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Abstract. Classification is one of the important fields in data analysis.
Concept-based (JSM) hypotheses are a well-known approach to this task.
Although the accuracy of this approach is quite good, the coverage is
often insufficient. In this paper a new classification approach is presented.
The approach is based on the similarity of an object to be classified to
the current set of hypotheses: it attributes the new object to the class
that minimizes the set of new hypotheses when a new object is added
to the training set. The proposed approach provides a better coverage in
compare with the classical approach.
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1 Introduction

Data analysis applications play important role in nowadays scientific researches.
One of the possible tasks is to predict object properties, for instance, prediction
of a molecule toxicity. Objects can be described in different ways, one of them
is by a set of binary attributes. For example, in chemistry domain, a molecule
could be characterized by a set of functional groups, belonging to the molecule.
Given a set of objects, labeled with several classes (like toxic and non toxic), the
prediction task is to estimate the class of some unlabeled object.

Jumping emerging patterns (JEP) is a well studied and interesting approach
to the classification[1, 2]. Given a set of classes, like toxic or non toxic molecule,
a JEP is a set of characteristics describing a class in a unique way (in the same
way as a “monothetic” property). For example, a set of functional groups say S
is a JEP when all the database molecules, including all functional groups from .S,
are toxic. Most of the time, JEPs can be ordered, thanks to an ordering relation,
and w.r.t. domain knowledge. In particular, this can be found in [3-5] where
JEPs are studied through the so-called JSM-hypotheses.

Then, a classical way to classify an object w.r.t JEPs is to search for JEPs,
describing the object, and if these JEPs are of the same class say k, then the
object should be classified in k. If there is no such JEP or there are JEPs
of different classes, the object remains unclassified. Although for the classical
approach the prediction accuracy (the probability that the prediction is correct)
is quite high, its coverage (the probability that the object attributed to any class
by the classifier and this attribution is correct) is rather low. So a new method
is proposed with comparable accuracy and much better coverage. The method
relies on the MDL (minimal length description) principle, where the outcome
class for an object is the class, minimizing the number of associated JEPs.



There are two main objectives in the paper. The first is to connect JEPs
with JSM-hypotheses; and the second is to suggest a new classification approach,
based on JEPs, and to check it experimentally.

The paper is organized as follows. In Section 2 definitions are introduced.
Then Section 3 describes the classical and the new approaches to classification.
Section 4 details the computer experiments and their results. And finally, Section
5 concludes the paper.

2 Definitions

2.1 Formal Concept Analysis and Pattern Structures

This section briefly introduces the main definitions on pattern structure in formal
concept analysis (see [6]) and emerging patterns (see [1,2]).

Definition 1. A pattern structure is a meet-semilattice (D,M). Elements of a
set D are called patterns.

Definition 2. A pattern context is a triple (G, (D,M),0), where G is a set of
objects, (D,M) is a pattern structure, and 6 : G — D is a mapping function from
objects to their descriptions.

The recently studied interval patterns [7] and the pattern structure given by
sets of graphs [6] are examples of pattern structures.
Usually a formal context is introduced as follows [8].

Definition 3. A formal context is a triple (G, M, I), where G is a set of objects,
M is a set of attributes and I C G x M is a binary relation between G and M .

A ’classical’ formal context (G, M, I) could be considered as a special case
of pattern context (G, (D,M),d). The set of objects remains G, D = 2™ with
a semilattice operation corresponding to intersection of sets, and 6 = g € G —
{m € M|(g,m) € I}. For instance a particular context is shown on Table 1. A
mapping function § maps the object g; to the set {m;, my, ms, mg, m7 }. For the sake
of simplicity, all further examples will refer to classical contexts.

Objs\Attrs|m1|ma|ms|ma|ms|me|mz Object|Class
g1 X | x x| x| x g1 k1
go x| x X X | x g2 k1
g3 X | x X | x g3 ko
ga X | x X ga ko
gs X X | x| x gs ko
g6 X X ge ?

X
Table 1: Formal Context (G, M, I). Table 2: Labeling function.
A Galois connection associated to the context (G, (D,M),d) is defined as:

A° = Meeadle), ACG (1)
d° = {e € GldC d(e)}, deD (2)

For a,b € D, a Cb< alMb=a, and the operation (-)°° is a closure operator.

Definition 4. A pattern d € D is closed iff d°° = d.



Definition 5. Generator of a closed pattern d € D is a pattern x € D, such
that x°° = d.

Definition 6. A pattern concept is a pair (A,d) such that A C G, d € D,
A° =d, A=d°. A is called the extent of the concept and d is called the intent.

The intent of a formal concept is a closed pattern (while the extent A is a closed
set of objects, i.e. A°® = A).

For example ({g1,g2}, {mi,mp, mg,m7}) is a concept w.r.t the context shown
on the Table 1. One of the possible generators of its intent is {my, mg, m7}.

2.2 Classification Concepts

The classification operation can be carried out in FCA using so-called hypothe-
ses. In classification there are a set of classes K and a mapping function £ : G —
K U {?}, where ‘7 means unknown class of an object.

Definition 7. Given a certain class k € K, we note the set of objects belonging
to the class k as Gy = {g € G|((g) = k} and the set of objects, which are not
belong to class k as Gp— = {g € G|&(g) # k,&(g) #7}. A hypothesis for class k
is a pattern h € D, such that ° NG_ =0 and A C Gry : A° = h.

For example, {m;, my, mg, m; } is a hypothesis for class k; because {m;, my, mg,m; }* =
{g1, g2} contains objects of only one class.

In itemset mining Jumping Emerging Patterns (JEP) are used for classifi-
cation [1,2]. Although the usual definition of a JEP does not involve pattern
structures, it can be convenient to introduce JEP w.r.t pattern structures.

Definition 8. A pattern d € D is a JEP for a class k € K when d° # ( and
Vg €d°®, £(g) = k.

According to definitions 7 and 5, a hypothesis for a class k¥ € K is a JEP,
whereas a JEP for a class k € K is a generator of some hypothesis for the class
k. For the context on Table 1 and £ function from Table 1 {me,m;} is a JEP for
the class k and it is a generator for {m;,my, mg, m;}, which is a hypothesis.

3 Classification

This section introduces classification by means of Jumping Emerging Patterns
(JEP) in two different ways: the classical approach and the new approach.

For some class k € K, Hy is the set of all JEPs for class k£ and Hy_ is
the union of JEPs for all other classes. The union of all JEPs is denoted as
H=H;, UHj_.

Definition 9. A JEP h € Hy, describes an object g € G if h C ¢°.

According to the classical approach [3], a new object gne, should be at-
tributed to the class k € K iff there is a JEP for the class k, describing gnew
(3h € Hiy : h C 0(gnew)), and there is no JEP for other classes, describing the
object (Bh € Hy_ : h C 6(gnew))- This method will be referred as Cl-method.

For example, object gs should be attributed to the class ki because there
exists a JEP for the class k1, namely {mg,m;}, and no JEP for any other class.



In contrast, it is not possible to classify the object with hypotheses, because the
corresponding hypothesis would be {m;,my, mg,m;} which does not describe the
object gs.

The classical approach usually works well but there are a lot of objects that
may not be classified [9]. Another problem is related to real-world data and inter-
pretation of the classification: one may expect to have only one JEP attributing
an object to a class. For instance, in the task of predicting toxicity of a molecule,
every JEP is a set of substructures and so ideally it should be the set of those
substructures which raises the toxicity of the molecule, while in practice there
are a lot of JEPs describing every object and so some of them have no relation
to the toxicity-specific set of substructures.

For going in this direction, one could recall a principle, widely used in natural
science: among all explanation of phenomena one should select the simplest one.
So a set of JEPs in our case should classify as many objects from training set as
possible, whereas it should not be too complicated. The whole number of JEPs is
rather arbitrary, and so it cannot be a measure of complexity. On the other hand
if an object should be attributed to a class by only one JEP, then it is natural
to suggest that "important JEPs” a) covers all objects and b) that these JEPs
are rather general. So the complexity of a system of JEPs could be measured by
the minimal number of JEPs required to describe all the objects attributed to
any class.

3.1 Running Example

On Table 3a formal context is shown: real life objects, described by some prop-
erties, like color and weight. The objects are labeled whether they are natural
or human-made. The given labeling is shown on Table 3b. The task is to pre-
dict labels of Cat and Elephant. Tables 3e-3d are other labeling functions used
during classification procedure.

[}

EREEL

SIS g2 Object [Made by Obj|M  Obj|M Obj|M Obj|M
Tree X x Tree Nature T |[N T |[N T |[N T |N
Fungus ||x X Fungus Nature F |[N F |[N F [N F |N
Velo x|x|x|x Velo Human V |H V |H V |H V |H
Car x|x| |x Car Human Car|H Car|H Car|H Car|lH
Cat x|x| |x Cat ‘77 Cat|N  Cat|H Cat|'?” Cat|'?
Elephant||x|x Elephant “ El |  El |' EI [N ElI [H

(a) (b) () (d) (e) (f)

Table 3: Running Example Formal Context. Figures 3b-3f are different corre-
spondences between objects and their classes (§-functions).

The JEPs for the context on Table 3a and labeling function on Table 3b are
the following: a(alive) — N, cm(can move) — H, m(metal) — H, 1(light), g(green) —
H. Neither Cat nor Elephant may be classified, as they both include JEPs, corre-
sponding to different labels (a — N and cm — H). But maybe we are still able to
classify them? Let us assume that Cat (or Elephant) is made by Nature (Tables



3¢, 3e) and then that they are made by Human (Tables 3d, 3f). And then as a
response to the classification task we give the class of the best assumption.

Let us assume that the Cat is made by Nature, the labeling function is
shown on Table 3c. The corresponding set of JEPs is as following: a — N; m — H;
l,g — H; cm,g — H. We should notice that the label (or class) of every object
from Table 3a can be explained by at least one JEP, i.e. for an object g there
is a JEP describing object g and corresponding to the class of object g. Let
now assume that object Cat is made by Human, the labeling function is shown
on Table 3d. The corresponding set of JEPs is as following: a,g — N; cm — H;
m — H; 1,g — H. Among these JEPs, there is no JEP explaining the class of
object Fungus, and so we can say that the assumption that Cat is made by
Nature is better than the assumption that Cat is made by Human, and so the
Cat should be classified to class Nature.

For the Elephant let us assume first that it is made by Nature, the labeling
function on Table 3e. The set of JEPs are a — N;m — H; 1,g — H; cm,1 — H;
cm,1 — H. They explain classes of every object from the context. Let us assume
that the Elephant is made by Human. The set of JEPs are a,g — N; a,1 — N;
cm — H; m — H; 1,g — H. They do also explain all the objects from the context
but we are still able to make a good prediction. For that we should calculate the
minimal number of JEPs required to explain every object from the set. For the
assumption that Elephant is made by Nature, one requires 2 JEPs to explain
every object from the context (a — N; m — H). For the assumption that Elephant
is made by Human, one requires 3 JEPs (a,g — N; a,1 — N; cm — H). Thus we
could say that although both assumptions are possible, the first one is more
simple (require only 2 JEPs for explaining every object from the context) and
the Elephant should be classified to class Nature.

3.2 The New Approach

We have a pattern context (G, (D,M),d) and a set of classes K. Every object in
G can either have a class from K or no class, denoted as ‘?7’. A labeling function
¢ : G — KU{?} attributes an object g to a class k. Given a context (G, (D,M),d),
a set of classes K and a labeling function &, one can derive a set of JEPs named
H. A system of JEPs refers to a set of all JEPs, derived from a certain context,
a certain set of classes, and a certain ¢ function.

Definition 10. A coverage of a system of JEPs H is the set of objects, attributed
to some class and described by at least one JEP from H,
Coverage(H) = {g € G|¢(g) #'? and 3h € H,h C g°}.

Definition 11. A covering set of JEPs denoted by H* for a given system of
JEPs H is such that:

- H*CH;
— all objects in Coverage(H) are described by at least one JEP from H*,
Vg € Coverage(H) : Ih* € H* : h* C ¢°

Definition 12. For a given system of JEPs H, a size of a minimal covering set
of JEPs MinCover(H) is the size of a covering set (for the system) with the
minimal number of JEPs among all others covering sets for that system.



Our approach is based on the above definitions. The definitions consider a
JEP only w.r.t. a set of objects described by this JEP. And so any JEP among
JEPs describing the same set of objects can be considered, without changing
the outcome. It is more efficient to mine only closed patterns. Given a context
(G, (D,M),d), one can find a set of concepts and then derive a set of hypotheses
H for a given set of classes and a given £ function. Recall that a hypothesis
d € D is associated to a concept (A, d) and every object in A is labeled by the
same class or by ‘?’. Actually a concept (4, d) will not yield a hypothesis when A
includes two objects g1 and go such that £(g1) #'7, £(g2) #'?" and £(g1) # £(g2).

Now we can explain our classification approach. For every unclassified object
g € G the method proceeds as follows:

1. For every class k; € K, one should change the ¢-function to return class k;
for the object g (instead of ‘?°), £(g) := k;. It leads to changing a system of
JEPs to H;. (For instance, in section 3.1 we assume that Cat and Elephant
are either made by Nature or by Human).

2. For every system of JEPs H; one should calculate its coverage (Coverage(H,)).
If the assumption £(g) := k; is right, all the objects from Coverage(H) and
the object g should be covered by H;. H; is called complete if Coverage(H;) =
Coverage(H) U {g} (In Section 3.1, only the system corresponding to the
assumption that Cat is made by Human was incomplete).

If there is only one complete system then the corresponding class is consid-
ered as a result class (as it was made for Cat in Section 3.1).

3. For every complete system H; one should calculate the size of a minimal
covering set of JEPs (MinCover(H;)).

4. The only system minimizing the size of minimal covering set corresponds
to the predicting label of the object (In Section 3.1, the assumption that
Elephant is made by Nature brings to 2 JEPs in minimal covering set, and
corresponds to the predicted Elephant class, i.e. Nature). If there are more
then one minimizing system then the object is unclassifiable.

The full method will be referred as M1 and the method of only first 2 steps
will be referred as M2. In Section 3.1 Cat can be classified with M1- and M2-
method, contrary the Elephant can be classified with only M1-method.

The task of finding minimal cover is NP-complete [10]. It can be shown that
difference between minimal covering sets sizes (| MinCover(H )—MinCover(H;)|)
of these two systems is often equal to 1. So an approximate solution for the min-
imal cover set problem can significantly the classification quality.

4 Computer Experiments

Section presents computer experiment and the results.

A database "Prediction Toxicity Challenge 2000-2001’2 was used for the ex-
perimentation. It consists of molecules labeled by the chemical toxicity with
respect to rats and mice of different sexes. Although there are some intermedi-
ate labels beside positive and negative. Only positive and negative labels were
considered. In Table 4 the sizes of training and test sets are shown.

3 http://www.predictive-toxicology.org/ptc/



Male Rats|Female Rats|Male Mice|Female Mice
Positives Examples 69 63 68 79
Negatives Examples 192 229 207 206
Test set Positives Examples 84 63 55 66
Test set Negatives Examples 198 219 227 216

Table 4: Numbers of positives and negatives examples in the databases.

One of the way to describe a molecule for applying FCA is to consider it as a
graph, where vertices are atoms and edges are bonds between atoms. Then every
molecule can be considered as the set of frequent subgraphs, included into the
molecule graph. Frequent subgraph means that it is at least present in a certain
number of molecules graphs. After converting a set of molecules into graphs, one
could use different frequent graph miners [11,12] to find all frequent subgraphs.
Further a frequency limit will be given as percent of the whole molecule set.

To realize M1-classifier one needs a solver for the minimal cover set problem.
A greedy algorithm was used to solve the problem approximately. On every
iteration the algorithm selects the set, covering the maximal number of uncovered
elements. Algorithm stops when all elements are covered by the selected sets.
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Fig. 1: The Classification Results.

The results for different frequency limit on the database of male rats are
shown on Figure 1la and results for female mice are shown on Figure 1b, results
for females rats and males mice databases are not shown for the sake of space.
Every point on the plots corresponds to the accuracy and coverage of some
classifier, while the molecule is considered as a set of frequent substructure. The
classifier and the frequency limit are written in the legend.

The quality of M2-classifier is usually higher than the quality of Cl-classifier,
whereas coverage of M2-classifier is decreasing with decreasing of frequency limit
(increasing the length of description). M2-classifier refers only to the coverage of
a system of hypotheses, thus the coverage is an important measure for the clas-
sification. The coverage of M1-classifier is much higher then coverage of classical
classifier, but the accuracy is worse then for the classical approach, especially
in the case of low frequency limit (long description). This could mean that ei-
ther Ml-classifier is over-learned (it became too specific to training set) or it
is important for the algorithm to use an exact solution for minimal cover set
problem. As it was mentioned in the step 3 of our approach we need to solve a
minimum cover set problem, but for the sake of efficiency the greedy algorithm



was used instead of the exact solution. With decreasing of frequency limit the
size of minimal cover is increasing, and so an absolute error in defining the size
of the minimal cover is increasing as well.

5 Conclusion

In the paper a new approach to classification was suggested. The quality of this
approach was checked and it was shown that the number of objects covered by
a system of hypothesis is an important characteristic for classification task.

Although the new approach classifies more objects than the classical ap-
proach, in some situations it has worse classification quality. One of the possible
reasons is an approximate solution for the minimal cover problem. The influence
of the approximate minimal cover problem solution should be checked.
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