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Abstract. The aim of this paper is to present a new class of Petri
nets called generalised fuzzy Petri nets. The new class extends the ex-
isting fuzzy Petri nets by introducing two operators: triangular norms
(t-norms) and t-conorms (s-norms), which are supposed to function as
substitute for themin andmax operators. To demonstrate the power and
the usefulness of this model, an application of the generalised fuzzy Petri
nets in the domain of train tra�c control is provided. The new model is
more �exible than the classical one as in the former class the user has the
chance to de�ne the input/output operators. The proposed approach can
be used for knowledge representation and reasoning in decision support
systems.

Key words: fuzzy Petri nets, knowledge representation, approximate
reasoning, decision support systems

1 Introduction

Petri nets serve as a graphical and mathematical modelling tool applicable to
many systems. Their graphical aspect allows representation of various interac-
tions between discrete events more easily. However, the mathematical aspect
allows formal modelling of these interactions and analysis of the modelled sys-
tem properties [11],[17],[22].

The concept of a Petri net has its origin in C.A. Petri's dissertation [23].
In the last four decades, several extensions of Petri nets have been proposed
improving such aspects as hierarchical nets, high level nets or temporal nets
[11]. Currently, Petri nets are gaining a growing interest among people both
in Arti�cial Intelligence due to its adequacy to represent the reasoning process
as a dynamic discrete event system [1]-[9],[15]-[16],[18]-[21],[25]-[26] as well as
in Molecular Biology with respect to their powerfulness and usefulness in mod-
elling biological systems [10],[12]-[13],[24]. In 1988, C.G. Looney proposed in [16]
so called "Fuzzy P etri Nets (FPNs)". In his model logical propositions can be
associated with Petri nets allowing for logical reasoning about the modelled sys-
tem and its behaviour. The application of fuzzy Petri nets includes the design
and implementation of decision support systems. In particular, they can be used
for knowledge representation and modelling of reasoning processes in such sys-
tems. In this class of Petri net models not only well-known pieces of information



but also imprecise, vague and uncertain information is admissible and taken
into account. Several authors have proposed di�erent classes of fuzzy Petri nets.
These models are based on di�erent approaches combining Petri nets and fuzzy
sets introduced by L. Zadeh in 1965 [27].

The aim of this paper is to further improve the fuzzy Petri net model for
knowledge representation and reasoning and to overcome some de�ciencies of
former FPN approaches [2].

In the paper, we propose a new class of Petri nets called "Generalised Fuzzy
P etri Nets (GFPNs)" for knowledge representation and reasoning in decision
support systems. This model is a natural extension of fuzzy Petri nets. The t-
norms and s-norms are introduced to the model as substitutes of min and max
operators. The latter ones generalize naturally AND and OR logical operators
with the Boolean values 0 and 1. The proposed model is not only more comfort-
able in terms of knowledge representation, but most of all it is more e�ective
in the modelling process of approximate reasoning as in the new class of fuzzy
Petri nets the user has the chance to de�ne the input/output operators. The
preliminary results of real-life data experiments using this model are promis-
ing. In order to demonstrate the modelling aspects of GFPNs, an application of
generalised fuzzy Petri nets in the domain of train tra�c control is provided.

The structure of this paper is as follows. Sect. 2 gives a brief introduction to
fuzzy Petri nets. In Sect. 3 generalised fuzzy Petri nets formalism is presented.
Sect. 4 describes an application of this class of FPN in the domain of train tra�c
control. In Sect. 5 conclusions are made.

2 Fuzzy Petri nets - basic de�nitions

One of the most known and applicable class of Petri nets in the domain of
Arti�cial Intelligence are fuzzy Petri nets [3],[16]. They are a modi�cation of
classical Petri nets [17] relying on interpretation of net places as logical variables
with values belonging to the closed interval [0,1] of all real numbers from 0 to 1
(0 and 1 are included). The concrete values of such variables represent a truth
degree of statements assigned to the variables. Net transitions are interpreted as
logical implications in which input places of a transition represent premises of a
given implication corresponding to the transition whereas output places of the
transition represent its conclusions. The de�nitions of input/output places of a
transition in a net are given below. Similarly, we assume that the truth degree
of a given implication belongs also to the closed interval of all real numbers from
0 to 1. Moreover, we assume that threshold values for all transitions in a given
fuzzy Petri net are de�ned. The role of these values is to limit the possibility of
transition �rings. More precisely, if a logical premise value of a given transition
is less than a threshold value of the transition then this transition is not possible
to be �red.

In this paper we view a fuzzy Petri net as a decision support system based
on speci�c rules of the form: IF condition THEN action, for which the condition
is consumed and the action is produced each time the rule is used. In a decision



support system, the knowledge representation is based on a collection of rules. In
a fuzzy Petri net, each transition may be seen as a rule which depicts a possible
state change.

De�nition 1. A fuzzy Petri net (FP-net) is a tuple N = (P, T, S, I,O, α, β, γ,
M0), where:

- P = {p1, p2, . . . , pn} is a �nite set of places, n > 0;

- T = {t1, t2, . . . , tm} is a �nite set of transitions, m > 0;

- S = {s1, s2, . . . , sn} is a �nite set of statements;

- the sets P , T , S are pairwise disjoint, i.e., P ∩T = P ∩S = T ∩S = ∅ and
card(P ) = card(S);

- I : T → 2P is the input function;

- O : T → 2P is the output function;

- α : P → S is the statement binding function;

- β : T → [0, 1] is the truth degree function;

- γ : T → [0, 1] is the threshold function;

- M0 : P → [0, 1] is the initial marking,

and 2P denotes a family of all subsets of the set P .

As for the graphical interpretation, places are denoted by circles and tran-
sitions by rectangles. The places are the nodes describing states (a place is a
partial state) and the transitions depict the state changes. The function I de-
scribes the oriented arcs connecting places with transitions. It represents, for
each transition t, the fragments of the state in which the system has to be, be-
fore the state change corresponding to t can occur. The function O describes the
oriented arcs connecting transitions with places. It represents, for each transi-
tion t, fragments of the state in which the system will be after the occurrence
of the state change corresponding to t. If I(t) = {p} then a place p is called an
input place of a transition t. Moreover, if O(t) = {p′}, then a place p′ is called
an output place of t. The initial marking M0 is an initial distribution of tokens
in the places. It can be represented by a vector of dimension n of real numbers
from the closed interval [0, 1]. For p ∈ P , M0(p) is the token load of place p and
represents a partial state of the system described by the fuzzy Petri net. This
value can be interpreted as a truth value of a statement s bound with a given
place p by means of the statement binding function α, i.e., α(p) = s. Pictorially,
the tokens are represented by means of grey "dots" together with the suitable
real numbers placed inside the circles corresponding to appropriate places. We
assume that if a truth value of a statement attached to a given place is equal
to 0 then the token does not exist in the place. The number β(t) is placed in a
net picture under a transition t. Usually, this number is interpreted as a truth
degree of an implication corresponding to a given transition t. The meaning of
the threshold function γ is explained below.

Let N be a FP -net. A marking of N is a function M : P → [0, 1].

The fuzzy Petri net dynamics de�nes how new markings are computed from
the current marking when transitions are �red (the corresponding state change



occurs). It describes the state changes of the decision support system modeled
by the fuzzy Petri net.

Let N be a FP -net, t ∈ T , I(t) = {pi1, pi2, . . . , pik} be a set of input places
for a transition t, and M - a marking of N .

A transition t is enabled for marking M if the minimum min for all input
places of the transition t by M is positive and greater than or equal to the value
of the threshold function γ to t, i.e.,

min(M(pi1),M(pi2), . . . ,M(pik)) ≥ γ(t) > 0 for each pij ∈ I(t), j = 1, . . . , k.

Only enabled transitions can be �red. Informally, �ring the enabled transition
t consists of removing (or not) dependently on the �ring mode (it will be further
discussed in detail) the token load of its input places by I(t) (as the transition
is enabled no negative token load will be obtained), and increasing the token
load of all its output places by O(t) without any alteration of the token loads of
other places.

This informal de�nition points out the fact that �ring the transition t is
local in the sense that it only involves the tokens captured by I(t) and O(t)
independently from the other remaining tokens of the current marking. Firing is
based on two invisible primitives: removal of the tokens from input places and
insertion of the tokens in output places. Transitions which do not share any places
can be �red independently. This is why fuzzy Petri nets are a mathematical tool
that can capture true concurrency.

There are two operating modes of the fuzzy Petri nets. In the �rst mode,
each �ring of an enabled transition t removes tokens from its input places and
adds a token to each of its output place (if the token does not exist in the
place yet). If in a given output place the token already exists then the �red
transition does not place a new token. In the �rst case, a new value related to
the generated token is computed as follows. After computing the minimum value
from all values corresponding to input places of a �red transition, the computed
value is timed by the value of function β corresponding to a �red transition.
A new value is placed in all output places of a �red transition. In the second
case, we assume that �ring enabled transition does not remove tokens from its
input places (copies of the tokens are only transmitted to output places of a �red
transition). A �nal value of tokens is computed in an analogous way to the �rst
case. In both cases, if in a given output place the token already exists then the
�red transition computes a new value of the token as follows. The �nal value of a
given output place of a �red transition is computed as maximum value from the
one residing in the output place and the computed value of the �red transition.

Let N = (P, T, S, I,O, α, β, γ,M0) be a FP -net, t ∈ T , I(t) = {pi1, pi2, . . . ,
pik} be a set of input places for a transition t, β(t) be a value of the truth degree
function β corresponding to t and β(t) ∈ (0, 1] (0 is not included), γ(t) be a
value of threshold function γ corresponding to t, and M be a marking of N .
Moreover, let min, ∗, max denote the minimum, the algebraic product and the
maximum, respectively.



Mode 1. If M is a marking of N enabling transition t and M ′ the marking
derived from M by the �ring transition t, then for each p ∈ P :

M ′(p) =

 0 if p ∈ I(t),
max(min(M(pi1),M(pi2), . . . ,M(pik)) ∗ β(t),M(p)) if p ∈ O(t),
M(p) otherwise.

In this mode, a procedure for computing the marking M ′ is as follows: (1)
Tokens from all input places of the transition t are removed (the �rst condition
from M ′ de�nition). (2) Tokens in all output places of t are modi�ed in the
following way: at �rst the value of minimum min for all input places of t is
computed, then the product of the computed minimum for all input places of t
and the value of truth degree function β(t) is determined, and �nally, a value
corresponding toM ′(p) for each p ∈ O(p) is obtained as a result of maximum for
the computed product value and the current markingM(p) (the second condition
fromM ′ de�nition). (3) Tokens in the remaining places of net N are not changed
(the third condition from M ′ de�nition).

Mode 2. If M is a marking of N enabling transition t and M ′ the marking
derived from M by the �ring transition t, then for each p ∈ P :

M ′(p) =

{
max(min(M(pi1),M(pi2), . . . ,M(pik)) ∗ β(t),M(p)) if p ∈ O(t),
M(p) otherwise.

The di�erence in the de�nition of a marking M ′ presented above (Mode 2 )
concerns input places of the �red transition t. In Mode 1 tokens from all input
places of the �red transition t are removed (cf . the �rst de�nition condition of
Mode 1 ), whereas in Mode 2 all tokens from input places of the �red transition
t are copied (the second de�nition condition of Mode 2 ).

Fig. 1. A fuzzy Petri net with the initial marking before �ring the enabled transitions

Example 1. Let us consider a fuzzy Petri net in Figure 1. For the net we have:
the set of places P = {p1, p2, p3, p4, p5}, the set of transitions T = {t1, t2},



the input function I and the output function O in the form: I(t1) = {p1, p2},
I(t2) = {p2, p3}, O(t1) = {p4}, O(t2) = {p5}. Moreover, there are: the set of
statements S = {s1, s2, s3, s4, s5}, the statement binding function α : α(p1) =
s1, α(p2) = s2, α(p3) = s3, α(p4) = s4, α(p5) = s5, the truth degree function
β: β(t1) = 0.7, β(t2) = 0.8, the threshold function γ: γ(t1) = 0.4, γ(t2) = 0.3
and the initial marking M0 = (0.6, 0.4, 0.7, 0, 0).

(a) (b)

Fig. 2. An illustration of a �ring rule: (a) the marking after �ring t1, where t2 is
disabled (Mode 1 ), (b) the marking after �ring t2, where t1 and t2 are enabled (Mode

2 )

Transitions t1 and t2 are enabled by the initial markingM0. Firing transition
t1 by the markingM0 according toMode 1 transformsM0 to the markingM1 =
(0, 0, 0.7, 0.28, 0) (Figure 2(a)), and �ring transition t2 by the initial markingM0
according to Mode 2 results in the marking M2 = (0.6, 0.4, 0.7, 0, 0.32) (Figure
2(b)).

3 Generalised fuzzy Petri nets

Now we are ready to de�ne a new class of Petri net model called a generalised
fuzzy Petri net. Before giving a formal de�nition of this model we remind some
notions used later on. This section presents the main contribution to the paper.

A t-norm is de�ned as t : [0, 1]×[0, 1]→ [0, 1] such that, for each a, b, c ∈ [0, 1]:
(1) it has 1 as the unit element, i.e., t(a, 1) = a; (2) it is monotone, i.e., if
a ≤ b then t(a, c) ≤ t(b, c); (3) it is commutative, i.e., t(a, b) = t(b, a); (4) it is
associative, i.e., t(t(a, b), c) = t(a, t(b, c)).

More relevant examples of t-norms are: the minimum t(a, b) = min(a, b)
which is the most widely used, the algebraic product t(a, b) = a∗b, the �ukasiewicz
t-norm t(a, b) = max(0, a+ b− 1).

An s-norm (or a t-conorm) is de�ned as s : [0, 1] × [0, 1] → [0, 1] such that,
for each a, b, c ∈ [0, 1]: (1) it has 0 as the unit element, i.e., s(a, 0) = a, (2)



it is monotone, i.e., if a ≤ b then s(a, c) ≤ s(b, c), (3) it is commutative, i.e.,
s(a, b) = s(b, a), and (4) it is associative, i.e., s(s(a, b), c) = s(a, s(b, c)).

More relevant examples of s-norms are: the maximum s(a, b) = max(a, b)
which is the most widely used, the probabilistic sum s(a, b) = a+ b− a ∗ b, the
�ukasiewicz s-norm s(a, b) = min(a+ b, 1).

Using the notions of t- and s-norms we formulate the de�nition a generalised
fuzzy Petri nets as follows:

De�nition 2. A generalised fuzzy Petri net (GFP-net) is a tuple N ′ = (P, T, S,
I, O, α, β, γ,Op, δ,M0), where:

- P, T, S, I,O, α, β, γ,M0 have the same meaning as in De�nition 1;
- Op is a �nite set of t-norms and s-norms called the set of operators;
- δ : T → Op×Op×Op is the operator binding function.

The operator binding function δ connects transitions with triples of operators
(opIn, opOut1, opOut2). The �rst operator appearing in the triple is called the
input operator, and two remaining ones are the output operators. The input
operator opIn concerns the way in which all input places are connected with
a given transition t (more precisely, statements corresponding to those places).
However, the output operators opOut1 and opOut2 concern the way in which
the next marking is computed after �ring the transition t. In the case of input
operator we assume that it can belong to one of two classes, i.e., t- or s-norm.
This issue is more precisely discussed further on. In fuzzy Petri nets the operators
minimum, algebraic product and maximum are usually used. As we know, the
�rst two belong to the class of t-norms whereas the third belongs to the class
of s-norms. In the new net model the input/output operators can be de�ned
by a user of the model dependently on her/his needs. In general, selecting rule
operators and parameters (if we consider so called parameterised families of
t- and s-norms [14],[25]) depends on the rule type appearing in a given rule
knowledge base as well as the quality of experimental data from which the rules
are extracted [8],[21]. The behaviour of generalised fuzzy Petri nets is de�ned
in an analogous way to the case of fuzzy Petri nets. It is worth emphasising
that the de�nition of net marking is analogous to fuzzy Petri nets, although the
de�nitions of transition rule and next marking are substantially modi�ed.

Let N ′ be a GFP -net. A marking of N ′ is a function M : P → [0, 1].

A transition t ∈ T is enabled for marking M if the value of input operator
opIn for all input places of the transition t by M is positive and greater than or
equal to the value of threshold function γ corresponding to the transition t, i.e.,

opIn(M(pi1),M(pi2), . . . ,M(pik)) ≥ γ(t) > 0 for each pij ∈ I(t), j = 1, . . . , k.

Let N ′ = (P, T, S, I,O, α, β, γ,Op, δ,M0) be a GFP -net, t ∈ T , I(t) =
{pi1, pi2, . . . , pik} be a set of input places for a transition t and β(t) ∈ (0, 1].
Moreover, let opIn be an input operator and opOut1, opOut2 be output operators
for the transition t.

Mode 1. If M is a marking of N ′ enabling transition t and M ′ the marking
derived from M by �ring transition t, then for each p ∈ P :



M ′(p) =


0 if p ∈ I(t),
opOut2(opOut1(opIn(M(pi1),M(pi2), . . . ,M(pik)), β(t)),M(p))
if p ∈ O(t),
M(p) otherwise.

In this mode, a procedure for computing the markingM
′
is similar to appro-

priate procedure corresponding to fuzzy Petri nets and Mode 1 presented above.
The di�erence is that present procedure needs to set operators: opIn, opOut1,
opOut2 at �rst. Remaining stages of the procedure are analogous to the previous
procedure concerning Mode 1.

Mode 2. If M is a marking of N ′ enabling transition t and M ′ the marking
derived from M by �ring transition t, then for each p ∈ P :

M ′(p) =

 opOut2(opOut1(opIn(M(pi1),M(pi2), . . . ,M(pik)), β(t)),M(p))
if p ∈ O(t),
M(p) otherwise.

The main di�erence in the de�nition of the marking M
′
presented above

(Mode 2 ) and Mode 1 is analogous to the fuzzy Petri nets.

Fig. 3. A generalised fuzzy Petri net with the initial marking before �ring the enabled
transitions t1 and t2

Example 2. Let us consider a generalised fuzzy Petri net in Figure 3. For the
net we have: the set of places P , the set of transitions T , the set of statements
S, the input function I, the output function O, the statement binding function
α, the truth degree function β, the threshold function γ, and and the initial
marking M0 are described analogously to Example 1. Moreover, there are: the
set of operators Op = {max,min, ∗} and the operator binding function δ de�ned
as follows: δ(t1) = (max, ∗,max), δ(t2) = (min, ∗,max).



(a) (b)

Fig. 4. An illustration of a �ring rule: (a) the marking after �ring t1, where t2 is
disabled (Mode 1 ), (b) the marking after �ring t2, where t1 and t2 are enabled (Mode

2 )

Transitions t1 and t2 are enabled by the initial markingM0. Firing transition
t1 by the markingM0 according toMode 1 transformsM0 to the markingM1 =
(0, 0, 0.7, 0.42, 0) (Figure 4(a)), and �ring transition t2 by the initial markingM0
according to Mode 2 results in the marking M2 = (0.6, 0.4, 0.7, 0, 0.32) (Figure
4(b)).

4 Illustrating example

This section presents an application of GFPN in the domain of train tra�c
control [5]. The example is based on a simpli�ed version of the real-life problem.
We assume the following situation: a train B waits at a certain station for a
train A to arrive in order to allow some passengers to change train A to train
B. Now a con�ict arises when the train A is late.

In this situation, the following alternatives can be taken into consideration:

� Train B waits for train A to arrive. In this case, train B will depart with
delay.

� Train B departs in time. In this case, passengers disembarking train A have
to wait for a later train.

� Train B departs in time, and an additional train is employed for late train
A′s passengers.

To make a decision, several inner conditions have to be taken into account
such as the delay period, the number of passengers changing trains, etc. The
discussion regarding an optimal solution to the problem of divergent aims such
as: minimization of delays throughout the tra�c network, warranty of connec-
tions for the customer satisfaction, e�cient use of expensive resources, etc. is
disregarded at this point.



In order to describe the tra�c con�ict, we propose to consider the following
three rules:

� IF s2 OR s3 THEN s6;
� IF s1 AND s4 AND s6 THEN s7;
� IF s4 AND s5 THEN s8,

where: s1 = "Train B is the last train in this direction today", s2 = "The delay
of train A is huge", s3 = "There is an urgent need for the track of train B", s4
= "Many passengers would like to change for train B", s5 = "The delay of train
A is short", s6 = "(Let) train B depart according to schedule", s7 = "Employ
an additional train C (in the same direction as train B)", and s8 = "Let train
B wait for train A".

Fig. 5. An example of GFPN model of train tra�c control

In Figure 5 the GFPN model corresponding to these rules, where the logical
operators OR, AND are interpreted asmax andmin, respectively, is shown. Note
that the places p1, p2, p3 and p4 include the fuzzy values 0.6, 0.4, 0.7 and 0.5
corresponding to the statements s1, s2, s3 and s4, respectively. In this example,
the statement s5 attached to the place p5 is the only crisp and its value is equal to
1. By means of evaluation of the statements attached to the places from p1 up to
p5, we observe that the transitions t1 and t3 can be �red. Firing these transitions
according to the �ring rules for the GFPN model allows the computation of the



support for the alternatives in question. In this way, the possible alternatives
are ordered with regard to the preference they achieve from the knowledge base.
This order forms the basis for further examinations and simulations and, in the
end, for the dispatching proposal. If one chooses a sequence of transitions t1t2
then they obtain the �nal value, corresponding to the statement s7, equal to
0.35. In the second possible case (i.e., for the transition t3 only), the �nal value,
corresponding now to the statement s8, equals 0.45.

5 Conclusions

The GFPN model combining the graphical power of Petri nets, possibilities of
fuzzy sets and the theory of t-norms to model rule-based expert knowledge in a
decision support system have been described in the paper. Having discussed basic
notions from the fuzzy Petri net theory, GFPN formalism has been presented.
Using a simple real-life example the suitability and the usefulness of the proposed
approach for the design and implementation of decision support systems have
been proved. Success of the elaborated approach looks promising with regard to
alike application problems that could be solved similarly.

An experimental application called PNES on IBM PC, in Java, consisting of
an editor and a simulator have been developed. The editor allows the inputting
and editing of generalised fuzzy Petri nets, while the simulator that starts with a
given initial marking and executes enabled transitions visualising reached mark-
ings. All �gures and simulation results presented in the paper were produced by
the application.

Acknowledgment. The author is grateful to anonymous referees for their help-
ful comments.

References

1. Cardoso, J., Valette, R., and Dubois, D.: "Fuzzy Petri nets: An overview". In: Proc.
13th IFAC World Congress, San Francisco, CA, U.S.A., 30 June-5 July 1996, pp.
443-448

2. Cardoso, J. and Camargo, H. (eds.): "Fuzziness in Petri Nets", Springer, Berlin
1999

3. Chen, S.M., Ke, J.S., and Chang, J.F.: "Knowledge representation using fuzzy
Petri nets". IEEE Trans. on Knowledge and Data Engineering 2(3), Sept. 1990,
311-319

4. Dubois, D. and Prade, H.: "Fuzzy Sets in Approximate Reasoning, Part 1: Inference
with Possibility Distributions, Fuzzy Sets and Systems". Supplement to Vol. 100
(A selection of the most cited papers in Fuzzy Sets and Systems), 1999, 73-132

5. Fay, A. and Schnieder, E.: "Fuzzy Petri Nets for Knowledge Modelling in Ex-
pert Systems". In: Cardoso, J. and Camargo, H. (eds.), "Fuzziness in Petri Nets",
Springer, Berlin 1999, pp. 300-318

6. Fryc, B., Pancerz, K., and Suraj, Z.: "On Approximate Petri nets with fuzzy oper-
ators in data classi�cation process". In: Wakulicz-Deja, A. (ed.), Decision Support
Systems, Inst. of Comp. Sci., Silesia University, Katowice 2009, pp. 53-61



7. Fryc, B., Pancerz, K., and Suraj, Z.: "Approximate Petri Nets for Rule-Based
Decision Making". In: Proc. of 4th Int. Conf. on Rough Sets and Current Trends
in Computing, Uppsala, Sweden, June 1-5, 2004, LNAI 3066, Springer, Berlin
2004, pp. 733-742

8. Fryc, B., Pancerz, K., Peters, J.F., and Suraj, Z.: "On Fuzzy Reasoning Using
Matrix Representation of Extended Fuzzy Petri Nets". Fundamenta Informaticae
60(1-4), 2004, 143-157

9. Garg, M. L., Ahson, S. I., and Gupta, P.V.: "A fuzzy Petri net for knowledge
representation and reasoning". Information Processing Letters, 1991, 165-171

10. Heiner, M., Donaldson, R., and Gilbert, D.: "Petri Nets for Systems Biology".
Chapter 3, Jones & Bartlett Learning, LCC, 2010, pp. 61-97

11. Jensen, K. and Rozenberg, G.: "High-level Petri Nets". Springer, Berlin 1991
12. Kielbassa, J., Bortfeldt, R., Schuster, S., and Koch, I.: "Modelling of the U1 snRNP

assembly pathway in alternative splicing in human cells using Petri nets". Compu-
tational Biology and Chemistry, 2008, 1-16

13. Kleijn, J., Koutny, M., and Rozenberg, G.: "Petri Nets for Biologically Motivated
Computing". Scienti�c Annals of Computer Science 21, 2011, 199-225

14. Klir, G.J. and Folger, T.A.: "Fuzzy Sets, Uncertainty and Information". Prentice-
Hall: Englewood Cli�s, NJ, 1988

15. Li, X. and Lara-Rosano, F.: "Adaptive fuzzy Petri nets for dynamic knowledge
representation and inference". Expert Systems with Applications. 19, 2000, 235-
241

16. Looney, C.G.: "Fuzzy Petri Nets for Rule-Based Decision-making. IEEE Trans.
Syst., Man, Cybern. 18-1, 1988, 178-183

17. Murata, T.: "Petri Nets: Properties, Analysis and Applications". Proc. of the IEEE,
Vol.77, April 1989, pp. 541-580

18. Pedrycz, W. and Gomide, F.: "A generalized fuzzy Petri net model". IEEE Trans.
on Fuzzy Systems. 2-4, 1994, 295-301

19. Pedrycz, W.: "Generalized fuzzy Petri nets as pattern classi�ers". Pattern Recog-
nition Letters. 20-14, December 1999, 1489-1498

20. Pedrycz, W. and Peters, J.F.: "Learning in fuzzy Petri nets". In: Fuzzy Petri Nets,
Cardoso, J., and Sandri, S. (eds.), Physica-Verlag, Berlin, 1998

21. Peters, J.F., Skowron, A., Suraj, Z., Ramanna, S., and Paryzek, A.: "Modelling
Real-Time Decision-Making Systems with Roughly Fuzzy Petri Nets". In: Proc. of
the 6th European Congress on Intelligent Techniques and Soft Computing (EU-
FIT'98), Aachen, Germany, Sept. 7-10, 1998, pp. 985-989

22. Peterson, J.L.: "Petri net theory and the modeling of systems". Prentice-Hall, Inc.,
Englewood Cli�s, N.J., 1981

23. Petri, C.A.: "Kommunikation mit Automaten". Schriften des IIM Nr. 2, Institut
für Instrumentelle Mathematik, Bonn, 1962. English translation: Technical Report
RADC-TR-65-377, Gri�ths Air Force Base, New York, Vol.1, Suppl. 1, 1966

24. Pinney, J.W., Westhead, D.R., and McConkey, G.A.: "Petri net representations in
systems biology". Biochemical Society Transactions 31(6), 2003, 1513-1515

25. Suraj, Z.: "Parameterised Fuzzy Petri Nets for Approximate Reasoning in De-
cision Support Systems". The First International Conference on Advanced Ma-
chine Learning Technology and Applications (AMLTA 2012), December 8-10, 2012,
Cairo, Egypt (submitted)

26. Suraj, Z. and Fryc, B.: "Timed Approximate Petri Nets". Fundamenta Informaticae
71, 2006, 83-99

27. Zadeh, L.A.: "Fuzzy sets". Information and Control 8, 1965, 338-353


