Computer Society Press.

17. M. Page-Jones. The practical guide to structured systems design: 2nd edition.
Yourdon Press, Upper Saddle River, NJ, USA, 1988.

12 Robert Dąbrowski, Krzysztof Stencel, and Grzegorz Timoszuk

18. J. M. Roche. Software metrics and measurement principles. SIGSOFT Softw. Eng.
Notes, 19:77–85, January 1994.

19. P. Tabor and K. Stencel. Stream Execution of Object Queries. Grid and Distributed
Computing, Control and Automation, 121:167–176, 2010.

20. C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison
of a graph database and a relational database: a data provenance perspective. In
Proceedings of the 48th Annual Southeast Regional Conference, ACM SE ’10, pages
42:1–42:6, New York, NY, USA, 2010. ACM.

21. J. Zhao and B. Xu. Measuring aspect cohesion. In Fundamental Approaches to
Software Engineering, volume 2984 of Lecture Notes in Computer Science, pages
54–68. Springer, 2004.

