
Aspect-Oriented Language Mechanisms for
Component Binding

Kardelen Hatun, Christoph Bockisch, and Mehmet Akşit

TRESE, University of Twente
7500AE Enschede
The Netherlands

http://www.utwente.nl/ewi/trese/
{hatunk,c.m.bockisch,aksit}@ewi.utwente.nl

Abstract. Domain Specific Languages (DSLs) are programming lan-
guages customized for a problem/solution domain, which allow develop-
ment of software modules in high-level specifications. Code generation is
a common practice for making DSL programs executable: A DSL specifi-
cation is transformed to a functionally equivalent GPL (general-purpose
programing language) representation. Integrating the module generated
from a DSL specification to a base system poses a challenge, especially
in a case where the DSL and the base system are developed indepen-
dently. In this paper we describe the problem of integrating domain-
specific modules to a system non-intrusively and promote loose coupling
between these to allow software evolution. We present our on-going work
on aspect-oriented language mechanisms for defining object selectors and
object adapters as a solution to this problem.

1 Introduction

Complex systems are created by assembling software components of various types
and functions. Reuse is essential and components created for a system are re-
quired to continue working after the system has evolved. Some components may
be domain-specific, meaning their structure and functionality can be defined
using the fundamental concepts of the relevant domains. A domain-specific lan-
guage (DSL) provides expressive power over a particular domain. It allows soft-
ware development with high-level specifications; if general-purpose programming
languages are used, development may take a considerable programming effort.

The specifications written in a DSL can be processed in various ways. These
are comprehensively described in [4] and [3]. Generative programming [2] is one
of the processing options and has become highly popular with the emergence
of user-friendly language workbenches. Most language workbenches provide a
means to develop a compiler for the DSL, facilitating code generation in general-
purpose languages. (A comparison matrix for language workbenches can be found
in [1].)

In this paper we focus on the integration of components into target systems.
“Component” is a very general concept and it can be realized in different forms,

http://www.utwente.nl/ewi/trese/

2

depending on the system. We particularly focus on a subset of components,
domain-specific components, which are instances of domain-specific meta-models.
The component structure is described with a DSL and the semantics are em-
bedded into code generation templates, which are used to generate a component
that is tailored towards a base system’s requirements.

Integrating a generated component into a system poses three main challenges.
(1) When adding unforeseen functionality to a system, no explicit hooks exist for
attaching the generated component. In this case it may be necessary to modify
the generated code, the system code or both to make the connection, which
will expose the system developer to the implementation details of the generated
code. (2) The interfaces of the generated component and the target system should
be compatible to work together, which is generally not the case. Then one of
the interfaces should be adapted, possibly by modifying the system’s or the
component’s implementation or their type-system. (3) When the component or
the target system evolves, the links between them must be re-established.

Current aspect-oriented languages offer mechanisms to modularly implement
solutions for the first challenge. It can be solved by defining pointcuts that are
used as hooks to a system. The second challenge is our main focus. Existing
AO-languages offer limited mechanisms for implementing adapters between in-
terfaces. AspectJ inter-type declarations can be used to make system classes to
implement appropriate interfaces, however this approach is type-invasive. Cae-
sarJ offers a more declarative approach with wrappers, but their instantiation
requires pointcut declarations or they should be explicitly instantiated in the
base system. The links mentioned in the third challenge are the adapter imple-
mentations mentioned in the second challenge and they represent the binding
between two components. However current AO languages do not offer a declar-
ative way for describing such a binding; an imperative programming language
will lead to less readable and less maintainable implementation, which is fragile
against software evolution.

2 Approach

In order to overcome the shortcomings of the existing approaches we intend to
design a declarative way of implementing object adapters which is used together
with a specialized pointcut for selecting objects. The object adapter pattern is
common practice for binding two components that have incompatible interfaces.
Our approach is aspect-oriented and it will provide the means to non-intrusively
define and instantiate object adapters, inside aspects. These adapters represent
links between the component and the system; their declarative design requires
a declarative way of selecting the adaptee objects.

In order to select objects to be adapted, we have designed a new pointcut
mechanism called instance pointcut which selects sets of objects based on the
execution history. An instance pointcut definition consists of three parts: an
identifier, a type which is the upper bound for all objects in the selected set, and a
specification of relevant objects. The specification utilizes pointcut expressions to

3

select events that define the begin and end of life-cycle phases and to expose the
object. At these events, an object is added or removed from the set representing
the instance pointcut. It is possible to access all objects currently selected by an
instance pointcut and to be notified, when an object is added or removed. New
instance pointcuts can be derived from existing ones in several ways. Firstly, a
new instance pointcut can be derived from another one by restricting the type
of selected objects. Secondly, a subset or a super-set of an existing instance
pointcut can be declared whereby the specification of the life-cycle phase is
either narrowed down or broadened. Finally, instance pointcut declarations can
be composed arbitrarily by means of boolean operators.

Adapter declarations refer to the sets selected by instance pointcuts, and au-
tomatically instantiate adapters for each object in the referred set. Unlike inter-
type declarations, adapter declarations are not type invasive; they are compiled
to the object adapter pattern and they do not change the type hierarchy of the
contained object. They also do not require explicit instantiations.

(a) The shapes hierarchy (b) ShapeInfo class that requires two unsup-
ported interfaces

Fig. 1: Incompatible interfaces: Shape and ShapeInfo

The header of an adapter declaration consists of an identifier, the list of inter-
faces the adapter implements and an instance pointcut reference which contains
the adaptee objects. In the body of an adapter declaration implementation of the
interface methods is provided. In Figure 1a a Shape hierarchy and the interfaces
offered by the classes in this hierarchy is shown. The ShapeInfo class uses Sha-
peArea and ShapeCircumference interfaces to query existing Shapes (Figure 1b).
However none of the classes in the shapes hierarchy implements these interfaces,
hence they should be adapted. Assume that there is a class called CircleCreator
which has two methods: createLargeCircle and createSmallCircle. We can define
an instance pointcut called largeCircles which selects the set of Circle objects
that are created by the createLargeCircle method. Here instance pointcuts give
us expressive power over selecting specific objects as adaptees. Listing 1 shows
an example of an adapter declaration. The name of the adapter is CircleAdapter
and it implements the interfaces defined in the square brackets; CircleAdapter
adapts the objects selected by the circles instance pointcut. In the body of the
adapter the implementations of the two declared interfaces are provided. The
adaptee keyword refers to an object in the circles set.

4

1 dec l a re adapter : C i r c l eAd ap t e r [ShapeArea , ⤦
ShapeC i r cumfe rence] adapts l a r g e C i r c l e s

2 {
3 pub l i c double getArea ()
4 {
5 re tu rn Math . pow(adaptee . g e tRad iu s () , 2) *Math . PI ;
6 }
7 pub l i c double ge tC i r c um f e r en c e ()
8 {
9 re tu rn 2* adaptee . g e tRad iu s () *Math . PI ;

10 }
11 }

Listing 1: The adapter declaration for Circle objects

3 Compilation and Run-time Support

In our prototype implementation instance pointcuts are compiled to AspectJ
and Java code. Roughly, an instance pointcut is transformed to several AspectJ
pointcuts, advice declarations, a set structure and methods for altering this
set. Adapter declarations will also be compiled to AspectJ. According to our
initial analysis an adapter declaration will map to a Java class for the adapter
and advice bodies for initializing adapters. These advice bodies will reference
the pointcuts generated from the instance pointcut which is referenced by the
adapter declaration.

We intend to provide run-time support for retrieving adapter instances.
Adapters are automatically initialized when an adaptee object satisfying the
referenced instance pointcut’s conditions become available. These adapter in-
stances can be indexed and accessed through a run-time library. To do this, we
have the requirement that the results of a retrieval will always be non-ambiguous
e.g. if a query to retrieve a single adapter instance, matches two adapters, then
there should be appropriate resolution mechanisms or user feedback to overcome
the issue.

References

1. Language workbench competition comparison matrix (2011), www.
languageworkbenches.net

2. Czarnecki, K.: Overview of generative software development. In: Unconventional
Programming Paradigms, Lecture Notes in Computer Science, vol. 3566, pp. 97–97.
Springer Berlin , Heidelberg (2005)

3. Fowler, M., Parsons, R.: Domain-specific languages. Addison-Wesley (2010)
4. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific

languages. ACM Comput. Surv. 37, 316–344 (December 2005)

www.languageworkbenches.net
www.languageworkbenches.net

	Aspect-Oriented Language Mechanisms for Component Binding
	Introduction
	Approach
	Compilation and Run-time Support

