
On Parameter-Driven Generation of Algorithm Schemes

Olena Yatsenko

Institute of Software Systems of National Academy of Sciences of Ukraine,

Glushkov prosp. 40, 03187 Kyiv, Ukraine

oayat@ukr.net

Abstract. The approach to development of serial and parallel algorithms, which

is based on usage of parameter-driven generation of algorithm schemes, is

proposed. The approach uses algebras of algorithms and hyperschemes, and

also structural design grammars. Hyperschemes are parameterized

specifications that allow to receive the algorithms adapted to specific conditions

of usage. The paper also describes the developed software tools for designing

and synthesis of algorithms and programs.

Keywords: hyperscheme, regular scheme, structural design grammar, synthesis

of programs, systems of algorithmic algebras.

1 Introduction

Algebraic algorithmics (AA) is one of significant directions of computer science,

which has arisen on a joint usage of algebra, logic and algorithm schemes within the

framework of Ukrainian algebraic-cybernetic school [1, 4, 5, 8]. It formalizes the

knowledge about subject domains with the help of algebraic facilities and deals with

problems of formalization, substantiation of correctness and transformation of

algorithms. AA uses high-level specifications of programs, represented in Systems of

Algorithmic Algebras (SАА) [4, 5]. One of the essential problems of AA is to

increase the adaptability of programs to specific conditions of their use. In particular,

the problem can be solved at the expense of usage of parameter-driven generation of

algorithm specifications by means of higher level algorithms, which are called

hyperschemes [9].

In this paper the approach to generation of serial and parallel algorithms on the

basis of algebras of hyperschemes is proposed. Hyperschemes are parameterized

algorithms for solving a certain class of problems; setting specific values of

parameters and subsequent interpretation of a hyperscheme allows to receive

algorithms adapted to specific conditions of their use. Hyperschemes are adjacent to

well-known methods of transformational synthesis: term rewriting systems [3, 7],

mixed computations [2], macrogeneration [6]. The proposed approach is based on

algebraic-grammatical models, developed in work [9]. The novelty of this paper

consists in application of hyperschemes to representation of derivation algorithms in

structural design grammars [1], which are sets of rules for generation of algorithm

schemes, specified in SАА. Furthermore, this work includes the development of a

software tool for construction and interpretation of hyperschemes. The mentioned tool

is one of basic components of Integrated toolkit for Designing and Synthesis of

programs (IDS) [5]. IDS uses algebraic specifications of algorithms and applies three

interdependent forms of knowledge representation: analytical (formulae), natural

language text and visual (flow charts) [5]. The main feature of IDS consists in usage

of the method of interactive design of syntactically correct algorithms [1], which is

oriented to elimination of syntax errors during construction of algorithm schemes.

The outline of the paper is the following. Section 2 is devoted to a concept of

algebra of hypershemes and associated processes of algorithm generation. Section 3

considers structural design grammars and inference mechanisms, based on

hyperschemes. Section 4 describes software tools, developed for automation of a

process of algorithm generation. The proposed approach is illustrated on sorting and

linear algebra algorithms.

2 Algebra of Hyperschemes and Generation of Algorithms

In this section the algebra of hyperschemes (AHS) is considered, which is the

formalism that is used for parameter-driven generation of algorithms, specified in

SAA. Definition of AHS is similar to SAA, so SAA is defined first. System of

Algorithmic Algebras is a two-sorted algebra

, };,{ >Ω=< VUSAA (1)

where U is a set of logical conditions (predicates) and V is a set of operators, defined

on an information set P. P is a set of all data (input, output and intermediate), being

processed by algorithms. Each predicate from set U is a function that maps elements

of P to elements of a set {0, 1, µ}, where 0 is for false, 1 is for true and µ is for

unknown. The value µ is used to indicate that an error has occurred during the

computation of a condition [9]. The unknown state µ can be metaphorically thought

of as a sealed box containing either an unambiguously true or unambiguously false

value. The knowledge of whether any particular µ state secretly represents true or

false at any moment in time is not available. Operators from set V map information

set to itself. Ω = Ω1 ∪ Ω2 is the signature of operations consisting of a system Ω1 of

logical operations and a system Ω2 of operations of serial and parallel execution of

operators. The mentioned operations will be considered below.

Operator representations of algorithms in SAA are called regular schemes (RS).

The algorithmic language SAA/1 [1, 4, 5] is based on mentioned algebra and is used

to describe algorithms in a natural language form. The algorithms, represented in

SAA/1, are called SAA schemes.

Operators and predicates can be basic or compound. The basic operator (predicate)

is the operator (predicate), which is considered in SAA schemes as primary atomic

abstraction. The compound predicates are constructed from basic ones by logical

SAA operations [4]:

• disjunction: α ∨ β;

• conjunction: α ∧ β;

• negation: α .

Compound operators are built from elementary ones by means of operations of

serial and parallel execution operators:

• composition A * B, which is the operation of serial execution of operators A and

B (this operation can also be written as A THEN B);

• ([α] A, B) is the conditional operation that executes operator A if condition α is

true, and applies operator B otherwise (further this operation are called conditional

operation);

• {[α] A} is a while loop, which executes operator A repeatedly until condition

α is true;

• SELECT(α1 → A1, α2 → A2, …, αn → An) is the switch operation, that executes

the first operator among operators Ai, if the value of corresponding condition αi is true

and then breaks execution without checking the values of other conditions αi;

• operation A // B executes two operators in parallel;

• control point CP(α) is used to synchronize parallel processes. Each control

point is assigned with a condition α, which is false until the computation process

reaches the point and becomes true at the moment of reaching the point;

• synchronizer S(α) is also used in parallel algorithms; it delays the computation

until the value of condition α is true (this value is generally changed by some control

point).

SAA is a formal tool that can be used for solving problems of theoretical

programming, such as optimization and verification of algorithms, formalization of

semantics of programming languages etc. [1, 4, 5, 9].

Algebra of hyperschemes is also a two-sorted algebra

, };,{ >Ω′′′=< VUAHS (2)

where U ′ is a set of logical conditions (predicates) and V ′ is a set of operators;

Ω′ is a signature of operations. The set of conditions is associated with parameters,

which control the process of generation of an algorithm. The operations from

signature Ω′ are similar to SAA. The difference from SAA is that predicates from set

U ′ map elements of information set P to elements of a set of {0, 1, µ, η}, where

additional value η stands for “not computed”. The element η is used to indicate that

the value of a condition cannot be calculated due to the lack of information about

parameter values [9]. The instance of such condition is considered further in

Example 1. The truth tables for this 4-valued logic are given in [9].

Execution of operator A ∈ V ′ at a current state p ∈ P, leads to a transition to a

new state A(p) ∈ P and generation of a fragment F(A, p) of an output scheme of an

algorithm. F(A, p) is the function that specifies the generation technique for all

operations of AHS and will be considered below.

By analogy with SAA, operator representations of algorithms in AHS are called

regular hyperschemes (RHS). Each RHS A, being applied to a state р ∈ Р, generates

RS F(A, p).

The function F(A, p) for the main SAA operations was defined in paper [9].

Particularly, the composition operation A * B generates the operator C

= A * B without

changes, according to the function F(C, p) = F(A, p) * F(B, p), where p ∈ P.

The conditional operation ([α] A, B) (see the definitions of SAA operations given

above) generates the operator C

= ([α] A, B) such, that for each p ∈ P













=

=

=

=

=

 ,µ)α(if,

η;)α(if))),(,(),,()]([α[

0;)α(if),,(

;1)α(if),,(

),(

pe

ppABFpAFp

ppBF

ppAF

pCF

(3)

where α(p) is a condition; A, B are operators; e is an empty text.

According to the definition (3), the result of interpretation of the conditional

operation will be the text of operator A, if the value of condition α(p) is true. The text

of operator B is outputted in the case if the condition α(p) is false. The text of

conditional operation without changes is generated, if the value of α(p) was not

computed, and the empty text will be the result, if an error occurred during the

interpretation.

Example 1. Let us illustrate the application of AHS to transformation of a hybrid

sorting algorithm. The algorithm reads a set of input numerical arrays and calls one of

sorting sub-algorithms (insertionSort, quickSort or mergeSort) depending on the size

of input array [8]. The arrays of size n < MIN are sorted by insertionSort, the arrays of

size more than MAX are processed by quickSort and arrays getting to an interval

[MIN, MAX] are sorted by mergeSort algorithm. The regular scheme of the algorithm

is

SORTING = INIT * {[END_OF_SET] INPUT_ARRAY(A) *

* ([n <MIN] insertionSort (A, n),

([n > MAX] quickSort (A, n), mergeSort (A, n)))} ,

where INIT is an initialization operator; END_OF_SET is a condition being true if all

the arrays from the input set have been processed and false otherwise;

INPUT_ARRAY is an operator that reads the array; A is an input array and n is its size.

Let it is in advance known, that the algorithm will be applied in conditions when

the size of all input arrays is in a certain range, say, not less than MIN. Then the given

RS becomes superfluous and for its transformation we will regard it as the

hyperscheme with parameter n. At a stage of interpretation of hyperscheme

SORTING, predicate n < MIN takes value 0, whereas n > MAX takes value η (“not

computed”). The condition n > MAX cannot be computed because we do not have

enough information about the value of parameter n (we know only that n ≥ MIN).

Assuming that function F is identical on a set of all basic operators and conditions of

the hyperscheme, we will receive the reduced RS

F(SORTING, P0) = INIT * {[END_OF_SET] INPUT_ARRAY(A) *

* ([n > MAX] quickSort (A, n), mergeSort (A, n)))} ,

where Р0 is an initial state of information set.

Thus, by setting various values of parameter n (in the considered case the value

n ≥ MIN was set), it is possible to receive RS, optimum to usage conditions.

Paper [8] also describes more complicated hybrid sorting scheme, which selects an

appropriate sorting algorithm depending on size and presortedness degree of input

array. This algorithm also can be regarded as a hyperscheme.

3 Application of Hyperschemes to Representation of Derivation

Algorithms in Generative Grammars

In this section algebra of hyperschemes is applied to representation of algorithms of

inference control in structural design grammars (SDG) [1]. The approach is illustrated

on an example of linear algebra algorithm.

SDG is a set of rules for generating the algorithms, specified in SAA (see

Section 2). It is defined as a 5-tuple

G = (T, N, α, P, D) ,

where T = Σ ∪ S is a set of terminal symbols, Σ is a set of basic conditions, operators

and data objects; S is a set of separators, which are symbols of SAA operations,

brackets etc.; N is a set of non-terminal symbols (logical, operator and data object

metavariables); α ∈ N is a start symbol; P = {u
i
→ v

i
| і = 1, 2, …, k} is a set of rules;

D is a derivation control algorithm. In this work derivation control algorithm is

represented in algebra of hyperschemes.

Example 2. Let us illustrate the process of generating an algorithm scheme with

usage of SDG and AHS on a parallel matrix multiplication task. The algorithm

multiplies two rectangular matrices: NMljaA ×=)(and QNljbB ×=)(. The elements of

a resultant matrix BAcC QMlj ×== ×)(are defined according to the formula

, 1,...,0,1,...,0 ,

1

0

−=−=⋅=∑
−

=

QjMlbaс

N

k

kjlklj

where the elements of matrices are indexed beginning with zero.

In the parallel algorithm under consideration the elements of a resultant matrix are

indexed according to the rule .jNlnlj +⋅= Computations are performed by K

processors in such a way that the first processor computes the first
K

QM ⋅
 elements of

a resultant matrix, the second one processes the following
K

QM ⋅
 elements, and so on.

Thus, the initial matrix A and final matrix C are divided into horizontal blocks shown

in Fig. 1. The processor with number i multiplies block Ai by matrix B and receives

the resultant block Ci . All blocks of matrices are also indexed beginning with zero.

Fig. 1. Splitting of matrices into blocks in the parallel multiplication algorithm

The regular scheme of the parallel algorithm is

MatrixMultiplication(K) = START(K) *

* (Thread(A0, B) // Thread(A2, B) // … // Thread(AK–1, B)) *

* S(All_Threads_Completed) * FIN ,

where START(K) is the operator of initialization of matrices and preparation for

launching K parallel threads; Thread(Ai, B) is the operator, carrying out multiplication

of i-th block of matrix A by matrix B; S(All_Threads_Completed) is the synchronizer

operation (see Section 2), which delays the computation until all threads complete

their work; FIN is the final operator which outputs a resultant matrix C. The SAA

scheme detailing the compound operator Thread(Ai, B) is presented below.

Thread (Ai, B) =

 (start := M / K * i)*

* (end : = M / K * (i + 1)) *

* FOR (l) FROM (start) TO (end–1) DO

 FOR (j) FROM (0) TO (Q–1) DO

 (value : = A[l][0] * B[0][j]) *

 FOR (k) FROM (1) TO (N–1) DO

 (value : = value + A[l][k] * B[k][j])

 END OF LOOP *

 * (C[l][j] : = value)

 END OF LOOP

 END OF LOOP *

* CP(Thread_Completed(i)) ,

where CP(All_Threads_Completed) is a control point operation (see Section 2), fixing

the moment of completing the calculations in the thread with index i.

Let G1 = (T1, N1, α1, P1, D1) be a structural design grammar, intended for

generating the class of schemes MatrixMultiplication(K). The SDG generates

algorithms from the mentioned class with various number of parallel threades K

depending on the resources available. The rules of grammar G1 provide the generation

of parallel threads Thread(Ai, B) by changing the values of parameter i from 0 to K–1.

The set of rules of SDG G1 is the following:

, *)(* 1 * (0) α : 10 FINds_CompleteAll_ThreadS PRSSTARTm →

, 1 //)(1 ,0:1 PRSBAThreadPRSm →

, 3 ,… 1, 0, = at

,
)1()(

1 //),(//),(1 //),(
:

1
2

−

+→

→ +

Ki

iSTARTiSTART

PRSBAThreadBAThreadPRSBAThread
m

iii

, 2 = at

,
)2()(

),(//),(1 //),(
:

1
3

−

+→

→ +

Ki

iSTARTiSTART

BAThreadBAThreadPRSBAThread
m

iii

where PRS1 ∈ N1 is an operator nonterminal, Ai is a data nonterminal, and the rest are

terminal symbols. The rules, which are applied concurrently, are grouped into rule

sets m2 and m3.

The process of generation of the algorithm scheme according to given rules is the

following. The rule m1 forms a thread with number 0. Then the rule set m2 recursively

forms the next threades (at i = 0, 1, …, K – 3). The process completes with

application of the rule set m3 (at i = K – 2).

The hyperscheme MatrixMultHS, which represents the derivation control algorithm

for SDG G1, is given below. It was built according to the method for constructing

control algorithms for formal grammars, that was presented in [9].

MatrixMultHS = (i: = 0) * (K: = 4) *

* START(K) * PRS1 *

* S(All_Threads_Completed) * FIN,

PRS1 = SELECT

 (

[(i >= 0) ∧ (i < K–1)] →

(Thread(Ai, B) // PRS1),

[i = K–1] → Thread(Ai, B)

) * INC(i) ,

where K is a parameter of the hyperscheme (number of parallel threads); PRS1 is the

compound operator that recursively generates a sequence of threads; INC(i) is an

increment operator that adds 1 to the value of index variable i. The execution of first

three lines of the hyperscheme MatrixMultHS complies to application of rule m1 of

grammar G1. The operators START(K), Thread(Ai, B) and FIN are identical on

information set P and their performance consists in generation of the text of

corresponding operator with the current value of variables i and K. The execution

compound operator PRS1 complies with application if rules m1, m2 and m3. Setting

specific values of parameter K and subsequent interpretation of the hyperscheme

allows to receive the schemes of matrix multiplication algorithms with corresponding

number of threads.

For instance, as a result of execution of hyperscheme MatrixMultHS with value of

parameter K = 4, we will receive the following parallel regular scheme:

MatrixMultiplication(4) = START (4) *

* (Thread(A0, B) // Thread(A1, B) // Thread(A2, B) // Thread(A3, B)) *

* S(All_Threads_Completed) * FIN .

For automating the construction of hyperschemes and generation of algorithms, the

software toolkit was developed, which is considered in the following Section 4. The

toolkit also supports generation of programs.

For verifying the efficiency of the developed parallel algorithm, corresponding

multithreaded C++ program was generated. The program was executed on Intel Core

2 Quad processor (2.51 GHz). Fig. 2 shows its execution time in seconds. The

speedup when executing it on 2, 3 and 4 processors was 2; 2.9 and 3.9 accordingly.

Fig. 2. Execution time of the parallel matrix multiplication program on 4-core

processor; the size of input matrices is 1000 × 1000 elements

4 The Integrated Toolkit for Designing and Synthesis of Programs

The developed software tool (IDS) [1, 5] is based on usage of algebraic facilities,

considered in Section 2, and it is intended for interactive constructing of algorithms

and hyperschemes and generating of programs in target programming languages.

Algorithms are constructed as syntactically correct programs ensuring the syntactical

regularity of schemes. IDS integrates three forms of representation of algorithms at

their designing: regular schemes, SAA schemes (textual representation of SAA

formulae) and flow graphs [5]. The advantage of using textual representation of SAA

schemes is the ability to describe algorithms in a form suitable for a human

facilitating achievement of demanded quality of programs. At present time IDS

supports the generation of programs in Java and С++ languages.

IDS toolkit consists of the following components (Fig. 3):

• the Constructor, intended for interactive designing of syntactically correct serial

and concurrent algorithm schemes and generation of programs;

• flowgraph editor;

• interactive transformer of algorithm schemes based on application of algebraic

equalities;

• generator of SAA schemes according to hyper-schemes;

• database, containing the description of SAA operations, basic operators and

predicates in three forms mentioned above, and also their program implementations.

Fig. 3. The architecture of IDS toolkit

The Constructor of IDS toolkit is intended for top-down designing of algorithm

schemes and hyperschemes by the superposition of SAA language constructs, which a

user chooses from the list and which are considered as reusable components for

construction of algorithms. The design process is represented by a tree of an

algorithm. Fig. 4 shows a screenshot of the Constructor window with a matrix

multiplication hyperscheme, that was considered in Section 3. The window contains

three subwindows: the left upper subwindow includes a list of SAA operations, the

subwindow on the right side contains a tree of an algorithm, and the third subwindow

shows the text of SAA scheme.

Fig. 4. The main window of the Constructor

On each step of the design process the Сonstructor allows a user to select only

those operations, the insertion of which into the algorithm tree does not break the

syntactical correctness of the scheme. The tree of an algorithm is then used for

automatic generation of SAA scheme text, a flow graph and the program code in a

target programming language. IDS was used for generation of multithreaded and

message-passing parallel programs [1]; the application domain included sorting,

search and linear algebra tasks. At present IDS does not have the tools for proving the

correctness of program generation and a resultant code has to be verified by a user.

5 Conclusion

The approach to development of serial and parallel algorithms on the basis of usage of

parameter-driven generation of algorithm schemes is proposed. The approach is based

on algebras of algorithms and hyperschemes, and also structural design grammars.

Hyperschemes are parameterized specifications that allow to receive the algorithms

adapted to specific conditions of their use. The advantage of using algorithm schemes

is that they are independent of a specific programming language and can be translated

to an arbitrary language. The other advantage is that developed software tools are

oriented on construction of algorithms and hyperschemes in the mode of interactive

constructing, providing their syntactic regularity.

References

1. Andon, F.I., Doroshenko, A.Y., Tseytlin, G.O., Yatsenko, O.A.: Algebra-Algorithmic

Models and Methods of Parallel Programming. Akademperiodika, Kyiv (2007) (in Russian)

2. Bulyonkov, M.: Mixed Computation and Compilation: New Approaches to Old Problems.

Theor. Comput. Sci., Vol. 71, pp. 209–226 (1990)

3. Doroshenko, A., Shevchenko, R.: A Rewriting Framework for Rule-Based Programming

Dynamic Applications, Fundamenta Informaticae, Vol. 72, N1–3, pp. 95–108 (2006)

4. Doroshenko, A., Tseytlin, G., Yatsenko, O., Zachariya, L.: A Theory of Clones and

Formalized Design of Programs. In Proceedings of the International Workshop on

Concurrency, Specification and Programming (CS&P’2006), pp. 328–339 (2006)

5. Doroshenko, A., Tseytlin, G., Yatsenko, O., Zachariya, L.: Intensional Aspects of Algebra

of Algorithmics. In Proceedings of the International Workshop on Concurrency,

Specification and Programming (CS&P’2007)

6. Dybvig, R.K: From Macrogeneration to Syntactic Abstraction. Higher-Order and Symbolic

Computation, Vol. 13, pp. 57–63 (2000)

7. Mayr, R., Nipkow, T: High Order Rewrite Systems and Their Confluence. Theoretical

Computer Science, Vol. 192, pp. 3–29 (1998)

8. Yatsenko, O: On Application of Machine Learning for Development of Adaptive Sorting

Programs in Algebra of Algorithms. In Proceedings of the International Workshop on

Concurrency, Specification and Programming (CS&P’2011), pp. 577–588 (2011)

9. Yushchenko, E.L., Tseitlin, G.E., Galushka A.V.: Algebraic-Grammatical Specifications

and Synthesis of Structured Program Schemas. Cybernetics and Systems Analysis, Vol. 25,

N 6, pp. 713–727 (1989)

