
Interacting with the Web of Data through a Web of
Inter-connected Lenses

Igor Popov
∗

School of Electronics and
Computer Science

University of Southampton
SO17 1BJ, Southampton, UK
ip2g09@ecs.soton.ac.uk

m.c. schraefel
School of Electronics and

Computer Science
University of Southampton

SO17 1BJ, Southampton, UK
mc@ecs.soton.ac.uk

Gianluca Correndo
School of Electronics and

Computer Science
University of Southampton

SO17 1BJ, Southampton, UK
gc3@ecs.soton.ac.uk

Wendy Hall
School of Electronics and

Computer Science
University of Southampton

SO17 1BJ, Southampton, UK
wh@ecs.soton.ac.uk

Nigel Shadbolt
School of Electronics and

Computer Science
University of Southampton

SO17 1BJ, Southampton, UK
nrs@ecs.soton.ac.uk

ABSTRACT
As a medium of structured information available on the
Web, Linked Data is still hard to access for most end users.
Current solutions facilitating end user access to Linked Data
are either thought the use of data-mapping approaches, which
allow configureable interfaces to be quickly deployed over
pre-selected aggregations of Linked Data, or enable users
themselves to browse the Web of Data through the use of
generic data browsers. While the first approach is useful and
promotes surfacing and easy repurposing of structured data
it does little to promote the use of linkages to other, remote
datasets. The second approach is much less useable for end
users, however enables them to experience browsing a inter-
connected Web of Data. In this paper we present mash-
point, a framework that aims to provide a middle ground
between both approaches. The approach treats data-centric
applications as high-level lenses over the data, and allows
selections of data to be pivoted between applications thus
facilitating navigation. The paper presents an initial proto-
type and discusses both implications and challenges in terms
of interaction and technology.

Categories and Subject Descriptors
H5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI); H5.4 [Information
Interfaces and Presentation]: Hypertext/Hypermedia—
User issues

General Terms
∗Corresponding author.

Copyright is held by the author/owner(s).
LDOW2012, April 16, 2012, Lyon, France.

Design, Human Factors.

Keywords
End-user Interaction, Linked Data, User Interface

1. INTRODUCTION
End users engage in data-centric activities on the Web on
a daily basis. Every time we view our news feeds on a so-
cial networking site or browse shopping items on a online
commerce site, we are offered tools to browse, filter and find
the data we need. Much of these data-centric interactions
and tools, however, are limiting in one fundamental way -
they confine us to browse and explore the only the data for
which the tool was designed, denying the opportunity to re-
focus and find associated data on other web sites offering
related data. One of the advocated advantages of linking
data is that links that exist between remote datasets can be
leveraged to effortlessly integrate and navigate to associated
data in remote datasets. Despite this vision, we yet to expe-
rience interfaces where simple interactions allow end users
to and navigate and find related data outside the current
dataset, in essence denying them to truly experience a Web
of Data.

Currently, three approaches are adopted to surface and allow
casual end users to interact with and explore Linked Data.
The first approach is the obvious one - creating a tailored
interface over pre-selected portions of Linked Data. The sec-
ond approach is a generalisation of the first - through the use
of data-mapping tools that allow developers to easily set up
and configure visually rich exploration interfaces over Linked
Data without too much programming. For example, Exhibit
[7] enables developers to create a powerful data exploration
interface without any knowledge of database technology or
programming, while mSpace [14] allows installation and con-
figuration of a scalable faceted browser over a SPARQL end-
point though an installation wizard. While both of the afore
mentioned approaches promote the use and repurposing of
structured data, they rarely promote to users the linkages
that exist to various other datasets on the Web of Data. In

effect, once deployed they create their own data silo - use-
ful for exploring the data over which the interface acts as a
lens, but unable to relate to data in other, remote datasets.
The third approach lets users explore and aggregate arbi-
trary data through the use of generic data browsers, which
offer browsing the Web of Data as a analogy of browsing the
Web of Documents. For example, the Tabulator [3] allows
users to browse graphs of RDF1, specify arbitrary selections
of the data and analyse the selected data through inputing
them in a variety of widgets such as charts, maps and time-
lines. Generic data browsers consume and present the data
on demand and do not require any configuration. However,
since RDF does not prescribe any representational informa-
tion, generic data browsers often resort to generic represen-
tations - a one size fits all interface for data. Additionally
the interaction and navigation in a generic browser is closely
associated with the underlying RDF model, which often is
too fine grained for the casual user and requires transfor-
mations or finding suitable representations before it can be
used to solve a particular information need. For such rea-
sons, generic data browsers are often too complex for casual
Web users - users that are used to visually rich and custom
made interfaces.

A trade off of is evident when accessing Linked Data us-
ing data-mapping approaches on the one hand and generic
tools on the other. I the first case we sacrifice navigability
through Linked Data as a unified, inter-connected resource
and be satisfied with islands of applications over limited data
sources unable to interact with each other. If we use more
generic solutions, however, we risk poor usability and expe-
rience will thwart large numbers of users from experiencing
and gathering information from a integrated Web of Data.
In this paper we present our approach to reconcile these vi-
sions by offering a middle ground between both approaches.
We propose a framework that allows data-centric interfaces
to be linked based on equivalent identifiers in their respec-
tive data sources, enable them to express their state based
on these identifiers, and allow these identifiers to be passed
as input from one application to another as a way of enabling
navigation. In effect, our framework views applications as
a higher level lenses or views over graphs of data on the
Web. The framework potentially unlocks novel interaction
possibilities and allows for citizen end users to experience an
unbounded Web of Data.

This paper is structured as follows. In the following section
we briefly discuss related work and discuss challenges facing
existing approaches. In Section 3 we present mashpoint2, a
framework for using data-centric applications as lenses over
the Web; we discuss how users interact with multiple appli-
cations to explore and solve data-intensive needs. In Section
4, we discuss implementation details. Section 5, discusses
the implications both from an interaction perspective and
socio-technical perspective. Finally we conclude in Section
6 and discuss future work.

2. RELATED WORK
As discussed in the introduction of this paper, a number
of tools, such as Exhibit and Dido [7, 8], mSpace [13], and

1http://www.w3.org/RDF/
2http://www.mashpoint.net/

Countries Currency

Germany

Austria

France

Euro

GBP

USA

Ecuador

UK

USD

Current view Refocused view

Set-oreiented operation

Figure 1: Abstract representation of a set-oriented
operation.

/facet [5] already provide ways to quickly deploy interfaces
over structured data. Most of these tools, however, offer
deploying data exploration interfaces over relatively simple
collections of data; for example a collection of set of re-
sources (e.g. a collection of countries) and several facets
for which can be visualised and used for filtering. Naviga-
tion and exploration of data from complex graphs, however,
requires more advance interactions. Browsers such as Par-
allax [6], Humboldt [9], Explorator [1] and gFacet [4] intro-
duce the notion of pivoting and set-oriented browsing. Set-
oriented browsing is a natural generalisation of the Web’s
one-to-one browsing paradigm to a many-to-many brows-
ing method since manipulating data often requires dealing
with multiple items simultaneously and common semanti-
cally typed links offer a consistent way of refocusing with
multiple items. Figure 1 displays in abstract the concept of
set-oriented browsing. The majority of set-oriented browsers
offer a user interface to explore and query graph data; addi-
tionally browsers such as Parallax and Tabulator allow users
to select data from the explored graph and visualise the re-
sults as maps, charts, timelines and calendar views.

2.1 Issues with Existing Approaches
As we noted in the introduction, data-mapping approaches
offer useful and usable interfaces for interacting with data
but limit the interaction to the data for which the interfaces
are intended for; generic data browsers on the other hand,
which are capable of browsing and exploring arbitrary data
from graphs, have not as yet been widely adopted. In the
following we offer several reasons for their low adoption.

Dealing with Fine-grained Data. Often times the data
that the data browser exposes is much too granular for end
users, often requiring them to do complex transformations
or many selections before they can complete a information
related task. For example, a simple question of viewing a
visualisation of countries GDP/per capita on a map will re-
quire multiple steps to complete. Normally, a user would

have first to explore the graph and find resources of ”Coun-
tries” that will probably be associated with properties such
as latitude, longitude, GDP and population. Then, a user
would have to find and specify which properties will be used
to query. Moreover, GDP per capita might not be avail-
able, so a user would have to combine the overall GDP and
population data before the data can be used in, for exam-
ple, a chart visualisation widget. Eventually, the user can
reach the desired result, however the process can be long
and error prone. For the majority of end users, these inter-
actions are often too complex and time consuming. More-
over, browsers rarely capture this transformation from data
to usable knowledge done by users and miss the opportunity
of offering previous results as a suggested lens to new users
in the browser3.

Information Overload. Even with a good exploration tool
that abstracts machine-readable data and allows users to
perform various queries, graphs of data can still be diffi-
cult to explore. They can hold enormous amounts of data,
thus frequently requiring users to find and filter to a small
portion of the dataset. Additionally, when engaged in an
exploratory search - search where users have no concrete in-
formation goal but rather engage in exploration - they can
find it difficult to figure out which properties would make
sense to combine, visualise, or which properties would make
good facets for filtering. The authors of BrowseRDF [10]
were the first to take note of this issue by trying out an au-
tomatic way of detecting useful facets. They acknowledge,
however, that automatic approaches are limited and that
additional knowledge about the ontology is required. While
in the future data-centric browsers could analyse graphs of
data and offer recommended views based on established on-
tologies we believe that such capabilities are not feasible in
the foreseeable future.

Representation. Unlike the Web, where each page is care-
fully crafted for human consumption, a Web of RDF data is
purposely devoid of any presentational content as a adher-
ence to the principle of separation of content from presenta-
tion. Therefore responsibility is transferred to the browser to
figure out how to represent data when the data is fetched.
Generic browsers currently only base their representations
and browsing models on the triple data model of RDF, and
this is often reflected in browsers by employing generic rep-
resentations, using simple heuristics to display data (e.g.
searching for rdfs:label to display a resource), or provid-
ing navigation using the links only between neighbouring
resources (those who share a link) in the graph. Additional
representational knowledge such as lenses [11] can improve
data representation, however crafting lenses without any
knowledge of the context in which they will be used in the
generic browser is a challenge. Moreover, it is unclear who
should bear the effort of providing lenses for generic browsers
- the publisher of the data or the browser consuming the
data, and what is the immediate benefit of providing repre-
sentations of the data as lenses as opposed to just building
a custom made web site to display a publishers data.

3Parallax [6] allows users to export live views of the data
and embed them in blogs and web pages.

3. MASHPOINT: USING
INTER-CONNECTED DATA-CENTRIC
APPLICATIONS AS LENSES

In this Section we describe mashpoint4 our prototype frame-
work for using and navigating through higher level abstrac-
tions or lenses over data. The basic premise of the mashpoint
framework is that when data is viewed or interacted with by
end users, it should always be represented within a certain
context. Data-centric applications are perfect examples of
data viewed in context and therefore considered as lens over
some data in the mashpoint framework. A data-centric ap-
plication is any application that is powered by and offers
some interaction over some data. For example an Exhibit
is a typical data-centric application. With mashpoint our
goal is to enable users to select specific data through the
interactions offered in one application and pivot (i.e. exe-
cute a set-oriented operation with that selection) to another
application that can accept that data as input and provide
new information corresponding to the selection done in the
previous application. In such a way we achieve set-oriented
navigation through graph data. Figure 2 depicts this in-
teraction technique between two mashpoint enabled appli-
cations. In the example, the first application5 (Figure 2a)
shows a simple data-centric application which allows users
to explore data about countries GDP/per capita and pop-
ulation information by allowing the data to be filtered by
”Income level” or ”Region”. For example, selecting ”Low
income” from in the first application will filter and show
low income countries to users. A user can then click on
the mashpoint button (Figure 2b), which pops up a window
and offers other applications that can take and offer new
insights regarding the selected data in the first application.
For example, a user may want to view CIA factbook data
about the ”Low income” countries and choses to open that
application6 (Figure 2c). The CIA factbook application has
various data about countries. For example, the user can
view information about countries birth-rate vs. death-rate
and filter the existing selection on different facets. Note that
the items that are shown in the new application reflect the
items chosen in the previous application.

As part of the development of this framework, we started
adapting and linking existing data-centric applications on
the Web. Figure 3, shows three other applications that we
adapted and linked up using our framework. The first one7

(Figure 3a) is a simple Exhibit showing images of world cur-
rencies, and the currency code. The second application8

(Figure 3b) is a simple exploration application which allows
users to view and browse countries flags depicted on a map.
The third application9 (Figure 3c) is an existing application
we found on the Web10 that we integrated into our frame-
work.

In the following we describe several examples how combin-
ing and navigating with different selections in the data can

4http://www.mashpoint.net
5http://mashpoint.net/demoapps/countriesincome/index.html
6http://mashpoint.net/demoapps/birthratevsdeathrate/index.html
7http://mashpoint.net/demoapps/currencycodes/index.html
8http://mashpoint.net/demoapps/flagsonamap/index.html
9http://mashpoint.net/demoapps/mapmigrations/index.html

10http://migrationsmap.net/

Select or Filter items

Pivot with selected items
on selected application

a

b

c

Choose from applications
that can take selected

items as input

Countries income per capita Countries birth rate vs. death rate

Figure 2: A pivoting operations between two applications in mashpoint.

produce some interesting insights into the data:

• In the previous example we used an application that
showed World Bank data about GDP/per capita (Fig-
ure 2a). A user can browse the data in that application
using the facets that are provided, however, the appli-
cation provides only a single representation of the data.
A user may wish to view countries on a map in order
to see how countries of different income groups are
distributed geographically (for example, which conti-
nents contain ”Low income”countries?). Using current
tools on the Web, a user would be required to copy and
paste each country in another application (e.g. Google
Maps) to answer this question. Using mashpoint, how-
ever, the user can take any selection of the data and
find applications that are able to provide geographic
information and representations about the data. For
example, after filtering to ”Low income” countries the
user can open the mashpoint dialog and select the
Flags on a map application (Figure 3a), which can dis-
play the current selection of countries on a map as little
flag markers on a map. Immediately it is revealed that
out of the all the low income countries only a single one
(Haiti) is in the Americas, while the rest of the low in-
come countries are in sub-saharan Africa, Central and

South-east Asia.

• Continuing from the previous example, once viewed ge-
ographically, a user can chose to view additional data
about the selected ”Low income” countries by pivoting
to the CIA Factbook application (Figure 3b) and ex-
plore data about birth rates and death rates for the
selected, low income countries. The user decides to
compare these with high income countries so he/she
repeats the same navigation, only this time starting
with a high income countries in the first application.
The user can then conclude that there is great diver-
sity in both birth rates and death rates in low income
countries as opposed to high income countries where
death rates are fairly consistent, and birth-rates expe-
rience small variations.

• Similarly to the previous example, a user might chose
to view migration patterns and instead of grouping
countries by income levels he/she might be interested
in a particular geographic region. For example, piv-
oting from Middle-eastern countries in (Figure 2a) to
the Map Migrations app (Figure 3c) can reveal to the
user that people from those countries typically migrate
to countries in the same region and to countries of the
Western Europe and Northern America.

a

c

b Flags on a map

Migrations map

Currency codes

Figure 3: Example applications linked with the mashpoint framework.

• A user is planing a trip across Europe, traveling to mul-
tiple European countries. The user is aware that some
European countries share a single currency however
needs information about each of the countries he/she
is traveling to. Deciding that the best way to quickly
select the countries of interest is to use a map, the
user selects the countries of interest on the Flags on
a map application (Figure 3a). By selecting the Cur-
rency codes application (Figure 3b) the user is able to
pivot with the current selection of countries, obtain-
ing the corresponding currencies of each country. This
saves the user time since the alternative would be to
look up each country and integrate the information
manually.

If we examine carefully the above examples, an interesting
observation can be made from each example. Each applica-
tion by itself offers very limited capabilities to interact over
that data. By enabling selections of data to be pivoted or
shifted to other applications, we not only aid in the discov-
ery of new information, which is one of the advocated uses
of Linked Data, but additionally allow users to interact with
the newly found information in a way that is tailored for the
specific data to be displayed.

4. IMPLEMENTATION
This Section describes the implementation details of mash-
point. Our investigation into designing mashpoint began
with the simple interaction challenge by asking ”Why are
generic data browsers unusable?” and ”How do we solve
these problems, and where can we gain in usability with-
out sacrificing browsing and navigating capability?”. While
the implementation of mashpoint were guided by these prin-
ciples, we tried to implement mashpoint so that the barrier
for entry for linking application to the framework would be
minimal.

The implementation consists of three parts: (1) the appli-
cations themselves, which need to be data-centric in nature
and be built with certain requirements, (2) a discovery ser-
vice that allows applications to look up other applications
so that the user can pivot between them and (3) a means
of communication between the applications and discovery
service. In the following we discuss each part in detail.

4.1 Applications
In order to enable pivoting between applications, they need
to be designed according to some specifications and rules.
Our choice of specifications was motivated by a desire to

make the integration of new and existing data-centric ap-
plications as painless as possible i.e. not to impose any un-
necessary learning curves or restrict developers to use any
particular technology. Thus to link an application to mash-
point, it needs to have the following properties:

• Offer Data-centric features. Each application in
mashpoint needs allow interaction over data with iden-
tifiable resources. An application can hold multiple
collections of identifiable resources - for example be
about People, Countries, Events etc. An Exhibit like
the one in Figure 2c is a typical example of a data pow-
ered application that offers browsing over data about
countries. In the data of this particular Exhibit, each
country is an identifiable real-world object.

• Use of URIs. While the data underlying the appli-
cation does not necessarily need to be in RDF, an URI
needs to be present for each identifiable resource of the
data. In our examples, since the data is about coun-
tries, each Country needs to be be associated with an
URI. The use of URIs is also needed in order to be
able to save the state of the application. We discuss
how to preserve the applications state in the next two
points.

• Be able to select multiple resources. An applica-
tion in this framework should typically enable selection
of resources in order to be able to pivot with arbitrary
selections of data. Selections of the data can can be
provided in multiple ways. For example, items can be
selected thought filtering by providing various facets
over the data and/or allow arbitrary items to be se-
lected. This selection of items will then be passed on
as input to another application. Whenever an appli-
cation changes its focus, the state of the application
should be made explicit in the URL of the application.
In mashpoint we require each application to list the
current resources in view through a mashpoint param-
eter in the URL. Figure 4 depicts the saving of state
in each application. Figure 4a for example depicts an
application showing a single resource and a mashpoint

that denotes this state. Similarly, Figure 4b shows the
interface on a state with two resources. The state can
also group a list of resources (Figure 4c) in order to
reflect certain collections of resources e.g. a interface
that displays data about both ”Countries” and ”Cur-
rencies”.

• Be able to represent multiple resources on in-
put. Application should be able to take any arbi-
trary selection of URL identifiers that represent the
resources of the application and be able to show some
representation of that data that reflects the selected
items i.e. be able to arbitrarily retrieve any state of
the application.

The choice of URIs is also an important factor in the cur-
rent implementation of the framework. In order to enable
pivoting between applications we need identical identifiers
across all mashpoint enabled applications. In our current

http://application.com/#?mashpoint=uri1

http://application.com/#?mashpoint=uri1,uri2

http://application.com/#?mashpoint=uri1,uri2|uri3

a

b

c

Figure 4: Preserving the state in a mashpoint-linked
application.

instantiation of mashpoint we rely on Freebase11 as a ser-
vice to which data used in applications need to be recon-
ciled. Note that we have chosen Freebase for convenience
reasons - Freebase and the support offered in Google Refine
offers tools to quickly reconcile12 arbitrary data with Free-
base concepts. While the data in the applications need to
be reconciled against Freebase, it does not preclude using
other data sources that already use established URIs. For
example applications consuming Open Linked Data can use
resources such as sameas.org13 to either reconcile their data
to Freebase or even use the service in real time (although
the former is probably the preferred solution because of op-
timisation issues). In essence, it does not particularly mat-
ter which URIs we offer as reconciliation, since the frame-
work requires just reconciliation of identifiers. Moreover,
the architecture could also be redesigned in a different way
- it could allow applications to use whatever URIs they see
fit and try to reconcile them and do discovery in real time
through the use services such as sameAs.org. To illustrate
this we have already connected Visor14 [12] a end-user tool
for exploring DBPedia [2] data to the mashpoint framework.
At this point of time, however, a priori reconciliation pro-
vides a more optimised solution to the co-reference problem
in our case.

4.2 Discovery Service
In order to be able to find applications which can be used to
pivot from the current application we implemented a discov-
ery service for mashpoint-enabled applications. The discov-
ery service is a repository that simply keeps a record about
which URI identifiers can be represented in which applica-
tions. Applications therefore need to register themselves in
the discovery service and ”subscribe” their URI identifiers.
Registering with a set of URIs means that an application
can represent and show data about any subset of the iden-
tifiers it is subscribed to. Once registered, each application
can communicate with the discovery service to find other
applications that can take the current selection (represented
through the URIs in its state) as input. Figure 5 depicts

11http://www.freebase.com
12http://code.google.com/p/google-
refine/wiki/ReconciliationServiceApi

13http://sameas.org/
14http://visor.psi.enakting.org/

this architecture. For clarity, URI identifiers are represented
with dots, squares and triangles to denote different groups of
URIs found across different applications. For example Ap-
plication 1 is registered with the dot identifiers which means
it can take any subset of these identifiers as input. Applica-
tion 2 can either take the any subset of dot identifiers but it
can also take any subset of square identifiers as input. Sim-
ilarly Application 3 can take subsets of square and triangle
identifiers. These groups of URI identifiers are assigned by
the application registering to the discovery service.

Discovery service

App 1

App 1 App 2 App 3

App 3

Send URIs in
current view

1

Recieve apps that
can represent URIs 2

Pivot to other apps3

App 2

Figure 5: Architecture of the mashpoint framework.

4.3 Pivoting Across Applications
In order to enable pivoting across applications, they need to
communicate and request information based on the current
state of the application. Each application therefore commu-
nicates its state to the discovery service i.e. it sends the
URIs that currently represent the data which is viewed in
the application, and retrieves back a list of applications that
are able to receive those URIs as input.

In order to facilitate this communication, each application
in mashpoint incorporates a small JavaScript widget that
is able to parse the URL for the URI identifiers and send
them to the mashpoint discovery service (Figure 5-1) The
discovery service then retrieves which applications can take
the URIs as input and sends them as a response with their
states reflecting the identifiers in the request (Figure 5-2).
The widget in each application is a third party code that
adds a mashpoint button, facilities the communication with
the discovery service and pops up the dialog that suggests
appropriate applications to users. We note that the discov-
ery mechanism and widget may be omitted from an appli-
cation. For example, cases may exist where a publisher of

an application may want to offer users pivoting to only a
certain, predefined set of applications. Therefore the pub-
lisher of the application can discover those applications once,
and include them as regular links in the application. This
removes the need for a third party discovery service, how-
ever it is now up to the publisher to keep the links to the
other applications consistent with the current state of the
application.

5. DISCUSSION
In this Section we discuss open issues, challenges and impli-
cations in adopting mashpoint as a framework.

5.1 Interaction Challenges
A number of interaction challenges need to be investigated
and addressed in order to mitigate any usability issues. First,
unlike a generic browser where data is viewed, browsed and
manipulated within the context of a single application, mash-
point proposes an approach to data browsing where views of
the data are provided by distributed applications that can be
contributed by many publishers. Evaluating how well users
can combine and pivot data between different applications
in order to solve data-centric tasks remains to be explored
and evaluated.

Another issue is the implementation of the set-oriented op-
erations in mashpoint. In the current implementation, when
the discovery service is queried with a set of URIs, every ap-
plication that can represent some subset of these URIs is
retrieved. For example, if an applications state is currently
focused on three countries e.g. France, Germany, and Brazil,
and another application can show data only about European
countries, that application will also be retrieved when ap-
plications will be requested for those three countries, even
though it will only be able to show information on two out
of the three countries. This means that in some cases not
all URIs will be able to be represented in the application to
which the user will pivot. Such information needs to be sur-
faced to the user, or ideally, enable users to filter and browse
particular types of applications according to the content or
size of the subset they can take as input.

Another problem that might hinder usability is the lack
of context between pivoting steps in applications. Some-
times the data in two linked applications will follow a one-
to-one mapping e.g. two applications both showing data
about countries. This corresponds as navigation through
resources that are linked through a owl:sameas relation. As
we’ve seen in our examples, however, pivoting can take place
between applications that contain data on diverse topics,
for example pivoting from an application about ”Countries”
to an application about ”Currencies”. This corresponds to
navigating through resources with arbitrary links between
them and often times the relationships between them will
be many-to-many. In our example, the application show-
ing currency data might not explicitly state which countries
are using that currency. Thus a user would find it difficult
figuring out which country shown in the first application
corresponds to which currency in the second one. Several
solutions to this problem are possible. First, either publish-
ing practices will compound users to normally include labels
or representations of the items of input, or second, the state
of an application encoded in the URL can include additional

contextual information that will be sent alongside the URIs.
At present, however, this remains future work.

5.2 Social Contribution Factor

Application 2

Application 1

Application 3

Countries

Population

Area size

GDP

Birth Rate

Death
Rate

Currency

deathRate

birthRate

hasGDP

popSize

areaSize

hasCurrency

Image_file

Currency
code

currency code

image

Figure 6: Model of data and it’s relationships en-
capsualted .

By design, mashpoint sets forward a paradigm that has in-
herently a social factor of contribution, which is similar to
the social nature of publishing and linking in the original
Web. The reason why applying data mapping tools such as
Exhibit [7] have seen much wider acceptance than generic
browsers such as Tabulator [3] is because a publisher of an
Exhibit [7] can control the look and feel of the data and im-
mediately see value of providing a rich data-centric interface
over data. The original Web followed a similar pattern; a
published Web site offered a custom made document and a
presence on the Web - linking to other web sites only im-
proved the quality of the web site by providing connivence of
finding relating information. For example a web page about
events in Southampton is by itself a useful contribution to
the Web, and the publisher can increase the value of informa-
tion by providing links to other pages (e.g. the Wikipedia
page for Southampton or other related web pages offering
events information about Southampton). However it is im-
portant to note that even without the links, the web site

is useful by itself. As a publishing recommendation mash-
point acts in a very similar way. Applications can be viewed
as contributions which are useful by themselves - they allow
some value over the data they were initially designed for. By
linking them up, and enabling pivoting to other data-centric
applications, the original application can only increase the
value of the original application. In fact, this attribute may
provide incentive for publishers of data-centric applications
on the Web to link their data using frameworks such as
mashpoint.

5.3 Low Barrier for Entry
Although none of the applications we have presented in this
paper directly operates over live Linked Data, or directly
use RDF data directly (although we extracted some of the
data from Linked Data sources), we believe this fact to be
an added strength to the framework, since it only lowers the
barrier for linking new applications - it does not mandate or
impose any particular data model on the user. This is not
to say that the applications using this framework cannot
use standard data-models such as RDF. In fact, as the title
our our paper suggests, we view the applications as high-
level lenses over graphs of data, as depicted in Figure 6.
In Figure 6 we can see the connections between the data
items used by the mashpoint-enabled applications earlier.
The applications encapsulate views over the data, and the
relationships between the data are just hidden within the
individual applications. Thus applications are can chose to
use either RDF or any other data model and pivoting takes
place where these lenses overlap.

5.4 Incentives for Publishing and Linking
During the last 2 years, the Linked Data community has
been advocating data publishing using Linked Data stan-
dards, and has promoted the use of these standards as a
quality indicator for data available on the Web15. However,
the benefits of publishing Linked Data and linking to other
remote data sources remain elusive for most data publishers
and consumers outside the community. Often the results
are data repositories that are rarely used and provide sparse
linkages to other remote datasets. This lack of immediate
value for the effort of converting ones data as Linked Data
can thwart many potential adopters of these technologies.
With mashpoint we hope to target this problem, particularly
in providing incentives for linking data. As we already men-
tioned, publishers of data-centric applications would only
increase the value of their applications by allowing users to
find useful, related data without changing the original ap-
plication. By requiring publishers to reconcile their data
we already promote the use of URIs in their datasets, while
showing the immediate benefit of being able to pivot and
suggest related data to the users of the application.

6. CONCLUSION
In this paper we presented mashpoint, a framework which
aims to promote the value of a Web of Linked Data by en-
abling interactions that take advantage of links between re-
mote datasets while remaining usable and familiar as brows-
ing the Web itself. As a publishing framework, we view
mashpoint as an extension to the current landscape of tools

15http://inkdroid.org/journal/2010/06/04/the-5-stars-of-
open-linked-data/

providing end user access access to the Web of Data (Figure
7). While we’ve communicated the overall idea of having
data-centric applications serve as lenses over Linked Data,
the work presented here is still work in progress and many
open challenges remain. Our future work include evaluating
the initial prototype with users allowing them to complete
data-intensive task by navigating thorough a Web of tens
of mashpoint-linked applications. We believe that the study
will provide many insights into the overall design and im-
plementation of the framework. If mashpoint achieves wide
adoption, our long term plan will be to study the ecology of
inter-linked applications it will create.

U
sa

bi
lit

y

Ease of access

mashpoint

Data-mapping approaches Generic Data
Browsers

Custom
made apps

Configureable Graph
Exploration Tools

(Visor, Parallax etc.)

Configureable Simple,
Data Exploration Tools

(Exhibit, mSpace, \facet etc.)

Figure 7: Landscape of data-centric tools and appli-
cations. The Figure shows the tools usability agains
the ease of access to the Web of Data. Ease of ac-
cess relates to how scalable is a tool with respect to
accessing diverse datasets from the Web of Data.

7. ACKNOWLEDGMENTS
This work was supported by the EnAKTing project, funded
by EPSRC project number EI/G008493/1. Many thanks
to Manuel Salvadores for providing useful feedback for this
work.

8. REFERENCES
[1] S. Araujo, D. Schwabe, and S. Barbosa.

Experimenting with explorator: a direct manipulation
generic rdf browser and querying tool. In Workshop on
Visual Interfaces to the Social and the Semantic Web
(VISSW2009), February 2009.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,
R. Cyganiak, and Z. Ives. Dbpedia: a nucleus for a
web of open data. In Proceedings of the 6th
international The semantic web and 2nd Asian
conference on Asian semantic web conference,
ISWC’07/ASWC’07, pages 722–735, Berlin,
Heidelberg, 2007. Springer-Verlag.

[3] T. Berners-lee, Y. Chen, L. Chilton, D. Connolly,
R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analyzing linked data on the
semantic web. In In Procedings of the 3rd
International Semantic Web User Interaction
Workshop (SWUI06, page 06, 2006.

[4] P. Heim, T. Ertl, and J. Ziegler. Facet graphs:
Complex semantic querying made easy. In Proceedings
of the 7th Extended Semantic Web Conference (ESWC

2010), volume 6088 of LNCS, pages 288–302,
Berlin/Heidelberg, 2010. Springer.

[5] M. Hildebrand, J. van Ossenbruggen, and
L. Hardman. /facet: A browser for heterogeneous
semantic web repositories. In International Semantic
Web Conference, pages 272–285, 2006.

[6] D. Huynh and D. Karger. Parallax and Companion:
Set-based Browsing for the Data Web. 2009.

[7] D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit:
lightweight structured data publishing. In WWW ’07:
Proceedings of the 16th international conference on
World Wide Web, pages 737–746, New York, NY,
USA, 2007. ACM.

[8] D. R. Karger, S. Ostler, and R. Lee. The web page as
a wysiwyg end-user customizable database-backed
information management application. In UIST ’09,
pages 257–260, New York, NY, USA, 2009. ACM.

[9] G. Kobilarov and I. Dickinson. Humboldt: Exploring
linked data. In Linked Data on the Web (LDOW2008),
2008.

[10] E. Oren, R. Delbru, and S. Decker. Extending faceted
navigation for rdf data. In ISWC, pages 559–572, 2006.

[11] E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel -
a browser-independent presentation vocabulary for
rdf. In In: Proceedings of the Second International
Workshop on Interaction Design and the Semantic
Web, pages 158–171. Springer, 2006.

[12] I. O. Popov, M. C. Schraefel, W. Hall, and
N. Shadbolt. Connecting the dots: a multi-pivot
approach to data exploration. In Proceedings of the
10th international conference on The semantic web -
Volume Part I, ISWC’11, pages 553–568, Berlin,
Heidelberg, 2011. Springer-Verlag.

[13] m. c. schraefel, D. A. Smith, A. Owens, A. Russell,
C. Harris, and M. Wilson. The evolving mspace
platform: leveraging the semantic web on the trail of
the memex. In HYPERTEXT ’05: Proceedings of the
sixteenth ACM conference on Hypertext and
hypermedia, pages 174–183, New York, NY, USA,
2005. ACM.

[14] D. A. Smith, I. Popov, and mc schraefel. Data picking
linked data: Enabling users to create faceted browsers.
In Web Science Conference 2010, March 2010.

