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ABSTRACT
To encourage data providers to publish a maximum of data
on the Web, we propose a mechanism to define lightweight
access control policies for graph stores. Influenced by the
steep growth of the mobile web, our Linked Data access
control framework features context-aware control policies.
The proposed framework is exclusively grounded on standard
Semantic Web languages. The framework architecture is
designed as a pluggable filter for generic SPARQL endpoints,
and it has been evaluated on a test dataset.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods; K.6.5 [Management of Com-
puting and Information Systems]: Security and Protec-
tion

General Terms
Design, Algorithms

Keywords
Linked Data, Ubiquitous Web, Access Control

1. INTRODUCTION
Denying or allowing access to a set of resources or services is
a common problem in a large number of mobile computing
fields, from location-based services to personal area networks.
As ubiquitous connectivity spreads, access control has been
enhanced with location awareness and, to some extent, other
contextual dimensions such as the proximity of nearby peo-
ple or objects. The open nature of current Web of Data
information and the consumption of web resources on the go
may give providers the impression that their content is not
safe, thus preventing further publication of datasets, at the
expense of the growth of the Web of Data itself [14]. Access
control is therefore necessary, and context must be part of
the access control evaluation, given that such Ubiquitous
Web of Data enables new linked data fruition scenarios.

Copyright is held by the author/owner(s).
LDOW2012 April 16, 2012, Lyon, France.

In this paper we address the problem of defining an access
control framework for querying Web of Data servers from
mobile environments. Let us consider a content sharing ser-
vice compliant with the Web of Data: Alice uploads some
pictures together with the reviews of a rock concert to the
platform. She prefers to share these media to everyone but
her boss. Since her colleagues might view the content at
work with their smartphones, moving from office to office, she
decides that nobody is allowed to access the shared media
from a mobile device if the boss is in the same room.
Such application scenario raises three major challenges:
(i) how to define a fine-grained access control model for
the Web of Data, (ii) how to model context-aware, mo-
bile consumption of such information, and (iii) how to inte-
grate mobile context in the access control model, providing
an evaluation of the overall framework. We answer these
questions adopting exclusively Web of Data languages and
reusing, when possible, already existing proposals, to avoid
re-inventing the wheel.
First, we describe the S4AC1 vocabulary, a lightweight on-
tology which defines fine-grained access control policies for
RDF data [23]. We adopt the PRISSMA2 vocabulary to model
the mobile context in which linked data consumption takes
place. Third, we combine the access control model and the
contextual vocabulary into context-aware access conditions
defined by data providers. Prototype evaluation shows that
contextual access control comes with a cost, but performance
still remains acceptable for most Web of Data applications.
The main advantage of our proposal is to provide a pluggable
and easy-to-integrate filter for generic SPARQL endpoints,
without modifying the endpoint itself. We rely on W3C rec-
ommendations only, as we do not introduce any new language
or technology. For the time being, our framework assumes
the trustworthiness of the information sent by the mobile
consumer, including data describing context (e.g. location,
device features, etc). Our approach focuses only on SPARQL
data servers. Other Web of Data access strategies, such as
dereferencing resources, are out of the scope of this work.
The reminder of the paper is organized as follows. Sec-
tion 2 compares the related work to the proposed framework.
Section 3 introduces the mobile context aspects. Section 4
describes the access control model, while the access enforce-
ment algorithm is detailed in Section 5. Section 6 shows the
experimental results of the prototype implementation of the
framework.

1http://ns.inria.fr/s4ac/
2http://ns.inria.fr/prissma/



2. RELATED WORK
The Web Access Control vocabulary (WAC3) allows data
providers to specify access control lists defined at RDF doc-
ument granularity (we grant access to specific RDF data,
e.g. a few named graphs). Sacco and Passant [20] present a
Privacy Preference Ontology (PPO4) to express fine-grained
access control policies to an RDF file. The consumer asks for
a particular RDF file, e.g., a FOAF profile and the system
selects and returns the accessible part of the file. They do
not propose a filter for generic SPARQL endpoints, nor they
consider contextual information. Muhleisen et al. [19] present
a policy-enabled server for Linked Data called PeLDS, based
on SWRL5. They deal only with Read and Update actions
and they do not consider contextual information. Giunchiglia
et al. [13] propose a Relation Based Access Control model
(RelBAC ). They require to specify who can access the data,
while we and [20] specify the attributes the consumer must
satisfy. Finin et al. [10] study the relationship between OWL
and Role Based Access Control (RBAC). To go beyond
RBAC, they consider Attribute Based Access Control where,
similarly to our proposal, access constraints are based on
general attributes of an action. Hollenbach et al. [15] present
a system where providers control the access to RDF docu-
ments using WAC, but they do not rely on the consumer’s
context. Abel et al. [1] present a model of context-dependent
access control at triple level. Policies are not expressed
using Semantic Web languages, instead they introduce an
high-level syntax mapped to existing policy languages, en-
forcing access control as a layer on top of RDF stores. They
pre-evaluate the contextual conditions before expanding the
queries sent to the database. Shen and Cheng [21] propose
a context-based access control model using Semantic Web
technologies, where policies are expressed using SWRL. They
consider four types of contexts: subject (our User and De-
vice dimensions), object, transaction (our Access Privilege)
and environment (our Environment dimension). They do
not apply their model to the Web of Data. Covington et
al. [7] use the notion of role proposed by RBAC to capture
the context of the environment in which the access requests
are made. Environmental roles are defined using a prolog-
like logical language for expressing policies. Hulsebosch et
al. [16] propose context-sensitive verification methods aimed
at checking the authenticity of the user’s information. Cup-
pens and Cuppens-Boulahia [8] propose an Organization
Based Access Control (OrBAC) model where contextual con-
ditions have to be satisfied to activate a security rule. They
introduce a context algebra whereas we rely on Semantic
Web languages. Moreover, we deal with a wider range of
contextual dimensions. Corradi et al. [5] present UbiCOSM,
a security middleware adopting context for policy specifica-
tion and enforcement. They distinguish between physical
and logical contexts while we consider additional contextual
dimensions, e.g., the device. Policies are expressed at a
high level of abstraction in terms of RDF metadata. Their
approach does not apply to the Web of Data. Toninelli et
al. [22] follow two design guidelines: context-awareness to
control resource access and semantic technologies for context
and policy specification. They adopt spontaneous coalitions
as an application scenario, while we deal with the Web of

3http://www.w3.org/wiki/WebAccessControl
4http://vocab.deri.ie/ppo
5http://www.w3.org/Submission/SWRL/

Data. Moreover, the semantic technology adopted differs, i.e.,
rule-based approach with description logic in their case and
SPARQL 1.1 in our proposal. Their contextual information
does not include the device dimension. Finally, their solu-
tion is not meant to be a pluggable framework for SPARQL
endpoints. Flouris et al. [11] present a fine-grained access
control framework on top of RDF repositories. Both their
framework and our proposal are repository-independent. On
the other hand, their solution does not consider the contex-
tual dimension and they propose a high level specification
language to be translated into a SPARQL/SerQL/SQL query
to enforce the policy. They focus only on Read operations.

3. HANDLING CONTEXT WITH PRISSMA
Whenever a mobile application needs to access some re-
sources, the surrounding context (e.g. the physical environ-
ment) must take part into the access evaluation procedure.
SPARQL queries must be associated with contextual data
for access evaluation, according to a proper model.
The choice and the design of a context model necessarily need
a context definition first: we agree on the widely-accepted
proposal by Dey [9]. More specifically, we rely on the work
by Fonseca et al. 6, that we adopt as a foundation for our
proposal. The mobile context is seen as an encompassing
term, an information space defined as the sum of three differ-
ent dimensions: the mobile User model, the Device features
and the Environment in which the action is performed.
Our Web of Data scenario favours the adoption of an ontology-
based model. As pointed out by Korpipää and Mäntyjärvi [17],
an ontological approach leads to simple and extensible mod-
els. This is a common point with the Web of Data rationale:
linked data on the Web heavily relies on lightweight vocabu-
laries under the open world assumption (i.e. new ontologies
can be added at anytime about anything) and model ex-
change and re-use are welcomed and promoted at Web scale.
A large number of ontology-based context models relying
on Dey’s definition have been proposed in the latter years,
as summarized by Baldauf et al. [2] (e.g. CoOL, SOUPA,
COBRA-ONT). These works are grounded on RDF and
provide in-depth context expressivity, but for chronological
reasons they are far from the Web of Data best practices
(e.g. no lightweight approach, limited interlinking with other
vocabularies), thus discouraging the adoption and re-use in
the Web community.
Our work targets access control in the mobile Web of Data:
we need therefore a context model compliant with the Web of
Data paradigm. Our context-aware access control framework
adopts PRISSMA, a lightweight vocabulary originally designed
for context-aware adaptation of RDF data [6]. PRISSMA pro-
vides classes and properties to model core mobile context
concepts, but is not meant to deliver yet another mobile con-
textual model: instead, well-known Web of Data vocabular-
ies and recent W3C recommendations are reused (Figure 1).
Moreover, it does not provide a comprehensive, exhaustive
context representation: the approach is to delegate refine-
ments and extensions to domain specialists. The overall
context is modelled by the class prissma:Context and is
determined by the following dimensions:

prissma:User represents the target mobile user associated
with a prissma:Context and consists in a foaf:Person sub-

6http://bit.ly/XGR-mbui
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Figure 1: The model at a glance (grey boxes represent core classes).

class. To provide more flexibility, the class can be used to
model both user stereotypes and specific users.

prissma:Device represents the mobile device on which Web
of Data resource consumption takes place, enabling device-
specific access control. The class inherits from W3C Delivery
Context Ontology 7 dcn:Device that provides an extensible
and fine-grained model for mobile device features.

prissma:Environment models the physical context in which
the Web of Data resource consumption takes place. Different
dimensions are involved in modelling the surrounding envi-
ronment, delegating refinements and extensions to domain
specialists. Location is modelled with the notion of Point of
Interest (POI). The prissma:POI class consists in a simplified,
RDFized version of the W3C Point of Interest Core specifica-
tions8. Each prissma:POI consists of a geo:SpatialThing9

and can be associated with a given geo:Point cou-
pled with a physical radius via the prissma:radius

property. The properties prissma:poiCategory and
prissma:poiLabel are used to assign a category and a la-
bel. Time is modelled extending the time:TemporalEntity

class10. The prissma:descriptivePeriod property as-
sociates a description to each temporal entity (e.g.
http://dbpedia.org/resource/Evening). Other dimen-
sions are considered: the motion property associates
any given high-level representation of motion to a
prissma:Environment. The environmental proximity of a
generic object can trigger different resource representations:
nearby objects are associated with the Environment with the
prissma:nearbyEntity property. The prissma:Activity

class is a placemark aimed at connecting third-party solu-
tions focused on inferring high-level representations of user
actions (e.g.‘running’, ‘driving’, ‘shopping’, etc).

7http://bit.ly/dc-ontology
8http://www.w3.org/TR/poi-core/
9http://www.w3.org/2003/01/geo/wgs84_pos

10http://www.w3.org/TR/owl-time

Example 1. Figure 2 visualizes a sample mobile context
featuring all the dimensions described above. The user, Bob,
knows Alice and is currently at work, near his and Alice’s
boss. Bob is using an Android tablet with touch display and
is not moving.

Other context-related issues need to be considered beyond
context-model definition, such as context fetch, context trust-
worthiness and privacy. PRISSMA supports both raw context
data fetched directly from mobile sensors (e.g. GPS location,
mobile features) and refined information processed on board
or by third-party, server-side services (e.g. POI resolution
or user activity detection). The present paper assumes that
context data is fetched and pre-processed beforehand.
The trustworthiness of contextual information sent by mo-
bile consumers should not be taken for granted. The
prissma:User’s identity needs to be certified: this is an open
research area in the Web, and initiatives such as WebID11

specifically deal with this issue. Hulsebosch et al. [16] pro-
vide a survey of context verification techniques (e.g. heuris-
tics relying on context history, collaborative authenticity
checks). A promising approach is mentioned in Kulkarni
and Tripathi [18], where context sensors are authenticated
beforehand by a trusted party. We plan to tackle the issue
of context-verification in future work.
Context is sent to the data server along with the client query
for access evaluation (see Section 5 for details). Privacy
concerns arise while dealing with mobile user context. We
are aware that sensible data such as current location must be
handled with a privacy-preserving mechanism. In a previous
work, the myCampus experience [12], we deal with access
control and obfuscation rules for tracking mobile users. In
the present proposition, we do not address this issue, nor the
problem of context integrity.

11http://www.w3.org/2005/Incubator/webid/spec/



@prefix : <http://example/contextgraphs/>
[other prefixes omitted]
:bobCtx{
:ctx1 a prissma:Context; 
        prissma:user :usr1;
        prissma:device :dev1; 
        prissma:environment :env1.

:usr1 a prissma:User; 
        foaf:name "Bob";
        foaf:knows ex:alice#me.

:dev1 a prissma:Device; 
        hard:deviceHardware :dev1hw;
        soft:deviceSoftware :dev1sw. 
:dev1hw a hard:DeviceHardware;
          dcn:display hard:TactileDisplay. 
:dev1sw a soft:DeviceSoftware;
          soft:operatingSystem :dev1os. 
:dev1os a soft:OperatingSystem;
          common:name "Android".

:env1 a prissma:Environment; 
        prissma:motion "no";
        prissma:nearbyEntity :ACME_boss#me;
        prissma:currentPOI :ACMEoffice. 
:ACMEoffice a prissma:POI;
              prissma:poiCategory example:Office; 
              prissma:poiLabel example:ACMECorp.
}

THE CONSUMER'S
CONTEXT

THE USER DIMENSION

THE DEVICE DIMENSION

THE ENVIRONMENT 
DIMENSION 

Figure 2: Bob’s sample mobile context in TriG notation.

4. WEB OF DATA ACCESS CONTROL
In this section, we present our access control model and we
show how it is linked to the PRISSMA context vocabulary
presented in Section 3. Our access control model adopts the
granularity of named graphs [3], thus supporting fine-grained
access control policies, including the triple level. We choose
to rely on named graphs to not depend on documents (one
document can serialize several named graphs, one named
graph can be split over several documents, and not all graphs
come from documents). The named graph specification per-
mits to organize the RDF content of a dataset in multiple
graphs identified by given URIs12.
The model is grounded on the S4AC ontology (Figure 1). Our
access control model is integrated with lightweight ontologies
adopted in the Social Web and the Web of Data. In par-
ticular, S4AC reuses concepts from SIOC13, SKOS14, WAC,
SPIN15 and Dublin Core16.
The main component of the S4AC model is the Access Policy,
as presented in Definition 1. Roughly, an Access Policy de-
fines the constraints that must be satisfied to access a given
named graph or a set of named graphs. If the Access Policy
is satisfied the data consumer is allowed to access the data.
Otherwise, the access is denied. The constraints specified
by the Access Policies may concern the data consumer, the
device, the environment, or any given combination of these
dimensions (see Section 3).

Definition 1. (Access Policy) An Access Policy (P ) is a
tuple of the form P = 〈ACS,AP, S,R,AEC〉 where (i) ACS
is a set of Access Conditions to satisfy, (ii) AP is an Access
Privilege, (iii) S is the subject of the set of resources to
be protected by P , (iv) R is the (set of) resource(s) to
be protected by P , and (v) AEC is the Access Evaluation
Context of P .

12The discussion about the use of named graphs in RDF 1.1
can be found at http://www.w3.org/TR/rdf11-concepts

13http://rdfs.org/sioc/spec
14http://www.w3.org/TR/skos-reference
15http://spinrdf.org
16http://dublincore.org/documents/dcmi-terms

An Access Condition, as defined in Definition 2, expresses
a constraint which needs to be verified in order to have the
Access Policy satisfied.

Definition 2. (Access Condition) An Access Condition
(AC) is a condition which tests whether or not a query
pattern has a solution.

In the S4AC model, we express Access Conditions as SPARQL
1.1 ASK queries. Note that no information is returned about
the possible query solutions, just whether or not a solution
exists.

Definition 3. (Access Condition verification) If the query
pattern has a solution (i.e., the ASK query returns true), then
the Access Condition is said to be verified. If the query
pattern has no solution (i.e., the ASK query returns false),
then the Access Condition is said not to be verified.

Each Access Policy P is composed by a set of Access Condi-
tions, as defined in Definition 4.

Definition 4. (Access Condition Set) An Access Condition
Set (ACS) is a set of access conditions of the form ACS =
{AC1, AC2, . . . , ACn}.

Roughly, the verification of an Access Condition Set returns a
true/false answer. We consider two standard ways to provide
such an evaluation: conjunctively and disjunctively.

Definition 5. (Conjunctive Access Condition Set) A
Conjunctive Access Condition Set (CACS) is a log-
ical conjunction of Access Conditions of the form
CACS = AC1 ∧AC2 ∧ . . . ∧ACn.

Definition 6. (Conjunctive ACS evaluation) A CACS is
verified if and only if every contained Access Condition is
verified.

Definition 7. (Disjunctive Access Condition Set) A
Disjunctive Access Condition Set (DACS) is a log-
ical disjunction of Access Conditions of the form
DACS = AC1 ∨AC2 ∨ . . . ∨ACn.

Definition 8. (Disjunctive ACS evaluation) A DACS is
verified if and only if at least one of the contained Access
Conditions is verified.

We introduce the ACS, instead of using for instance the
SPARQL UNION clause inside the ASK, because the idea is
to define basic ACs with a simple and focused goal to allow
their reuse by users without a SPARQL background.
The second component of the Access Policy is the Access
Privilege. The privilege specifies the kind of operation the
data consumer is allowed to perform on the resource(s) pro-
tected by the Access Policy.

Definition 9. (Access Privilege) An Access Privilege (AP )
is a set of allowed operations on the protected resources of
the form AP = {Create,Read, Update,Delete}.

We model the Access Privileges as four classes of operations
to keep a close relationship with CRUD-oriented access con-
trol systems, allowing a finer-grained access control beyond



simple read/write privileges. Moreover, we relate the four
privilege classes to SPARQL 1.1 query and update language
primitives through the SPIN ontology, which models the
SPARQL primitives as SPIN classes. We show how this
matching is actually used in Section 5.
As previously explained, policies protect data at named
graph level. We offer two different ways of specifying the
protected object: the provider may target one or more spe-
cific named graphs, or a set of named graphs associated
with a common subject. The former is achieved by pro-
viding the URI(s) of the named graph(s) to protect using
the s4ac:appliesTo property. The latter is implemented
by listing the subjects of the named graphs to protect us-
ing the property dcterms:subject. The assumption here
is that named graphs have been previously annotated with
such metadata. Summarizing, both S and R represent the
data to protect, but R specifies the URI(s) of the named
graphs, while S specifies the subject of the graphs (e.g., the
policy protects the named graphs whose subject is Concert,
http://dbpedia.org/resource/Concert).
Finally, the Access Policy is associated with an Access Eval-
uation Context. The latter provides an explicit link between
the policy and the actual context data (in the case of the
mobile context it is modelled with PRISSMA) that will be used
to evaluate the Access Policy.

Definition 10. (Access Evaluation Context) An Ac-
cess Evaluation Context (AEC) is a list of predeter-
mined bound variables of the form AEC = (〈var1, val1〉,
〈var2, val2〉, . . . , 〈varn, valn〉).

In this paper, we focus on the mobile context, thus the Ac-
cess Evaluation Context list is composed only by a couple
AEC = (〈ctx, URIctx〉). We map therefore the variable ctx,
used in the policy’s Access Conditions, to the URI identifying
the actual mobile context in which the SPARQL query has
been performed. More specifically, we choose to implement
the Access Evaluation Context as a SPARQL 1.1 BINDINGS

clause to constrain the ASK evaluation, i.e. BINDINGS ?ctx

{(URIctx)}. However, the same result can be obtained by
binding directly the variable ?ctx to the URI of the contex-
tual graph.
The semantics of our Access Control Policies is mirrored in
the semantics of the SPARQL language, in particular con-
cerning the ASK query and the BINDINGS clause. The result
of the verification of each access condition is composed, in
case of multiple conditions, conjunctively or disjunctively
and this combination provides the overall result of the policy
evaluation. The Access Privilege and the resource to protect
are components of the policy which do not concur to its
verification.

Conflicts among policies might occur if the data provider
uses Access Conditions with contrasting FILTER clauses. For
instance, it is possible to define positive and negative state-
ments such as ASK{FILTER(?u=<http://example#bob>)} and
ASK{FILTER(!(?u=<http://example#bob>))}. If these two Ac-
cess Conditions are applied to the same data, a logical conflict
arises. This issue is handled in the framework by evaluating
policies applied to a resource in a disjunctive way. We expect
to add a mechanism to prevent the insertion of conflicting
policies as a future work.

Example 2. Let us consider the named graph :al-

:alice_reviews {
ex:29900 a bibo:Article;

dcterms:title "A great festival";
dcterms:date "2011";
dcterms:creator example:alice#me;
bibo:abstract "Really enjoyed Coldplay".

ex:29655 a bibo:Article;
dcterms:title "Disappointed";
dcterms:date "2010";
dcterms:creator example:alice#me;
bibo:abstract "Not up to the standards".

}

Figure 3: The named graph :alice_reviews, in TriG syntax.
The graph contains the concert reviews authored by Alice.

:policy1 a s4ac:AccessPolicy; 
           s4ac:appliesTo :alice_reviews; 
           s4ac:hasAccessPrivilege [a s4ac:Read];
           s4ac:hasAccessConditionSet :acs1.

:acs1 a s4ac:AccessConditionSet; 
        s4ac:ConjunctiveAccessConditionSet;
        s4ac:hasAccessCondition :ac1,:ac2.

:ac1 a s4ac:AccessCondition; 
       s4ac:hasQueryAsk
       """ASK {?context a prissma:Context. 
               ?context prissma:user ?u. 
               ?u foaf:knows ex:alice#me.}""".

:ac2 a s4ac:AccessCondition; 
       s4ac:hasQueryAsk
       """ASK {?context a prissma:Context. 
               ?context prissma:environment ?env. 
               ?env prissma:based_near ?p. 
               FILTER (!(?p=ex:ACME_boss#me))}""".

ACCESS POLICY
RESOURCE TO PROTECT

ACCESS PRIVILEGE

ACCESS CONDITIONS
TO VERIFY

Figure 4: The Access Policy protecting :alice_reviews

ice_reviews whose content is shown in Figure 3. We now
present an example of Access Policy with a conjunctive Ac-
cess Condition Set associated with a Read privilege (Figure 4).
The policy protects the named graph :alice_reviews and
allows the access to the named graph only if the consumer
(i) knows Alice, and (ii) is not located near Alice’s boss.

Policy validation can be addressed in two different ways.
First, the SPIN vocabulary can be used to express the literal
representing the ASK query as RDF statements. On the other
hand, we can perform a two-step validation, combining RDF
validation for the policy and SPARQL validation for the
literals of s4ac:hasQueryAsk, i.e. the ASK queries.

5. CONTROL ENFORCEMENT
Our Access Control Manager is designed as a pluggable
component for SPARQL endpoints (Figure 5). The access
control flow is described below:

1. the mobile consumer queries the SPARQL endpoint to
access the content. At the same time, contextual infor-
mation is sent with the query and saved as a named
graph using SPARQL 1.1 update language statements.
Each time a context element is added we use an IN-

SERT DATA, while we rely on a DELETE/INSERT when
the contextual information is already stored and has to
be updated. Summarizing, the mobile client sends two
SPARQL queries: the first is the client query aimed at
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Figure 5: The access control framework architecture.

the datastore, the second provides contextual informa-
tion (like the one visualized in Figure 2).

2. the client query is filtered by the Access Control Man-
ager instead of being directly executed on the SPARQL
endpoint.

3. the Access Control Manager selects the set of policies
affecting the client query and after their evaluation
returns the set of named graphs the consumer is granted
access to.

4. the client query is executed only on the accessible
named graphs.

5. the result of the query is returned to the consumer.

The aim of the Access Control Manager is twofold: it first
selects the Access Policies to assess and it verifies the set of
Access Conditions included in the selected policies to grant
or not the access. We describe the two algorithms to protect
the access to the data (Figure 8).

Algorithm 1 is the main procedure for the execution of a
query with access enforcement. The input of the algorithm
is the client query Q and the RDF graph Gctx modeling
the client mobile context. It assumes the existence of a
repository of access policies APS. The algorithm starts by
saving the contextual graph in a local cache (line 1). At the
beginning, the set of accessible named graph NGS is empty
(line 3). The selection of the Access Policies is addressed
by the sub-routine Access Policies Selection (line 4), which
returns the set of Access Policies the query is concerned by.
Then, the algorithm runs all the Access Conditions composing
the selected policies (lines 7-10). According to the type of
Access Condition Set (i.e., conjunctive or disjunctive), for
each verified policy, the associated named graph is added
to the set of accessible named graphs (lines 11-12). Finally,
after the execution of all Access Conditions, the client query
is sent to the SPARQL endpoint with the addition of the
FROM clause (line 16). Query execution is therefore performed
only on the accessible named graphs, given the consumer
contextual information. Line 18 outputs the triples resulting
from Q.

Algorithm 2 is the Access Policies Selection routine. It
selects the Access Policies concerned by the client query.
The input of the algorithm is the query Q and the repository
of the policies APS. We do not want to verify all the Access
Policies every time a query is run. Thus, we adopt a selection
mechanism to obtain only a subset of Access Policies to

PREFIX ctxgraphs: <http://example/contextgraphs/>

ASK{?context a prissma:Context. 
    ?context prissma:user ?u.
    ?u foaf:knows ex:alice#me.}
    BINDINGS ?context {(ctxgraphs:bobCtx)}

ASK {?context a prissma:Context. 
     ?context prissma:environment ?env. 
     ?env prissma:based_near ?p. 
     FILTER (!(?p=ex:ACME_boss#me))} 
     BINDINGS ?context {(ctxgraphs:bobCtx)}

THE CONSUMER'S
CONTEXT

Figure 6: The Access Conditions bound to the actual
prissma:Context shown in Figure 2

PREFIX bibo: <http://purl.org/ontology/bibo/>
SELECT * 
WHERE {?review a bibo:Article}

(a)

PREFIX bibo: <http://purl.org/ontology/bibo/>
SELECT * 
FROM :peter_reviews  
WHERE {?review a bibo:Article}

NAMED GRAPH
ACCESSIBLE BY 
THE CONSUMER

(b)
Figure 7: The SPARQL query issued by Bob’s mobile client
(a) and the constrained version (b).

execute. In particular, the algorithm maps the client query
to one of the four access privileges S4AC defines using the
SPIN vocabulary (line 1). Then, the algorithm selects all
the Access Policies which have the identified Access Privilege
(lines 3-7). The selected policies are returned to the main
Access Enforcement algorithm (Algorithm 1).

Example 3. An example of client query is shown in Fig-
ure 7.a, where Bob wants to access all rock festival’s reviews
from the context described in Figure 2. When the query is
received by the Access Control Manager, the latter selects the
Access Policies concerning this query (for instance the policy
shown in Figure 4). The Access Conditions included in the
policies are then coupled with a BINDINGS clause, as shown
in Figure 6, where the ?context variable is bound to Bob’s
actual context. The identification of the named graph(s)
accessible by Bob returns only the graph :peter_reviews.
The named graph :alice_reviews of Figure 3 is forbidden
because Access Conditions evaluation leads to a false an-
swer with Bob’s context (Bob is near Alice’s boss). The
Access Control Manager adds the FROM clause to constrain
the execution of the client query only on the allowed named
graph. The “secured” client query is shown in Figure 7.b.



Algorithm 1: Query Execution with Access Enforcement

Input: a SPARQL query Q, an RDF graph Gctx, Access Policy Set
APS

Output: the SPARQL query result R
save Gctx in local contextual cache;1
if Gctx has changed then2

NGS = ∅;3
APS ← APSelection(Q,APS);4
forall APi ∈ APS do5

ACcountfalse = 0;6
forall ACj ∈ ACSi do7

append Gctx to ACj as BINDINGS clause;8
if ASKACj

execution returns false then9
ACcountfalse + +;10

if (ACSAPi
is DACS and11

ACcountfalse <
∣∣ACSAPi

∣∣)||(ACSAPi
is CACS and

ACcountfalse = 0 then
NGS ← NGS ∪NGAPi

;12

else13
NGS ← NGScached;14

forall NGi ∈ NGS do15
append FROM <NGi> to Q;16

R← run Q;17
return R;18

Algorithm 2: Access Policies Selection

Input: SPARQL client query Q, APS
Output: a reduced set of Access Policies APSr

AccPrvQ ← map Q type to CRUD operation;1
APSr = ∅;2
forall APi ∈ APS do3

if AccPrvAPi
≡ AccPrvQ then4

APSr ← APSr ∪ APi ;5
end6

end7
return APSr;8

Figure 8: SPARQL Query Execution Procedure

6. EVALUATION
To assess the impact on response time, we implemented the
Access Control Manager as a Java EE component and we
plugged it to the Corese-KGRAM RDF store and SPARQL
1.1 query engine17 [4]. We evaluate the prototype on an
Intel Xeon E5540, Quad Core 2.53 GHz machine with 48GB
of memory, using the Berlin SPARQL Benchmark (BSBM)
dataset 3.118.
In Figure 9 we execute 10 independent runs of a test query
batch consisting in 50 identical queries of a simple SELECT

over bsbm:Review instances (tests are preceded by a warmup
run). We measure the response time with and without access
control. When executed against the Access Control Manager,
the test SPARQL query is associated with the mobile context
described in Figure 2. Each Access Policy contains exactly
one Access Condition. In Figure 9.a, to simulate a worst-case
scenario, access is granted to all named graphs defined in
the base (i.e. all Access Conditions return true), so that
query execution does not benefit from cardinality reduction.
Larger datasets are less affected by the delay introduced by
our prototype, as datastore size plays a predominant role in
query execution time (e.g. for 4M triples and 100 always-true
Access Policies we obtain a 32.6% response time delay).
In a typical scenario, the Access Control Manager restricts
the results of a query. In Figure 9.b we assess the impact

17http://tinyurl.com/corese-engine
18http://bit.ly/berlin-sparql

on performance for various levels of cardinality reduction,
using modified versions of the BSBM dataset featuring a
larger amount of named graphs (we define a higher number
of bsbm:RatingSites, thus obtaining more named graphs).
When access is granted to a small fraction of named graphs,
the query is executed faster than the case without access con-
trol (e.g. if access is granted to only 1% of named graphs, the
query is executed 19% faster on the 1M triple test dataset).
As more named graphs and triples are accessible, perfor-
mance decreases. In particular, response time is affected
by the construction of the active graph, determined by the
merge of graphs in FROM clauses. As shown in Figure 9.b,
the cost of this operation grows with the number of named
graphs returned by the evaluation of the Access Policies.
In Figure 9.c we analyse the overhead introduced on response
time by queries executed in dynamic mobile environments.
We execute independent runs of 100 identical SELECT queries,
dealing with a range of context change probabilities. In case
of a context update, the query is coupled with a SPARQL 1.1
update (Section 5). Not surprisingly, with higher chances of
updating the context, the response time of the query grows,
since more SPARQL queries need to be executed. The delay
of INSERT DATA or DELETE/INSERT operations depends on
the size of the triple store and on the number of named
graphs (e.g. after a DELETE query, the adopted triple store
refreshes internal structures to satisfy RDFS entailment).
Performance is therefore affected by the number of active
mobile users, since each of them is associated with a mobile
context graph.

7. CONCLUSIONS
Accessing the Web of Data needs an access control mecha-
nism. Moreover, consumption and production of linked data
might origin from mobile devices immersed into pervasive
environments. This paper presents an approach towards
context-aware access control for the ubiquitous Web of Data.
The proposed solution is conceived as an easy-to-integrate
pluggable filter for data servers that support the SPARQL
query language. Our framework relies only on Web of Data
languages and existing vocabularies; no other formalism has
been added. The prototype evaluation shows that, despite
the overall performance needs to be ameliorated, the delay
introduced by our fine-grained, context-based access control
is acceptable given that data protection comes with a cost.
Future testing campaign will be carried out to provide a
thorough evaluation with other SPARQL query engines, such
as Virtuoso, Sesame, Jena and AllegroGraph. An effective
backend user interface to define Access Policies has to be
designed, as user interaction issues should not be underesti-
mated. The trustworthiness of the information sent by the
mobile consumer, including data describing context (e.g. lo-
cation, device features, etc.) should not be taken for granted:
future work needs to investigate this issue. Privacy concerns
arise while dealing with mobile user context. We are aware
that sensible data such as current location must be handled
with a privacy-preserving mechanism, and we will therefore
focus on this issue in the future.
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