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Second Australian Workshop on Artificial Intelligence in 
Health (AIH 2012) 

PREFACE 

Sankalp Khanna1, 2, Abdul Sattar2, David Hansen1 

1
 The Australian e-Health Research Centre, RBWH, Herston, Australia 

{Sankalp.Khanna, David.Hansen}@csiro.au 
2 

Institute for Integrated and Intelligent Systems, Griffith University, Australia 
A.Sattar@griffith.edu.au 

1 Motivation behind the workshop series 

The business of health service delivery is a complex one. Employing over 
850,000 people, and delivering services to 21.3 million residents, the Austra-
lian healthcare system is currently struggling to deal with increasing demand 
for services, and an acute shortage of skilled professionals. The National e-
Health Strategy drives a nationwide agenda to provide the infrastructure and 
tools required to support the planning, management and delivery of health 
care services. National initiatives such as the National Health Reform Pro-
gram, the National Broadband Network, and the Personally Controlled Elec-
tronic Health Record are accelerating the use of information and communi-
cation technologies in delivering healthcare services. The Australasian Joint 
Conferences on Artificial Intelligence (AI) provide an excellent opportunity to 
bring together artificial intelligence researchers who are working in health 
research.  

Driven by a senior program committee comprising distinguished faculty 
from several Australian universities including Griffith University, the Univer-
sity of New South Wales, University of Newcastle, University of Western 
Sydney, and Macquarie University, and specialist health research organisa-
tions including the CSIRO Australian e-Health Research Centre, the Artificial 
Intelligence in Health workshop series was created in 2011 to bring these 
researchers together as part of Australia’s premier Artificial Intelligence con-
ference. 
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2 AIH 2011 – the First Australian Workshop on Artificial 
Intelligence  

Held for the first time in December 2011, the workshop was the first of its 
kind to bring together scholars and practitioners nationally in the field of 
Artificial Intelligence driven Health Informatics to present and discuss their 
research, share their knowledge and experiences, define key research chal-
lenges and explore possible collaborations to advance e-Health development 
nationally and internationally. The workshop was co-located with the 24th 
Australasian Joint Conference on Artificial Intelligence and was attended by 
25 delegates.  

Of the 16 submissions received, 6 were accepted as Full Papers and 5 as 
Short Papers accompanied with posters. All papers presented at the AIH 
2011 workshop were also invited to revise and submit their manuscripts for 
inclusion in a special issue of the Australasian Medical Journal. Of these, 
seven papers and a letter to the editor were published in the special issue in 
September 2012. 

3 AIH2012 - The Second Australian Workshop on Artificial 
Intelligence  

The Second Australian Workshop on Artificial Intelligence (AIH 2012) is being 
held in conjunction with the 25th Australasian Joint Conference on Artificial 
Intelligence (AI 2012) in Sydney, Australia, on the 4th of December, 2012.  
The Call for Papers received an excellent response this year. All submitted 
papers went through a rigorous review process. Of these, 6 full papers and 3 
short papers have been accepted for presentation in the workshop and for 
publication in these CEUR proceedings. The workshop will also feature three 
keynote addresses and a panel discussion on the topic “AI in Health: the 3 
Big Challenges”. 

This year again, the workshop is offering 4 travel scholarships of $250 
each to students who were first authors of accepted papers. A best paper 
prize of $250 will also be awarded on the workshop day. Both prizes have 
been sponsored by the CSIRO Australian e-Health Research Centre. 
All accepted full papers and short papers will be also invited to extend and 
reformat their papers for publication in a special issue of the Australasian 
Medical Journal (www.amj.net.au). The journal is indexed on the following 
databases: DOAJ, EBSCO, Genamics journalseek, ProQuest, Index Copernicus, 
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Open J-Gate, Intute, Global health and CAB Abstracts databases, MedWorm, 
Scopus, Socolar, PMC, PubMed. 
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Technology in Healthcare : Myths and Realities 

Keynote Address 

Dr. Jia-Yee Lee 

 National Information and Communications Technology Australia Ltd (NICTA), Australia 
jia-yee.lee@nicta.com.au 

 

Speaker Profile 

Dr Jia-Yee Lee is the Director of the Health 
and Life Science Business Team at National 
ICT Australia Ltd. She manages the business, 
commercial and research activities of the 
NICTA groups in Diagnostic and Computa-
tional Genomics, Biomedical Informatics, 
Portable Motion Analytics and Bio-Imaging 
Analytics. Prior to joining NICTA, Jia-Yee 
spent 10 years in the management consulting 
sector providing leadership in developing and 
implementing strategies and operational 
plans that improved business outcomes for 
clients in government, ICT, and healthcare 
sectors. Her business plans have led to international and national invest-
ments into Australian-based start-ups. Jia-Yee has extensive experience as a 
project manager working on complex multi-disciplinary and multi-million 
dollar programs funded by State and Commonwealth governments. Her e-
health experience includes stakeholder engagement with clinicians and lead-
ing technical teams to implement a range of commercial web-based systems 
for the healthcare and medical research sectors. With more than 20 years in 
medical research, Jia-Yee has led programs at MacFarlane Burnet Centre 
(now "Burnet Institute") and the Victorian Infectious Diseases Reference 
Laboratory, Melbourne Health. Her research into hepatitis B virus and rubella 
virus was funded by the National Health and Medical Research Council of 
Australia. Jia-Yee’s research skills include molecular and diagnostic virology, 
and electron and confocal microscopy. Jia-Yee has a PhD from the University 
of Melbourne and a MBA from Melbourne Business School. 
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Driving Digital Productivity in Australian Health Services 

Keynote Address 

Sankalp Khanna 

The Australian e-Health Research Centre, RBWH, Herston, Australia 
Sankalp.Khanna@csiro.au 

 

Speaker Profile 

Sankalp is a Postdoctoral Fellow at the Aus-
tralian e-Health Research Centre, the leading 
national research facility applying information 
and communication technology to improve 
health services and clinical treatment for Aus-
tralians. As a member of the Forecasting and 
Scheduling team, he is actively engaged in pro-
jects in the areas of planning and optimization, 
patient flow analytics, prediction and forecast-
ing, and predictive scheduling, all aimed at em-
ploying artificial intelligence to improve the 
efficiency of the health system.  

 
His research interests include Applied Artificial Intelligence, Prediction 

and Forecasting, Planning and Scheduling, Multi Agent Systems, Distributed 
Constraint Reasoning, and Decision Making and Learning under Uncertainty.  

 
Sankalp completed a PhD in 2010 looking at intelligent techniques to 

model and optimise the complex, dynamic and distributed processes of Elec-
tive Surgery Scheduling. He was the recipient of a state award for out-
standing student achievement in 2006. He has co-authored several journal 
and conference papers and editorials, and served on the program and organ-
ising committees of numerous national and international conferences and 
workshops. He is a member of the ACS, HISA, IEEE and AAAI societies.   

 
Sankalp was also the founding workshop chair of this AI in Health work-

shop series. 
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Smart Analytics in Health 

Keynote Address 

Christian Guttman 

IBM Research, Australia 

Christian.guttmann@au1.ibm.com 

Speaker Profile 

Dr. Guttmann leads and defines projects 
around health care at the newly established IBM 
Research labs in Melbourne – the 11th lab of IBM 
Research worldwide. One focus of Guttmann’s 
work is to build smarter analytics that enables 
health care entities (doctors, nurses, hospitals, 
pharmacies, etc) to collaborate more efficiently 
in complex environments. His work addresses 
the information and communication challenges 
faced by tomorrow’s world of health care: How can we create and apply 
smarter collaborative health care technologies that cope with the tsunami of 
chronic diseases. 

 
Prior to IBM, Dr. Guttmann led the research theme on health care and 

disaster at the Etisalat British Telecom Innovation Centre (EBTIC). The theme 
partnered with major stakeholders, including governmental health 
authorities and ministries. He has been a research fellow at the Faculty of 
Medicine, Nursing and Health Sciences at Monash University, where he 
researched how intelligent systems can improve collaborative care (done in 
together with primary health care providers). He worked also in industrial 
projects with HP and Ericsson.  

 
Dr. Guttmann holds a PhD degree from Monash University, two Master 

degrees from Paderborn University (Germany) and the Royal Institute of 
Technology (Sweden), and a psychology degree from Stockholm University 
(Sweden). He organised major conferences and workshops, edited two books 
on intelligent agent technologies, and co-authored over 30 articles in leading 
conferences and journals. 
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An investigation into the types of drug related problems 

that can and cannot be identified by commercial 

medication review software 

Colin Curtain, Ivan Bindoff, Juanita Westbury and Gregory Peterson 

Unit for Medication Outcomes Research and Education 

School of Pharmacy 

University of Tasmania 

{Colin.Curtain, Ivan.Bindoff, Juanita.Westbury, G.Peterson}@utas.edu.au 

Abstract. 

A commercially used expert system using multiple-classification ripple-

down rules applied to the domain of pharmacist-conducted home medicines re-

view was examined. The system was capable of detecting a wide range of po-

tential drug-related problems. The system identified the same problems as 

pharmacists in many of the cases. Problems identified by pharmacists but not by 

the system may be related to missing information or information outside the 

domain model. Problems identified by the system but not by pharmacists may 

be associated with system consistency and perhaps human oversight or human 

selective prioritization. Problems identified by the system were considered rele-

vant even though the system identified a larger number of problems than human 

counterparts. 

Keywords: Clinical decision support system, multiple-classification ripple-

down rules, expert system, pharmacy practice 

1 Introduction 

A drug-related problem (DRP) can be broadly defined as “…an event or circum-

stance involving drug therapy that actually or potentially interferes with desired health 

outcomes”[1] DRPs comprise a spectrum of problems including over- or under-

dosage,  drug-drug or drug-disease interactions, untreated disease and drug toxicity. 

Patient health education and compliance with therapy may be sub-standard and sub-

sequently also be considered as drug-related problems. DRPs can be dangerous; For 

instance, a marginally high daily dose of warfarin has the potential to cause fatal 

bleeding. 

Home medicines review (HMR) is a Commonwealth Government funded service 

conducted by accredited pharmacists to identify and address DRPs among eligible 

patients [2]. The main aims of the service are to enhance patient knowledge, quality 

use of medicines, reconcile health professional awareness of actual medication use 

and, ultimately, improve patient quality of life. The HMR service is a collaborative 
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activity between health professionals, typically accredited pharmacists, general practi-

tioners (GPs), and patients. Since its inception in 2001 the service has steadily grown 

with nearly 80,000 HMRs funded in the 2011/2012 period [3]. 

An HMR is initiated for eligible consenting patients by a GP. Eligible patients are 

identified if they regularly take 5 or more medications among other criteria [2]. An 

HMR accredited pharmacist then obtains medical information from the GP, covering 

medical history, current medications and pathology. 

A core component of an HMR is an interview between the pharmacist and the pa-

tient, with interview typically conducted in the patient’s home. The interview, elicits 

additional information such as: actual medication use, additional non-prescribed med-

ications, an understanding of the patient’s motivation behind actual rather than di-

rected medication use, and the patient’s health and medication knowledge [4]. This 

process allows for a deeper understanding of the patient’s situation and gives the 

pharmacist insight into cultural or language barriers, physical and economic limita-

tions and family support. 

The amassed information is reviewed by the pharmacist to identify actual and po-

tential DRPs. The pharmacist writes a report of findings for the patient’s GP, which 

includes recommendations to resolve any actual or potential problems. Consultation 

between the GP and the patient culminates in an actionable medication management 

plan designed to trial changes to existing therapy, and ideally, lead to improved medi-

cation use and improved patient health outcomes [4]. 

An important component is the professional skill of the pharmacist to be able to 

identify clinically relevant DRPs from the available information. This requires a wide 

scope of knowledge, not only of medications, but of evidence-based guidelines and 

contemporary management of a variety of medical conditions. 

Evidence-based guidelines can be difficult to implement due to their apparent 

complexity. An example is provided from Basger et al.’s Prescribing Indicators in 

Elderly Australians: “Patient at high risk of a cardiovascular event (b) is taking an 

HMG-CoA reductase inhibitor (statin)”[5] If a patient did not meet this criterion this 

would be considered a DRP. It can be reasonably expected that pharmacists would be 

aware of statin medications currently available in Australia, in October 2012 these 

were: atorvastatin, fluvastatin, pravastatin, rosuvastatin, and simvastatin. Note (b) 

specifies those patients at high risk of cardiovascular event: “age>75 years, sympto-

matic cardiovascular disease (angina, MI[myocardial infarction], previous coronary 

revascularization procedure, heart failure, stroke, TIA[transient ischemic attack], 

PVD[peripheral vascular disease], genetic lipid disorder, diabetes and evidence of 

renal disease (microalbuminuria and/or proteinuria and/or GFR[glomerular filtration 

rate]<60ml/min”. Determining patients at high risk of cardiovascular events is more 

problematic and requires sufficient additional information to make such a determina-

tion. One obvious problem is the amount of information that needs to be screened, 

both within the guideline text and the patient data, to identify appropriate patients. 

A commercial product developed by Medscope, Medication Review Mentor 

(MRM)[6], incorporates a clinical decision support (CDSS) tool to assist with the 

detection of DRPs. MRM utilizes a knowledge-based system to detect DRPs and pro-

vide recommendations for their resolution. This knowledge-based system uses the 
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multiple classification ripple-down rules (MCRDR) method and was based on the 

work of Bindoff et al. who applied this approach to the knowledge domain of medica-

tion reviews [7, 8]. The ripple-down rules method was considered appropriate as 

knowledge could be gradually added to the knowledge base, broadening the scope and 

refining existing knowledge as the system was being used [7, 9]. Bindoff et al. sug-

gested intelligent decision support software developed for this knowledge domain 

may improve the quality and consistency of medication reviews. 

No prior research had been undertaken to determine the clinical decision support 

capacity of this commercial software, apart from contemporary research by the au-

thors. This contemporary research by the authors assessed opinions from pharmacolo-

gy experts and had determined that MRM is capable of identifying clinically relevant 

DRPs [10-12]. 

This evaluation attempts to provide light on the scope of DRPs that can be identi-

fied by this software by presenting summary counts and examples of the types of 

problems that were identified by MRM and by pharmacists. This paper evaluates the 

similarities and differences between pharmacist findings and MRM findings more in 

terms of a qualitative comparison by highlighting common findings, extremes of dif-

ference and discussing the possible advantages and limitations of the software, as well 

as discussing areas for potential improvements.  

2 How MRM works 

The decision support component of MRM is a knowledge-based system which uses 

MCRDR as its inference engine. MCRDR provides the knowledge engineer a way to 

incrementally improve the quality of the knowledge base through the addition of ei-

ther new rules – which are added when the system fails to identify a DRP, or refine-

ments to existing rules – which are added when the system incorrectly identifies an 

inappropriate DRP. The system’s knowledge base is managed by medication review 

experts, who regularly review cases, examining the findings of the system for that 

case, and then adding/refining rules until the system produces a wholly correct set of 

findings for that case [8]. The validity of new rules is always being ensured, as the 

system identifies any conflicts which may arise from the addition of the new rule, and 

prompts the pharmacist to refine their rule until no further conflicts arise. 

3 Methods 

Australia-wide data collected during 2008 for a previous project, examining the 

economic value of HMRs, was used for this study [13]. The data contained patient 

demographics, medications, diagnoses and pathology results for 570 community-

dwelling patients aged 65 years old and older. The 570 HMRs were obtained from 

148 different pharmacists. Supplementing this data were the original reviewing phar-

macists’ findings, detailing pharmacist-identified DRPs and recommendations. 

The HMR data were entered into MRM and DRPs identified by MRM were rec-

orded. MRM utilized a wide range of information including basic patient de-
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mographics such as age and gender, medication type including strength, directions 

and daily dose. MRM could calculate daily dose from strength and directions in many 

cases. Duration of use of medication could be entered, which included options of less 

than 3 months and more than 12 months. Medications were assigned Anatomic Ther-

apeutic Chemical classifications (ATC) [14]. ATC is a five-tier hierarchical classifica-

tion system allowing medications with similar properties to be grouped together in 

chemical classes which are then grouped into therapeutic categories. 

Diagnoses could be entered and were based on the ICPC2 classifications [15]. The 

ICPC2 classification system was also hierarchical, grouping diagnoses under similar 

categories. Diagnoses could be assigned temporal context as recent, ongoing or past 

history. Medication allergies and general observations including height, weight and 

blood pressure could be entered. A wide range of pathology readings could be en-

tered, including biochemical and hematological data. 

At the time of the data entry and collections of results, August 2011, MRM con-

tained approximately 1800 rules [16]. Rule development was undertaken by a phar-

macist with expertise in both clinical pharmacology and HMRs [6]. 

Direct comparison of the DRPs identified by MRM and those identified by the 

original pharmacists was not possible due to the individual textual nature of each 

DRP. Each DRP identified by either the pharmacist or MRM was mapped to a con-

cept (defined here as a theme) that described the DRP in sufficient detail to allow 

comparisons of similarity and difference between pharmacists and MRM. The themes 

often described the type of drug or disease and other relevant factors involved. The 

development of a list of themes and the mapping of DRPs to themes was performed 

manually by the author, a qualified pharmacist. 

Examples of the text of two DRPs identified by a pharmacist and by MRM in the 

same patient are shown in Table 1. These DRPs were assigned the theme Hyper-

lipidemia under/untreated, which captured the basic problem identified within the text 

of each DRP. 

Table 1. Example DRP text 

MRM Pharmacist 

Patient has elevated triglycerides and is 

only taking a statin. Additional treatment, 

such as a fibrate, may be worth consider-

ing 

Patient’s cholesterol and triglycerides 

remain elevated despite Lipitor [statin]. 

This may be due to poor compliance or 

an inadequate dose 

 

These themes provided a common language for comparison of the DRPs found by 

the original pharmacist reviewer and MRM. The initial themes were created where at 

least two of three published prescribing guidelines for the elderly [5, 17, 18] were in 

agreement concerning the same types of DRPs. DRPs from MRM and pharmacists 

were mapped to this table of themes. Further themes were added if both pharmacist 

and MRM DRPs could be mapped to any remaining ‘non-agreement’ prescribing 

guideline DRPs. New themes were developed for remaining pharmacist and MRM 

DRPs where concepts were clearly similar but were not contained within prescribing 

guidelines. These new themes were very broad such as Vitamin, no indication, and 
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may have included the DOCUMENT DRP classification text such as, Therapeutic 

dose too high [19]. The remaining DRPs were unique to either pharmacists or MRM 

and themes were provided where possible, such as, Skin disease (un)dertreated – 

pharmacist only DRP. Lastly miscellaneous otherwise unclassifiable DRPs were as-

signed Other DRP pharmacist and Other DRP MRM. 

A list of 129 themes was developed. Many themes described disease states and/or 

drug classes describing identified DRPs in general terms. A descriptive analysis of the 

themes was performed. 

The number of unique themes found in each patient was considered more im-

portant than the raw number of themes found in each patient. That is where two DRPs 

matched the same theme in the same patient, that theme was counted once. The rea-

son behind this decision was to compare the number of different types of conceptual 

problems that could be identified across patients rather than raw numbers across pa-

tients. 

Each theme identified in each patient was allocated into one of three categories: 1. 

Identified by pharmacists only, 2. Identified by MRM only or 3. Identified by both. 

4 Results 

The patient cohort was predominantly female, with an average age of 80 and an aver-

age of 12 medications and 9 diagnoses, as described in Table 2. 

Table 2. Patient Demographics 

Patient (N = 570) Demographics 

Age (years) 79.6 ± 6.7 

Gender Male 234  : Female 336 

Number of medications 12.0 ± 4.4 

Number of diagnoses 9.1 ± 5.2 

 

Pharmacists identified a total of 2020 DRPs, an average of 3.5±1.8 per patient, with a 

range of 0 to 13 DRPs. MRM identified 3209 DRPs, of which 256 were excluded due 

to duplicated findings, leaving 2953 MRM DRPs, and an average of 5.2±2.8 per pa-

tient, ranging from 0 to 16 DRPs. 

The 2953 MRM DRPs were able to be assigned to 100 different themes that de-

scribed in general terms the central issue of each of the DRPs. Similarly, the 2020 

pharmacist DRPs were able to be assigned to 119 different themes. Ninety of these 

themes which were identified by pharmacists were also able to be identified by MRM. 

Within these 90 themes, the software was able to identify the same issues as the 

pharmacists in one or more of the same patients for 68 particular themes. 

The number of different themes identified by MRM or by pharmacists per patient 

was considered more important than the raw totals. The 2953 MRM DRPs were ag-

gregated into 2854 themes. Pharmacist DRPs which were clearly identifiable as com-

pliance or non-classifiable cost-related problems and outside the scope of MRM’s 
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ability to identify were excluded, leaving 1726 pharmacist DRPs which were aggre-

gated into 1680 themes. 

MRM was able to identify the same themes as identified by pharmacists in the 

same patients 389 times, a 23% (389/1680) overlap of pharmacist findings by theme 

and patient. This then left 1291 themes identified by pharmacists only and 2465 

themes identified by MRM only. For each patient a Jaccard coefficient was calculated 

as the number of themes in common divided by the number of different themes found 

by either MRM or pharmacists. For the 570 patients Jaccard coefficients ranged from 

a minimum of 0 to a maximum of 1, with a mean of 0.092 ± 0.117. 

The top five themes by number of patients in common are shown in Table 3. Not 

surprisingly several of the most common themes found align with common health 

conditions in this cohort, namely hyperlipidemia and osteoporosis. 

Some of the problems that can be identified by the software are shown in Tables 3 

and 4. Table 3 shows there is some overlap of the ability of MRM to find the same 

kind of problems as pharmacists in the same patients. However, both pharmacists and 

MRM find many instances of the same problem in different patients. Table 4 shows 

examples of some of the themes at the extremes of overlap. The two example themes 

calcium-channel blocker and reflux and anti-lipidemic drug, no indication were iden-

tified in many patients by MRM but only once each by pharmacists. Similarly, the 

two example themes vitamin, no indication and combine medications into combina-

tion product illustrate that pharmacists identified many patients with particular prob-

lems that MRM could not identify. 

Table 3. Top five themes by patients in common 

Top five themes by cases in 

common 

Pa-

tients 

MRM 

found 

Patients 

pharma-

cist found 

Patients 

in com-

mon 

Total  

Patients: 

pharmacists 

+ MRM 

Osteoporosis (or risk) may 

require calcium and or vita-

min D 

137 117 49 205 

Renal impairment and using 

(or check dose for) renally 

excreted drugs 

122 48 24 146 

Hyperlipidemia un-

der/untreated 

83 31 20 94 

Sedatives long-acting or seda-

tive long term 

55 31 18 68 

NSAID not recommended 

(heart disease/risk of 

bleed/other) 

59 28 17 70 

 

AIH 2012

16



Table 4. Themes skewed in favour of MRM or pharmacists 

Skewed themes with  cases 

in common 

Patients 

MRM 

found 

Patients 

pharma-

cist found 

Patients 

in  

common 

Total 

 Patients: 

pharmacists 

+ MRM 

Calcium channel blocker and 

reflux 

120 1 1 120  

Anti-lipidemic drug, no indi-

cation 

56 1 1 56 

Vitamin, no indication 1 6 1 6 

Combine medications into 

combination product 

3 10 1 12 

 

5 Discussion 

The majority of the unique pharmacist themes involved non-classifiable, mostly 

drug cost and compliance, problems. These pharmacist-only themes were not cap-

tured in the knowledge domain model. Although the majority of unique MRM themes 

could have been identified by pharmacists they were not. This was not due to lack of 

information on the part of pharmacists but more likely to be due to pharmacists hav-

ing additional knowledge that rendered these issues moot. It is also possible that 

pharmacists were not aware of or simply missed these particular issues. Alternatively, 

the software may have produced erroneous findings. 

The wide variety of variables including temporal context encapsulated in the model 

were manifested in the broad scope of problems that could be identified by the soft-

ware. For 68 themes (out of 100 themes identified by MRM) the software showed the 

ability to identify the same issues that pharmacists could find in the same patients. In 

some circumstances half to all instances of a theme identified by pharmacists was also 

identified by MRM; most of the themes shown in Table 3 are examples of this. 

The broad scope of themes and similarity of identification of themes in the same 

patients as pharmacists is encouraging; however, there were many patients who had 

particular problems identified by either MRM or pharmacists but not by both. Further, 

twenty-two themes were identified by MRM and by pharmacists without any patients 

in common. Several explanations are posited to account for these differences. 

The first and main point is knowledge not captured and subsequently not able to be 

utilized by the software. Extending this point, knowledge may have been available but 

not entered into the software because it was not recorded anywhere by either the pa-

tient’s GP or the reviewing pharmacist. Several themes stated some drugs had no 

indication for use because no suitable diagnosis was assigned to those patients. An 

example in Table 4, anti-lipidemic drug, no indication, shows MRM found many 

instances of this potential problem but pharmacists did not identify this as an issue. 

Does this mean pharmacists were aware of the indication for the drug? Or does it 

suggest pharmacists missed the opportunity to identify unnecessary medication?  
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Overall MRM found more problems than pharmacists. It is not unreasonable to 

suggest pharmacists may lack consistency in identifying DRPs. Correspondingly, it is 

not unreasonable to suggest MRM exemplifies consistency, as it is after all computer 

software. Several studies examining clinical decision support, including two proto-

types on which MRM was based, have identified that humans lack consistency or lack 

the capacity to identify all relevant problems in contrast with the software [7, 8, 20]. 

Additionally, pharmacists may have focused on more important DRPs through priori-

tizing more pertinent DRP findings and ignoring lesser issues. 

MRM did find substantially more problems than pharmacists, which raises some 

concerns about potential alert fatigue, a known limitation of many clinical decision 

support systems, wherein the system identifies so many irrelevant problems that the 

user simply ignores it entirely. It should be noted a portion of MRMs findings were 

duplications, 256 of 3209 DRPs. The central requirement and unfortunately concomi-

tant problem of clinical decision support is the need to have sufficient information to 

present findings in context of the patient’s current clinical situation. The application 

of MCRDR attempts to address the problem of context through incorporation of an 

extensive array of variables integrated with a knowledge base of many patient cases 

and inference rules. 

However, it appears that MRM may not suffer from alert fatigue, as separate re-

search that we have conducted, concerning the clinical relevance of the DRP findings 

of MRM and of pharmacists, was recently completed [11]. In that study experts in the 

field were of the opinion that both MRM and pharmacists identified clinically rele-

vant DRPs [11]. That study supports the position that MRM may be more consistent 

than pharmacists by identifying a greater number of issues that pharmacists did not 

identify. Secondly, and importantly, despite the larger number of issues identified by 

MRM, lack of clinical relevance did not appear to be a factor. 

A specific advantage of this implementation of MCRDR was the use of case-based 

reasoning, allowing the knowledge domain expert to readily add new rules and refine 

existing rules. This method incrementally increases the precision of rules in context of 

the uniquely varied situations encountered through amassing knowledge of individual 

patients. This is an important point, as the development of new medications, or new 

applications of existing medications, and ever expanding medical knowledge needs to 

be to be incorporated into such software on an ongoing basis to maintain the rele-

vance of the knowledge base. 

Due to the ability to easily add and refine the rules and knowledge-base a follow-

up study may produce different, likely improved results. A subsequent investigation 

applying the same patient cases to the software and comparing the differences may be 

performed to determine whether DRP identification can be further enhanced over 

time. 

MRM appears to work well in the HMR domain, but improvements may include a 

greater extent of variables such as compliance or cost-related concepts to widen prob-

lem detection scope as well as increasing accuracy of problem identification. Rule 

refinement to reduce the occurrence of duplicated DRPs is warranted. Another poten-

tial issue involves medication classification which was based on the ATC classifica-

tion system. The ATC classification system included codes for combination products. 
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There may be limitations when attempting to create rules based on individual ingredi-

ents within combination products as each individual ingredient is not uniquely identi-

fied. Additionally, with the impending implementation of national electronic health 

record standards, data entry limitations such as transcription errors or missed data 

entry may be minimized by implementing these standards. 

6 Conclusion 

The use of ripple-down rules in this software did perform well in the complex and 

detailed HMR knowledge domain. It showed a reasonable degree of similarity with 

the human experts in the both the range of problem types that could be identified 

within its scope of knowledge, and in the frequency of problems found. MRM cannot 

find some of the problems that pharmacists could find, some things will always be 

missed because of incomplete data.  

The truly interesting aspect is the software’s capacity to identify more problems 

than pharmacists. This capacity to identify more problems did not appear to involve 

lack of relevance, but it is likely to be a strong indication of the consistent methodical 

ability of the machine to identify problems. This finding alone justifies the use of such 

a tool.  MRM cannot replace pharmacists but may help pharmacists make good deci-

sions and avoid missing important problems. 
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Abstract. XCS, a Genetic Based Machine Learning model that com-
bines reinforcement learning with evolutionary algorithms to evolve a
population of classifiers in the form of condition-action rules, has been
used successfully for many classification tasks. However, like many other
machine learning algorithms, XCS becomes less effective when it is ap-
plied to high-dimensional data sets. In this paper, we present an anal-
ysis of two XCS extensions – FS-XCS and GRD-XCS – in an attempt
to overcome the dimensionality issue. FS-XCS is a standard combina-
tion of a feature selection method and XCS. As for GRD-XCS, we use
feature quality information to bias the evolutionary operators without
removing any features from the data sets. Comprehensive numerical sim-
ulation experiments show that both approaches can effectively enhance
the learning performance of XCS. While GRD-XCS has obtained signif-
icantly more accurate classification results than FS-XCS, the latter has
produced much quicker execution time than the former.

1 Introduction

Classification tasks arise in many areas of science and engineering. One such ex-
ample is disease classification based on gene expression profiles in bioinformatics.
Gene expression profiles provide important insights into, and further our under-
standing of, biological processes. They are key tools used in medical diagnosis,
treatment, and drug design [21]. From a clinical perspective, the classification
of gene expression data is an important problem and a very active research area
(see [3] for a review). DNA microarray technology has advanced a great deal
in recent years. It is possible to simultaneously measure the expression levels
of thousands of genes under particular experimental environments and condi-
tions [22]. However, the number of samples tends to be much smaller than the
number of genes (features)1. Consequently, the high dimensionality of a given
1 Generally speaking, the number of samples must be larger than the number of fea-

tures for good classification performance.
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data set poses many statistical and analytical challenges, which often degrade
the performance of classification methods used.

XCS – the eXtended Classifier System – is a Genetic Based Machine Learning
(GBML) method that has been successfully used for a wide variety of classifi-
cation applications, including medical data mining. XCS can learn from sample
data in multiple iterative cycles. This is a great characteristic, but it also ex-
hibits two common pitfalls that most classification methods have: sensitivity to
data noise and “the curse of dimensionality” [22]. Both issues can easily jeopar-
dise the learning process. A well-known solution is to use a cleansing stage. For
example, feature selection/ranking techniques can remove unnecessary features
from the data set. Reducing the dimensionality and removing noisy features can
improve learning performance. Nevertheless, there exist data sets with highly
co-expressed features, such as those studying Epistasis phenomena, that do not
allow effective feature reduction. Examples of this include protein structure pre-
diction and protein-protein interaction.

In this paper, we study two extensions of XCS inspired by feature selection
techniques commonly used in machine learning: FS-XCS with effective feature
reduction in place and GRD-XCS [1] that does not remove any features. The pro-
posed model uses some prior knowledge, provided by a feature ranking method,
to bias the discovery operators of XCS. A series of comprehensive numerical
experiments on high-dimensional medical data sets has been conducted. The re-
sults of these simulation experiments suggest that both extensions can effectively
enhance the XCS’s learning performance. While GRD-XCS has performed sig-
nificantly more accurate than FS-XCS, the latter is shown to have much quicker
execution time compared to the former.

The remainder of this paper is organised as follows: Section 2 briefly describes
some related work on XCS. In Section 3, we present the details of our proposed
model. Section 4 discusses the experimental settings and results. Finally, we draw
conclusion and highlight future possibilities in Section 5.

2 Related Work

GBML concerns applying evolutionary algorithms (EAs) to machine learning.
EAs belong to the family of nature-inspired optimisation algorithms [9, 10]. As
a manifestation of population-based, stochastic search algorithms that mimic
natural evolution, EAs use genetic operators such as crossover and mutation for
the search process to generate new solutions through a repeated application of
variation and selection [11].

It is well documented in the evolutionary computation literature that the im-
plementation of EA’s genetic operators can influence the trajectory of the evolv-
ing population. However, there has been a paucity of studies focused specifically
on the impact of selected evolutionary operator implementations in Learning
Classifier Systems (LCSs), a type of GBML algorithm for rule induction. Here,
we briefly describe some of the key studies related to LCSs in general and XCS
– a Michigan-style LCS – in particular.
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FS-XCS vs. GRD-XCS – A comparative study 3

In one of the first studies focused on the rule discovery component specifically
for XCS, Butz et al. [7] have shown that uniform crossover can ensure success-
ful learning in many tasks. In subsequent work, Butz et al. [6] introduced an
informed crossover operator, which extended the usual uniform operator such
that exchanges of effective building blocks occurred. This approach helped to
avoid the over-generalisation phenomena inherent in XCS [14]. In other work,
Bacardit et al. [4] customised the GAssist crossover operator to switch between
the standard crossover or a new simple crossover, SX. The SX operator uses a
heuristic selection approach to take a minimum number of rules from the par-
ents (more than two), which can obtain maximum accuracy. Morales-Ortigosa et
al. [16] have also proposed a new XCS crossover operator, BLX, which allowed
for the creation of multiple offspring with a diversity parameter to control differ-
ences between offspring and parents. In a more comprehensive overview paper,
Morales-Ortigosa et al. [17] presented a systematic experimental analysis of the
rule discovery component in LCSs. Subsequently, they developed crossover op-
erators to enhance the discovery component based on evolution strategies with
significant performance improvements.

Other work focused on biased evolutionary operators in LCSs include the
work of Jos-Revuelta [18], who introduced a hybridised Genetic Algorithm-Tabu
Search (GA-TS) method that employed modified mutation and crossover oper-
ators. Here, the operator probabilities were tuned by analysing all the fitness
values of individuals during the evolution process. Wang et al. [20] used Infor-
mation Gain as part of the fitness function in an EA. They reported improved
results when comparing their model to other machine learning algorithms. Re-
cently, Huerta et al. [5] combined linear discriminant analysis with a GA to
evaluate the fitness of individuals and associated discriminate coefficients for
crossover and mutation operators. Moore et al. [15] argued that biasing the
initial population, based on expert knowledge preprocessing, would lead to im-
proved performance of the evolutionary based model. In their approach, a statis-
tical method, Tuned ReliefF, was used to determine the dependencies between
features to seed the initial population. A modified fitness function and a new
guided mutation operator based on features dependency was also introduced,
leading to significantly improved performance.

3 The Model

We have designed and developed two extensions of XCS, both inspired by fea-
ture selection techniques commonly used in machine learning. The first exten-
sion, which we call FS-XCS, is a combination of a Feature Selection method and
the original XCS. The second extension, which we call GRD-XCS, incorporates
a probabilistically Guided Rule Discovery mechanism for FS-XCS. The moti-
vation behind both extensions was to improve classifier performance (in terms
of accuracy and execution time), especially for high-dimensional classification
problems.
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4 Mani Abedini, Michael Kirley, and Raymond Chiong

Fig. 1. Here, Information Gain has been used to rank the features. The top Ω features
(in this example Ω = 5) are selected and allocated relatively large probability values
∈ [γ, 1]. The RDP vector maintains these values. The probability value of the highest
ranked feature is set to 1.0. Other features receive smaller probability values relative to
their rank (in this example γ =0.5). Features that are not selected based on Information
Gain are assigned a very small probability value (in this example ξ = 0.1).

FS-XCS uses feature ranking methods to reduce the dimension of a given
data set before XCS starts to process the data set. It is a fairly straightfor-
ward hybrid approach. However, in GRD-XCS information gathered from feature
ranking methods is used to build a probability model that biases the evolution-
ary operators of XCS. The feature ranking probability distribution values are
recorded in a Rule Discovery Probability (RDP ) vector. Each value of the RDP
vector (∈ [0, 1.0]) is associated with a corresponding feature. The RDP vector
is then used to bias the feature-wise uniform crossover, mutation, and don’t care
operators, which are part of the XCS rule discovery component.

The actual values in the RDP vector are calculated based on the rank of the
corresponding feature as described below:

RDPi =

⎧⎨
⎩

1−γ
Ω × (Ω − i) + γ if i ≤ Ω

ξ otherwise
(1)

where i represents the rank index in ascending order for the selected top ranked
features Ω. The probability values associated with the top ranked features would
be some relatively large values (∈ [γ, 1]) depending on the feature rank; for the
others a very low probability value ξ is given. Thus, all features have a chance
to participate in the rule discovery process. However, the Ω-top ranked features
have a greater chance of being selected (see Figure 1 for an example).

GRD-XCS uses the probability values recorded in the RDP vector in the pre-
processing phase to bias the evolutionary operators used in the rule discovery
phase of XCS. The modified algorithms describing the crossover, mutation and
don’t care operators in GRD-XCS are very similar to standard XCS operators:

– GRD-XCS crossover operator: This is a hybrid uniform/n-point function. An
additional check of each feature is carried out before the exchange of genetic
material. If Random[0, 1) < RDP [i] then feature i is swapped between the
selected parents (Algorithm 1).
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FS-XCS vs. GRD-XCS – A comparative study 5

Algorithm 1 Guided Uniform Crossover algorithm
Require: Individuals: Cl1,Cl2 ∈[A], Probability Vector: RDP , Crossover Probability:

χ
if Random[0,1) < χ then

for i = 1 To SizeOf(Features) do
if Random[0,1) < RDP [i] then

SWAP(Cl1[i],Cl2[i])
end if

end for
end if

Algorithm 2 Guided Mutation algorithm
Require: Individual: Cl ∈[A], Probability Vector: RDP , Mutation Probability: μ

for i = 1 To SizeOf(Features) do
if Random[0,1) < RDP [i] ×μ then

Mutate(Cl[i])
end if

end for

Algorithm 3 Guided Don’t Care algorithm
Require: Individuals: Cl ∈[A], Probability Vector: RDP , Don’t Care Probability: P#

for i = 1 To SizeOf(Features) do
if Random[0,1) < (1−RDP [i]) ×P# then

P1[i] ← #
end if

end for

– GRD-XCS mutation operator: It uses the RDP vector to determine if feature
i is to undergo mutation; the base-line mutation probability is multiplied by
RDP for each feature. Therefore, the mutation probability is not a uniform
distribution anymore. The more informative features have better chance to
be selected for mutation (Algorithm 2).

– GRD-XCS don’t care operator: In this special mutation operator, the values
in the RDP vector are used in the reverse order. That is, if feature i has
been selected to be mutated and Random[0, 1) < (1−RDP [i]), then feature
i is changed to # (“don’t care”) (see Algorithm 3).

The application of the RDP vector reduces the crossover and mutation prob-
abilities for “uninformative” features. However, it increases the “don’t care” op-
erator probability for the same feature. Therefore, the more informative features
should appear in rules more often than the “uninformative” ones.

4 Experiments and Results

We have conducted a series of independent experiments to compare the perfor-
mance of FS-XCS and GRD-XCS. A suite of feature selection techniques have
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Table 1. Data set details

Data Set #Instances #Features Cross Validation Reference

High-dimensional data sets (Microarray DNA gene expression)
Breast cancer 22 3226 3 [13]
Colon cancer 62 2000 10 [2]
Leukemia cancer 72 7129 10 [12]
Prostate cancer 136 12600 10 [19]

been tested: Correlation based Feature Selection (CFS), Gain Ratio, Informa-
tion Gain, One Rule, ReliefF and Support Vector Machine (SVM). Four DNA
microarray gene expression data sets have been used in the experiments. The
details of these data sets are reported in Table 1.

Our algorithms were implemented in C++, based on the Butz’s XCS code2.
The WEKA package (version 3.6.1)3 was used for feature ranking. All exper-
iments were performed on the VPAC 4 Tango Cluster server. Tango has 111
computing nodes. Each node is equipped with two 2.3 GHz AMD based quad
core Opteron processors, 32GB of RAM and four 320GB hard drives. Tango’s
operating system is the Linux distribution CentOS (version 5).

4.1 Parameter settings

Default parameter values as recommended in [8] have largely been used to config-
ure the underlying XCS model. For parameters specific to our proposed model,
we have carried out a detailed analysis to determine the optimal settings. In
particular, we have tested a range of Ω values Ω = 10, 20, 32, 64, 128, 256 and
population sizes pop size = 500, 1000, 2000, 5000. The analysis suggested that
Ω = 20 with a population size of 2000 can provide an acceptable accuracy level
within reasonable execution time for FS-XCS. As for GRD-XCS, the setting of
Ω = 128 and pop size = 500 was found to have produced the best results. As
such, these parameter values were used for the results presented in Section 4.3.

The limits used in probability value calculations in Equation 1 were set to
γ = 0.5 and ξ = 0.1. In all experiments, the number of iterations was capped at
5000.

4.2 Evaluation

For each scenario (parameter value–data set combination), we performed N -fold
cross validation experiments over 100 trials (see Table 1). The average accuracy
2 The source code is available at the Illinois Genetic Algorithms Laboratory (IlliGAL)

site http://www.illigal.org/
3 Weka 3 is an open source data mining tool (in Java), with a collection of ma-

chine learning algorithms developed by the Machine Learning Group at University
of Waikato – http://www.cs.waikato.ac.nz/ml/weka/

4 Victorian Partnership for Advanced Computing: www.vpac.org
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FS-XCS vs. GRD-XCS – A comparative study 7

Table 2. Average accuracy (measured by AUC values) of the base-line XCS, FS-XCS
and GRD-XCS on all selected microarray gene expression data sets.

base-line XCS FS-XCS GRD-XCS

0.77 0.88 0.98

values for specific parameter combinations have been reported using the Area
Under the ROC Curve – the AUC value. The ROC curve is a graphical way to
depict the tradeoff between the True Positive rate (TPR) on the Y axis and the
False Positive rate (FPR) on the X axis. The AUC values obtained from the
ROC graphs allow for easy comparison between two or more plots. Larger AUC
values represent higher overall accuracy.

Appropriate statistical analyses using paired t-tests were conducted to deter-
mine whether there were statistically significant differences between particular
scenarios in terms of both accuracy and execution time. Scatter plots of the
observed and fitted values and Q-Q plots were used to verify normality assump-
tions. These statistical analyses were performed using the IBM SPSS Statistics
(version 19) software.

4.3 FS-XCS vs. GRD-XCS

To begin with, we have compared the average accuracy of FS-XCS and GRD-
XCS with the base-line XCS (without feature selection) using all the aforemen-
tioned feature ranking methods on the microarray gene expression data sets
listed in Table 1. The results, as shown in Table 2, indicate that GRD-XCS has
an overall better accuracy than FS-XCS: the average FS-XCS accuracy using
various feature selection techniques is 0.88 while the average accuracy of GRD-
XCS using the same feature ranking methods is 0.98. Meanwhile, both FS-XCS
and GRD-XCS are better than the base-line XCS – the latter has managed only
an average accuracy of 0.77. For the rest of this section, we will focus on a
detailed comparison between FS-XCS and GRD-XCS.

Figure 2 shows the AUC values of FS-XCS and GRD-XCS when different
feature ranking methods are used. From the figure, it is clear that GRD-XCS is
significantly more accurate than FS-XCS. The accuracy result of both FS-XCS
and GRD-XCS for every feature ranking method, except Information Gain over
the Breast Cancer data set, is significantly different (p < 0.001).

In Figure 3, FS-XCS is shown to be significantly faster than GRD-XCS (p <
0.001) in terms of execution time. This is much expected since FS-XCS works
with only a fraction of the original data set size (i.e., 20 features) while GRD-XCS
still accepts the entire data set with thousands of features. The only exception
is when Gain Ratio has been applied over the Breast Cancer data set – in this
case there is strong evidence that both FS-XCS and GRD-XCS have significantly
equal average execution time (p = 0.94).

Figures 4 and 5 depict some general insight into the population diversity. In
the majority of cases, GRD-XCS has less diversity.
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GRD-XCS

FS-XCS

(a) Breast Cancer

GRD-XCS

FS-XCS

(b) Prostate Cancer

GRD-XCS

FS-XCS

(c) Leukemia

GRD-XCS

FS-XCS

(d) Colon Cancer

Fig. 2. The accuracy (AUC) of FS-XCS vs. GRD-XCS when various feature ranking
methods are applied.

The average length of each classifier in GRD-XCS is almost always signifi-
cantly smaller than FS-XCS (p < 0.05). The significant similar cases are Gain
Ratio (p = 0.80) and ReliefF (p = 0.26) on the Prostate Cancer data set.

The average number of macro classifiers in GRD-XCS is significantly smaller
than the average number of macro classifiers in FS-XCS. As can be seen in Fig-
ures 5(b) and (d), the difference is getting more obvious when the dimensionality
increases (for Prostate Cancer and Colon Cancer). However, there is a different
story for the Breast Cancer data set where the average number of macro clas-
sifiers in the GRD-XCS population is larger than FS-XCS. It would be a fair
conclusion to say that GRD-XCS is exploring the solution space in a more fo-
cused manner than FS-XCS. In other words, the guided rule discovery approach
forces the learning process to generate less diverse testing hypothesis; however
this behaviour can evolve more accurate classifiers.

5 Conclusion and Future Work

In this paper, we have analysed the performance of FS-XCS and GRD-XCS
based on some high-dimensional classification problems. Comprehensive numer-
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GRD-XCS

FS-XCS

(a) Breast Cancer

GRD-XCS

FS-XCS

(b) Prostate Cancer

GRD-XCS

FS-XCS

(c) Leukemia

GRD-XCS

FS-XCS

(d) Colon Cancer

Fig. 3. The execution time (in seconds) of FS-XCS vs. GRD-XCS when various feature
ranking methods are applied.

ical simulations have established that GRD-XCS is significantly more accurate
than FS-XCS in terms of classification results. On the other hand, FS-XCS is
significantly faster than GRD-XCS in terms of execution time. The results of
FS-XCS suggest that normally 20 top-ranked features would be enough to build
a good classifier, although this classifier is significantly less accurate than the
equivalent GRD-XCS model. Nevertheless, both models have performed better
than the base-line XCS.

To sum up, using feature selection to highlight the more informative features
and using them to guide the XCS rule discovery process is better than applying
feature reduction approaches. This is mainly due to the fact that GRD-XCS can
transform poor classifiers (created from the uninformative features) into highly
accurate classifiers. From the empirical analysis presented it is clear that the
performance of different feature selection techniques varies inevitably depending
on the data set characteristic. Future work will therefore attempt to rectify
this through the idea of ensemble learning. That is, we can build an ensemble
classifier from multiple XCS based models (may it be FS-XCS or GRD-XCS).
Each of these XCS cores can use a distinctive feature selection method. The
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GRD-XCS

FS-XCS

(a) Breast Cancer

GRD-XCS

FS-XCS

(b) Prostate Cancer

GRD-XCS

FS-XCS

(c) Leukemia

GRD-XCS

FS-XCS

(d) Colon Cancer

Fig. 4. The proportion of macro classifiers to the population size of FS-XCS vs. GRD-
XCS when various feature ranking methods are applied.

results of all XCS cores are then combined to form the ensemble result – for
instance by using a majority voting technique.
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Abstract. Electroencephalogram (EEG) signals analysis is indispensable in epi-
lepsy diagnosis as it offers valuable insights for locating the abnormal distor-
tions in the brain wave. However, visual interpretation of the massive amount 
of EEG signals is time-consuming, and there is often inconsistent judgment be-
tween the experts. Thus, a reliable seizure detection system is highly sought af-
ter. A novel approach for epileptic seizure detection is proposed in this paper, 
where the statistical features extracted from the discrete wavelet transform are 
used in conjunction with an improved wavelet neural network in order to identi-
fy the occurrence of seizures. Experimental simulations were carried out on a 
well-known publicly available dataset, which was kindly provided by Ralph 
Andrzejak from the Epilepsy center in Bonn, Germany. The obtained high pre-
diction accuracy, sensitivity and specificity demonstrated the feasibility of the 
proposed seizure detection scheme.  

Keywords: Epileptic seizure detection, fuzzy C-means clustering, K-means 
clustering, type-2 fuzzy C-means clustering, wavelet neural networks. 

1 Introduction 

Since its first inception reported by German neuropsychiatrist Hans Berger in the year 
1924, the electroencephalogram (EEG) signals, which record the electrical activity in 
the brain, have emerged as an essential alternative in diagnosing neurological disord-
ers. By analyzing the EEG recordings, inherent information from different physiolog-
ical states of the brain can be extracted, which are extremely crucial for the epileptic 
seizure detection since the occurrence of seizure exhibits clear transient abnormalities 
in the EEG signals. Thus, a warning signal can be initiated in time to avoid any un-
wanted seizure related accidents and injuries, upon detecting an impending seizure 
attack.  

While vital as a ubiquitous tool which supports general diagnostic of epilepsy, the 
clinical implementation of EEG is constrained due to the challenges of: (i) Available 
therapies require long term continuous monitoring of EEG signals. The generated 
massive amounts of EEG recordings have to be painstakingly scanned and analyzed 
visually by neurophysiologists, which is a tedious and time-consuming task. (ii) There 

AIH 2012

33



often is disagreement among different physicians during the analysis of ictal signals 
[19]. Undoubtedly, an automated diagnostic system that is capable of distinguishing 
the transient patterns of epileptiform activity from the EEG signals with reliable pre-
cision is of great significance. 

Various efforts have been devoted in the literature in this regard. Generally speak-
ing, a typical epileptic seizure detection process consists of two stages wherein, the 
inherent information that characterizes the different states of brain electrical activity 
are first derived from the EEG recordings using some feature extraction techniques, 
and subsequently, a chosen expert system is trained based on the obtained features. 
The discrete wavelet transform (DWT) has gained practical interest in extracting the 
valuable information embedded on the EEG signals due to its ability in capturing 
precise frequency information at low frequency bands and time information at high 
frequency bands [4], [9], [22], [25]. EEG signals are non-stationary in nature, and 
they contain high frequency information with short time period and low frequency 
information with long time period [18]. Therefore, by analyzing the biomedical sig-
nals at different time and frequency resolutions, DWT is able to preprocess the bio-
medical signals efficiently in the feature extraction stage. 

In the second stage of the seizure detection scheme, a great deal of different artifi-
cial neural networks (ANNs) based expert systems have been utilized extensively in 
the emerging field of epilepsy diagnosis. For instance, the multilayer perceptrons, 
radial basis function neural networks, support vector machines, probabilistic neural 
networks, and recurrent neural networks are some of the models that have been pre-
viously reported in literature [5], [12], [14], [19], [22]. ANNs are powerful mathemat-
ical models that are inspired from their biological counterparts - the biological neural 
networks, which concern on how the interconnecting neurons process a massive 
amount of information at any given time. The utilization of ANNs in the seizure de-
tection study is appropriate in nature, due to their capability of finding the underlying 
relationship between rapid variations in the EEG recordings, in addition to having the 
characteristics of fault tolerance, massive parallel processing ability, and adaptive 
learning capability. 

The objective of this paper is to present a novel scheme based on an improved 
WNNs for the optimal classification of epileptic seizures in EEG recordings. The 
normal as well as the epileptic EEG signals were first pre-processed using the DWT 
wherein, the signals were decomposed into several frequency subbands. Subsequent-
ly, a set of statistical features were extracted from each frequency subband, and was 
used as a feature set to train a wavelet neural networks (WNNs) based classifier. It is 
worth mentioning that the feature selection of EEG signals using DWT and epileptic 
seizure detection with ANNs are well-accepted methodologies by medical experts [6-
7]. 

The paper is organized as follows. In Section 2, the clinical data used in this study 
is first presented, followed by the feature extraction method based on the DWT. The 
implementation of the improved WNNs is next described in Section 3. In Section 4, 
the effectiveness of the proposed WNNs in epileptic seizure detection is presented 
and finally, conclusions are drawn in Section 5. 
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2 Materials and Methods 

The flow of the methodology used in this study is depicted in the block diagram in 
Fig. 1, which will be discussed in detail in the following sections. 
 
2.1 Clinical data selection 

The EEG signals used in this study were acquired from a publicly available bench-
mark dataset [2]. The dataset is divided into five sets, labeled set A until E. Each set 
of the data consists of 100 segments, with each segment being a time series with 4097 
data points. Each segment was recorded for 23.6 s at a sampling rate of 173.61 Hz. 
Each of the five sets was recorded under different circumstances. Both sets A and B 
were recorded from healthy subjects, with set A recorded with their eyes open whe-
reas set B with their eyes closed. On the other hand, sets C until E were obtained from 
epileptic patients. Set C and D were recorded during seizure free period, where set C 
was recorded from the hippocampal formation of the opposite hemisphere of the 
brain, whereas set D was obtained from within the epileptogenic zone. The last data 
set, set E, contains ictal data that were recorded when the patients were experiencing 
seizure. In other words, the first four sets of data, sets A until D, are normal EEG 
signals, while set E represents epileptic EEG signals.  

2.2 Discrete wavelet transform for feature extraction 

DWT offers a more flexible time-frequency window function, which narrows when 
observing high frequency information and widens when analyzing low frequency 
resolution. It is implemented by decomposing the signal into coarse approximation 
and detail information by using successive low-pass and high-pass filtering, which is 
illustrated in Fig. 2.  

As shown in this figure, a sample signal x(n), is passed through the low-pass filter 
G0 and high-pass filter H0 simultaneously until the desired level of decomposition is 
reached. The low-pass filter produces coarse approximation coefficients a(n), whereas 
the high-pass filter outputs the detail coefficients d(n). The size of the approximation 
coefficients and detail coefficients decreases by a factor of 2 at each successive de-
composition.  

 

Fig. 1. Block diagram for the proposed seizure detection scheme. 
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Fig. 2. A three-level wavelet decomposition tree. 

Selecting the appropriate number of decomposition level is important for DWT. 
For the EEG signal analysis, the number of decomposition levels can be determined 
directly, based on their dominant frequency components. The number of levels is 
chosen in such a way that those parts of the signals which correlate well with the fre-
quencies required for the classification of EEG signals are retained in the wavelet 
coefficients [17]. Since the clinical data used were sampled at 173.61Hz, the DWT 
using Daubechies wavelet of order 4 (db4), with four decomposition levels is chosen, 
as suggested in [21]. The db4 is suitable to be used as wavelets of lower order are too 
coarse to represent the EEG signals, while wavelets of higher order oscillate too wild-
ly [1]. The four-level wavelet decomposition process will yield a total of five groups 
of wavelet coefficients, each corresponds to their respective frequency. They are 
d1(43.4-86.8Hz), d2(21.7-43.4Hz), d3(10.8-21.7Hz), d4(5.4-10.8Hz), and a4(0-5.4Hz), 
which correlate with the EEG spectrum that fall within four frequency bands of: delta 
(1-4Hz), theta (4-8Hz), alpha (8-13Hz) and beta (13-22Hz).  

Subsequently, the statistical features of these decomposition coefficients are ex-
tracted, which are:  

1. The 90th percentile of the absolute values of the wavelet coefficients 
2. The 10th percentile of the absolute values of the wavelet coefficients 
3. The mean of the absolute values of the wavelet coefficients 
4. The standard deviation of the wavelet coefficients. 

It is worth mentioning that instead of the usual extrema (maximum and minimum 
of the wavelet coefficient), the percentiles are selected in this case in order to elimi-
nate the possible outliers [11]. At the end of the feature extraction stage, a feature 
vector of length 20 is formed for each EEG signal.  

3 Classification using an improved wavelet neural networks  

WNNs are feedforward neural networks with three layers – the input layer, the hidden 
layer, and the output layer [26] . As the name suggests, the input layer receives input 
values and transmits them to the single hidden layer. The hidden nodes consist of 
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continuous wavelet functions, such as Gaussian wavelet, Mexican Hat wavelet, or 
Morlet wavelet, which perform the nonlinear mapping. The product from this hidden 
layer will then be sent to the final output layer.  

Mathematically, a typical WNN is modeled by the following equation: 
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where y is the desired output, x m is the input vector, p is the number of hidden 
neurons, wij is the weight matrix whose values will be adjusted iteratively during the 
training phase in order to minimize the error goal,  is the wavelet activation func-

tion, t is the translation vector, d is the dilation parameter, and b is the column matrix 
that contains the bias terms. The network structure is illustrated in Fig. 3. 

The WNNs are distinct from those of other ANNs in the sense that [26]: 

 WNNs show relatively faster learning speed owing to the constitution of the fast-
decaying localized wavelet activation functions in the hidden layer. 

 WNNs preserve the universal approximation property, and they are guaranteed to 
converge with sufficient training. 

 WNNs establish an explicit link between the neural network coefficients and the 
wavelet transform. 

 WNNs achieve the same quality of approximation with a network of reduced size.  

Designing a WNN requires the researchers to focus particular attention on several 
areas. First, a suitable learning algorithm is vital in adjusting the weights between the 
hidden and output layers so that the network does not converge to the undesirable 
local minima. Second, a proper choice of activation functions in the hidden nodes is 
crucial as it has been shown that some functions yield significant better result for 
certain problems [23]. Third, an appropriate initialization of the translation and dila-
tion parameters is essential because this will lead to simpler network architecture and 
higher accuracy [24].  

 

Fig. 3. WNNs with d input nodes, m hidden nodes, and L output nodes. 
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The selection of the translation vectors for WNNs is of paramount importance. An 
appropriate initialization of the translation vectors will do a good job of reflecting the 
essential attributes of the input space, in such a way that the WNNs begin its learning 
from good starting points and could lead to the optimal solution. Among the notable 
proposed approaches are the ones given by the pioneers of WNNs themselves, where 
the translation vectors are chosen from the points located on the interval of the do-
main of the function [26]. In [10], a dyadic selection scheme realized using the K-
means clustering algorithm was employed. In [13], the translation vectors were ob-
tained from the new input data. An explicit formula was derived to compute the trans-
lation vectors to be used for the proposed composite function WNNs [3]. In [24], an 
enhanced fuzzy C-means clustering algorithm, termed modified point symmetry-
distance fuzzy C-means (MPSDFCM) algorithm, was proposed to initialize the trans-
lation vectors. By incorporating the idea of symmetry similarity measure into the 
computation, the MPSFCM algorithm was able to find a set of fewer yet effective 
translation vectors for the WNNs, which eventually led to superb generalization abili-
ty in microarray study. In short, the utilization of different novel clustering algorithms 
in WNNs aim at simpler algorithm complexity and higher classification accuracy 
from the WNNs. 

In this study, the type-2 fuzzy C-means (T2FCM) clustering algorithm [16] was 
proposed to initialize the translation vectors of WNNs. Its clustering effectiveness as 
well as its robustness to noise has motivated the investigation on the feasibility of 
T2FCM in selecting the translation vectors of the WNNs. For comparison purposes, 
the use of K-means (KM) and the conventional type-1 fuzzy C-means (FCM-1) algo-
rithms in initializing the WNNs translation vectors were also considered.  

3.1 Type-2 Fuzzy C-Means Clustering Algorithm  

Rhee and Hwang [16] proposed an extension to the conventional FCM-1 clustering 
algorithm by assigning membership grades to type-1 membership values. They 
pointed out that the conventional FCM-1 clustering may result in undesirable cluster-
ing when noise exists in the input data. This is because all the data, including the 
noise, will be assigned to all the available clusters with a membership value. As such, 
a triangular membership function is proposed, as shown in the following equation: 
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where uij and aij represent the type-1 and type-2 membership values for input j and 
cluster center i, respectively. The proposed membership function aims to handle the 
possible noise that might present in the input data. From Eq. 2, the new membership 
value, aij, is defined as the difference between the old membership value, uij 

and the 
area of the membership function, where the length of the base of each of the triangu-
lar function is taken as 1 minus the corresponding membership value obtained from 
FCM-1.   
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By introducing a second layer of fuzziness, the T2FCM algorithm’s concept still 
conforms to the conventional FCM-1 method in representing the membership values. 
To illustrate, it can noted from Eq. 2 that a larger value of FCM-1 value (closer to 1) 
will yield a larger value of T2FCM value as well. 

Since the proposed T2FCM algorithm is built upon the conventional FCM-1 algo-

rithm, the formula used to find the cluster centers, ijc , can now be obtained from the 

following equation that has been modified accordingly, as shown below: 
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where m is the fuzzifier, which is commonly set to a value of 2. 
The algorithm for T2FCM is similar to the conventional FCM-1, which aims to 

minimize the following objective function: 
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but it differs in the extra introduced membership function and also the equation that 
has been modified to update the cluster centers. In general, the algorithm proceeds as 
follows: 

1. Fix the number of cluster centers, C. 
2. Initialize the location of the centers, ci, i = 1, 2, … , C, randomly.   
3. Compute the membership values using the following equation: 
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4. Calculate the new membership value, aij from the values of uij using Eq. 2. 
5. Update the cluster centers using Eq. 3. 
6. Repeat steps 3-5 until the locations of the centers stabilize. 

The algorithm for T2FCM is summarized in the flowchart shown in Fig. 4. 

3.2 K-fold Cross Validation 

In statistical analysis, k-fold cross validation is used to estimate the generalization 
performance of classifiers. Excessive training will force the classifiers to memorize 
the input vectors, while insufficient training will result in poor generalization when a 
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new input is presented to it. In order to avoid these problems, k-fold cross validation 
is performed.  

To implement the k-fold cross validation, the samples are first randomly parti-
tioned into k>1 distinct groups of equal (or approximately equal) size. The first group 
of samples is selected as the testing data initially, while the remaining groups serve as 
training data. A performance metric, for instance, the classification accuracy, is then 
measured. The process is repeated for k times, and thus, the k-fold cross validation has 
the advantage of having each of the sample being used for both training and testing. 
The average of the performance metric from the k iterations is then reported. In this 
study, k is chosen as 10.  
  
 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

Fig. 4. Algorithm for T2FCM. 
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4 Results and Discussion 

The binary classification task between normal subjects and epileptic patients was 
realized using the WNNs models. The activation function used in the hidden nodes is 
the Morlet wavelet function. During the training process, a normal EEG signal was 
indicated by a single value of 0, while an epileptic EEG signal was labeled with a 
value of 1. During the testing stage, a threshold value of 0.5 was used, that is, any 
output from WNNs which is equals to or greater than 0.5 will be reassigned a value of 
1; otherwise, it will be reassigned a value of 0. The simulation was carried out using 
the mathematical software MATLAB® version 7.10 (R2010a). The performance of 
the proposed WNNs was evaluated using the statistical measures of classification 
accuracy, sensitivity and specificity. The corresponding classification results between 
the normal and epileptic EEG signals by using the WNNs-based classifier with differ-
ent initialization approaches are listed in Table 1.  

In terms of the classification accuracy, the translation vectors generated by the 
conventional KM clustering algorithm gave the poorest result, where an overall accu-
racy of 94.8% was obtained. The WNNs that used the conventional FCM-1 clustering 
algorithm reported an overall accuracy of 97.15%. The best performance was ob-
tained by the classifier that employed the T2FCM algorithm, which yielded an overall 
classification accuracy of 98.87%.  

As shown in Table 1, a steady increase in the classification accuracy was noticed 
when the KM clustering algorithm was substituted with FCM algorithm, and subse-
quently T2FCM algorithm. FCM outperformed the primitive KM algorithm because 
the soft clustering employed can assign one particular datum to more than one cluster. 
On the contrary, KM algorithm, which used hard or crisp clustering, assigns one da-
tum to one center only, and this degrades greatly the classification accuracy. While 
FCM relies on one fuzzifier, T2FCM adds a second layer of fuzziness by assigning a 
membership function to the membership value obtained from the type-1 FCM mem-
bership values.  

In the field of medical diagnosis, the unwanted noise and outliers produced from 
the signals or images need to be handled carefully, as they will affect and skew the 
results and analysis obtained afterwards. In this regard, the concept of fuzziness can 
be incorporated to deal with these uncertainties. Outliers or noise can be handled 
more efficiently and higher classification accuracy can be obtained via the introduc-
tion of the membership function. The noise in the biomedical signals used in this 
work has thus been handled via two different approaches. The first treatment is in the 
 

Table 1. The performance metrics for the binary classification problem. 

Initialization methods 
Performance metric 

Sensitivity Specificity Accuracy 

KM 85.00 97.30 94.80 
FCM 93.82 97.92 97.15 

T2FCM 94.96 99.43 98.87 
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Table 2.  Performance comparison of classification accuracy obtained by the proposed WNNs 
and other approaches reported in the literature 

Feature Selection Method Classifier Accuracy References 

Time Frequency Analysis ANNs 97.73 [20] 
DWT with KM MLPs 99.60 [15] 
DWT MLPs 97.77 [8] 
Approximate Entropy ANNs 98.27 [8] 
This Work  98.87  

 
 
feature selection stage, where the 10th and 90th percentiles of the absolute values of the 
wavelet coefficients were used instead of the minima and maxima values. The second 
way is via the T2FCM clustering algorithm used when initializing the translation 
parameters for the hidden nodes of WNNs. The clustering achieved by T2FCM 
proves to result in more desirable locations compared to the conventional KM and 
FCM-1 methods, as reflected in the higher overall classification accuracy. 

Numerous epileptic detection approaches have been implemented in the literature 
using the same benchmark dataset as in this study. For the sake of performance as-
sessment, comparison of the results with other state-of-the-art methods reported in the 
literature was included, as presented in Table 2. As depicted in this table, the pro-
posed WNNs with T2FCM initialization approach outperformed the others generally. 
However, the achieved classification accuracy of 98.87% by the proposed model was 
inferior to the multilayer perceptrons (MLPs)-based classifier as described in [15], 
which might be attributed to their feature extraction method. Instead of using basic 
statistical features, the authors used the KM clustering algorithm to find the similari-
ties among the wavelet coefficient, where the obtained probability distribution from 
the KM was used as the input of the MLPs-based classifier. A better set of determinis-
tic features might be obtained from this approach, which will be an interesting topic to 
pursue in future. However, it is pertinent to note that the MLPs-based classifiers are 
subject to slow learning deficiency and getting trapped in local minima easily.  

In order to evaluate the statistical significance of the obtained results, statistical test 
on the difference of the population mean of the overall classification accuracy was 
performed using the t distribution. The experiment was run 10 times to obtain the 
values of the summary statistics, namely, the mean and the standard deviation of the 
samples. The 1% significance level, or α=0.01 was utilized to check whether there is 
significant difference between the two population means. Two comparisons were 
done, namely, between KM and T2FCM, and between FCM and T2FCM. The formu-
la for the test statistics is given by: 

 
   

1 2

1 2 1 2 ,
x x

x x
t

s

 



  
  (6) 

where 1x  and 2x are the sample means; 1 and 2 are the population means; and 

1 2x xs  is the estimate of the two standard deviations.  
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For both cases, the values of the test statistic obtained fall in the rejection region. 
So the null hypothesis is rejected and it is concluded that there is significant differ-
ence between the classification accuracy obtained using the different initialization 
methods, that is, the performance of T2FCM is superior to those of KM and FCM. 

5 Conclusions 

In this paper, a novel seizure detection scheme using the improved WNNs with 
T2FCM initialization approach was proposed. Based on the overall classification 
accuracy obtained from the real world problem of epileptic seizure detection, it was 
found that the proposed model outperformed the other conventional clustering algo-
rithms, where an overall accuracy of 98.87%, sensitivity of 94.96% and specificity of 
99.43% were achieved. The initialization accomplished via T2FCM has proven that 
the algorithm can handle the uncertainty and noise in the EEG signals better than the 
conventional KM and FCM-1 algorithms. This again suggested the prospective im-
plementation of the proposed method in developing a real time automated epileptic 
diagnostic system with fast and accurate response that could assist the neurologists in 
their decision making process.   
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Abstract. Stroke is one of the major diseases that can cause human
deaths. However, despite the frequency and importance of stroke, there
are only a limited number of evidence-based acute treatment options cur-
rently available. Recent clinical research has indicated that early changes
in common physiological variables represent a potential therapeutic tar-
get, thus the manipulation of these variables may eventually yield an
effective way to optimise stroke recovery. Nevertheless the accuracy of
prediction methods based on statistical characteristics of certain physi-
ological variables, such as blood pressure, glucose, is still far from sat-
isfactory due to vague understandings of effects and function domain
of those physiological determinants. Therefore, developing a relatively
accurate prediction method of stroke outcome based on justifiable de-
terminants becomes more and more important to the decision of the
medical treatment at the very beginning of the stroke. In this work, we
utilize machine learning techniques to find correlations between physi-
ological parameters of stroke patient during 48 hours after stroke, and
their stroke outcomes after three months. Our prediction method not
only incorporates statistical characteristics of physiological parameters,
but also considers physiological time series patterns as key features. Ex-
periment results on real stroke patients’ data indicate that our method
can greatly improve prediction accuracy to a high precision rate of 94%,
as well as a high recall rate of 90%.

Keywords: Stroke, Outcome Prediction, Time Series Data, Machine
Learning

1 Introduction

Stroke is a common cause of human death and is a major cause of death after
ischemic heart disease [1]. The World Health Organisation (WHO) defines it as
”rapidly developing clinical signs of local (or global) disturbance of cerebral func-
tion, with symptoms lasting more than 24 hours or leading to death, and with no
apparent cause other than of vascular origin” [2]. Recent years research reveals a
strong association between physiological homeostasis and outcomes of Acute Is-
chemic Stroke. Thus understanding determinants of physiological variables, such
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2 Acute Ischemic Stroke Prediction

as blood pressure, temperature and blood glucose levels, may eventually yield
an effective and potentially widely applicable range of therapies for optimis-
ing stroke recovery, such as abbreviating the duration of ischaemia, preventing
further stroke, or preventing deterioration due to post-stroke complications.

The correlations between blood pressure and stroke outcomes have been
widely studied in the literature. It is stated in current guidelines that a sig-
nificant decrease of BP during the first hours after admission should be avoided,
as it correlates with poor outcomes, measured by Canadian Stroke Scale or
modified Rankin Score (mRS), at 3 months [10]. Extreme hypertension and
hypotension on admission have also been associated with adverse outcome in
acute stroke patients [11]. BP values, periodically monitored within the first
72 hours after admission, demonstrate that extreme values still correlate with
unfavored outcomes [9]. For example, high baseline of systolic BP is inversely
associated with favourable outcome assessed on mRS at 90 days with OR=1.220
and (95% CI: 1.01 to 1.49). Other periodically retrieved statistical properties of
BP within 24 hours of ictus, such as maximum, mean, variability etc., have also
been investigated. Yong et al. [12] report strong independent association between
those properties and the outcome at 30 days after ischemic stroke. For example,
variability of systolic BP is inversely associated with favourable outcome with
OR=0.57, (95% CI: 0.35 to 0.92).

Research also shows associations between other physiological variables and
stroke outcomes. Abnormalities of blood glucose, heart rate variability, ECG and
temperature may be predictors of 3-month stroke outcome.

Most of the above analyses are based on periodically recorded physiological
parameters, hourly or daily, up to 3 months. Whether continuous data patterns,
such as data trends, have a similar predictive role is still uncertain. Although it is
clear that the after stroke elevated 24-hours blood pressure levels predict a poor
outcome, few studies have investigated the predictive ability of more sophisti-
cate trends, e.g. combined trends of several physiological parameters. Yet this
could be an effective way to readily obtain important prognostic information for
acute ischemic stroke patients. Dawson et al did pioneering works on associating
shorter length (around 10 minutes) beat-to-beat BP with acute ischemic stroke
outcomes [8]. They conclude that a poor outcome, assessed by mRS, at 30 days
after ischemic stroke is dependent on stroke subtype, beat-to-beat diastolic BP
and Mean Arterial Pressure and variability. However in their study, they still
use the average values of continuous recordings, instead of time series patterns
as predictors. This motivates our research on mining physiological data patterns
as effective predictors of acute ischemic stroke outcome.

Obviously mining physiological data patterns can be easily aligned with time
series data classification, which is a traditional topic and has attracted inten-
sive studies. Although there exist many sophisticate time series data mining
techniques, we find that most of them, if not all, are not applicable to our
application scenario, due to the always incomplete, non-isometric physiological
data collected from patients. Therefore, in this paper, we incorporate a simple
yet powerful time series data pattern analysing method, trend analyses, into
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Acute Ischemic Stroke Prediction 3

our prediction method. By utilising those trend features, together with values
of traditional physiological variables, we design an efficient algorithm that can
predict 3-month stroke outcome with high accuracy.

In summary, we list our contributions in this paper:

– We propose using trend patterns of physiological time series data as a new
set of stroke outcome prediction features,

– We design a novel prediction algorithm which can accurately predict 3-
months stroke outcomes with high precision and recall rate, when tested
against a real data set.

The rest of this paper is organised as follows. Section 2 introduces works
related to stroke outcome predictions. Section 3 presents our prediction methods.
Section 4 reports empirical study results. And section 5 concludes this paper with
possible future studies.

2 Related Work

The relationship between beat-to-beat blood pressure (BP) and the early out-
come after acute ischemic stroke was firstly described in [8].

A further investigation on BP was done in [6], which investigated detrimental
effects of blood pressure reduction in the first 24 hours of acute stroke onset. BP
reduction is regarded to have the possibility to worsen an already compromised
perfusion in the brain tissue and thus not lowering BP in the early stage after
the stroke onset is suggested. However, it lacks further discussion on the relation
of higher BP and outcome. Ritter et al. formulated the blood pressure variation
by counting threshold violations. Significant difference in the frequency of upper
threshold violation occurrences was observed between different time points after
stroke [9] . Wong observed some temporal patterns from the changing process
of some physiological variables and also attempted to employ such temporal
patterns to explain and predict the early outcomes [5]. However, due to the
limit of candidate feature set considered in those studies, achieving an accurate
prediction is fairly unlikely in those scenarios.

Relationships between other physiological variables and stroke outcome have
also been studied in literature. Abnormalities of serum osmolarity, temperature,
blood glucose, SPO2 may be predictors of stroke outcomes. More specifically,
heart rate and ECG, can be correlated to stroke outcomes at 3-months:

– Heart Rate Variability: Gujjar et al. reported that heart rate variability is
efficient in predicting stroke outcome. Specifically they studied continuous
echocardiogram of 25 patients with acute stroke and concluded that the eye-
opening score of Glasgow Coma Scale and low-frequency spectral power were
factors that were independently predictive of mortality [16].

– ECG: The relationship between ECG abnormalities and stroke outcomes
were reported by Christensen et al. They analysed a large cohort of 692
patients and predict that ECG abnormalities are frequent in acute stroke
and may conclude 3-month mortality [17].
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4 Acute Ischemic Stroke Prediction

3 Stroke outcomes prediction

Our prediction method adopts statistical values of physiological parameters and
also incorporates the descriptive ability of the physiological patterns as features
to predict 3-months stroke outcomes. Particularly, we use the trend pattern of
time series data as new add-on features to form an initial feature set. Then we
apply the logistic regression method to classify stroke patient outcomes into two
groups: good vs. bad. Note that there exist different clinical criteria in defining
good/bad outcomes. We will report empirical study results on all criteria in the
next section. Cross validation is also adopted to obtain an unbiased assessment of
classifier performance, by which the physiological determinants can be accurately
identified in the last stage. Finally, we select a subset of features that can most
accurately predict 3-months stroke outcomes. Figure 1 presents logic flows of our
method. We use Rankin Scale to represent various outcomes at 3 months after
stroke (RS3) [18].

Fig. 1. Stroke outcomes prediction method

3.1 Construct initial feature set

Five physiological parameters are usually considered as influential factors on
stroke patient outcomes, namely Blood Sugar Level, Diastolic Blood Pressure,
Systolic Blood Pressure, Heart Rate and Body Temperature [6, 16, 17]. Exist-
ing stroke outcome predictions always assume a certain parameter as the main
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Acute Ischemic Stroke Prediction 5

feature in their approaches. However in our approach, we will assume all five
parameters in the initial feature set.

Moreover, for each physiological parameter, we compute trends through par-
titioning the time series data into non-overlapping, continuous blocks. Although
there exists many trend and shape detection methods in the literature, such as
[3], in our application, we simply consider a bi-partition on the first 48-hours
time series data records after stroke. The reasons are:

1. most available physiological data records are only within 48-hours after
stroke.

2. clinical observation and our initial experiments both suggest that setting the
granularity level at having only two partitions in the 48-hours, well represents
the physiological time series pattern changes.

In each partition, accordingly we generate 6 new features, as shown below,
to represent the trend pattern:

1. yChange: the difference between the value at the end of a trend and the
value at the start of a trend

yChange = y(end of trend) − y(start of trend)

2. absYChange: the absolute value of the yChange
3. slope: the slope of the trend
4. sign: the direction of the trend
5. NumofMeasure: the number of values in a partition
6. FreqofMeasure: the average time interval between measurements, i.e.

FreqofMeasure =
Trend Length

NumofMeasure

The initial feature set comprised physiological values and their trend pat-
terns. We apply the logistical regression method to classify the good/bad stroke
outcomes based on this initial feature set.

3.2 Logistic Regression Classifier

In statistics, logistic regression is a type of regression analysis used for predicting
the outcome of a binary dependent variable (a variable which can take only two
possible outcomes, e.g. “yes” vs. “no” or “success” vs. “failure”) based on one or
more predictor variables. Like other forms of regression analysis, logistic regres-
sion makes use of one or more predictor variables that may be either continuous
or categorical. Unlike ordinary linear regression, however, logistic regression is
used for predicting binary outcomes rather than continuous outcomes. Logistic
regression adopted here is a type of regression analysis used for predicting the
outcome of stroke (“good” vs. “bad”) based on features in our initial feature set.

To obtain an unbiased assessment of classifier performance, the Leave-One-
Out Cross validation technique is adopted. Suppose N folds are employed, this
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6 Acute Ischemic Stroke Prediction

technique withholds a subject from the training set for each run to later test
with. Once a record has been withheld for testing, the classifier is trained us-
ing the remaining N-1 subjects. The withheld subject is then reintroduced for
classification.

3.3 Final feature set selection

We use two greedy search strategies to find the best feature subset that can
achieve highest prediction accuracy. Specifically, we use backward search and
forward search:

backward search : A greedy backward search is performed to identify a near
optimum subset of features. Starting with all features, in sequence, the feature
which improves prediction accuracy the most (or decreases it the least) is re-
moved from the current set of features and retained as an intermediate feature
subset. This is repeated until all features have been removed. The intermediate
feature subset which provides the maximum performance, compared to all other
subset evaluated, is selected as the final feature set.

forward Search A sequential forward floating search algorithm is used for feature
selection, in an attempt to discover the optimal subset of features from the pool
of available candidate features. This strategy begins with a forward-selection
process, selecting a single feature from the pool of available features, which im-
proves the prediction accuracy most. After this selection, removal of a feature
from the set of selected features is considered. The process of possible feature ad-
dition, followed by possible feature removal, is iterated until the selected feature
set converges.

4 Empirical Study

In this section, we report experiment results through testing our prediction
method on a real data set of stroke patients. Firstly, we introduce the physi-
ological data sets of stroke patients and the good/bad criteria used in our study.
Then we report prediction accuracy based on various combination of feature
sets. Our study was approved by a ethics committee of the related institution.

4.1 Experimental data sets

A cohort of 157 patients with acute ischaemic stroke were recruited. Patients
presenting to the Emergency Department of the Royal Brisbane and Women’s
Hospital, an Australian tertiary referral teaching hospital, within 48 hours of
stroke or existing inpatients with an intercurrent stroke were enrolled prospec-
tively. Important physiological parameters, such as blood pressure, were recorded
at least every 4 hours from the time of admission until 48 hours after the stroke.
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Acute Ischemic Stroke Prediction 7

These values were used as the outcome variable in the analyses. The measure-
ments from patients who died during these first 48 hours were also included in
the analyses. Furthermore, some demographic and other stroke-related data were
also collected such as the age and gender. The age range of these 157 patients
was 16 to 92 years with median age 75 years. The patient distribution based on
different values of RS3 is showed in Figure 2.

Fig. 2. Patient distributions on values of RS3

4.2 Classification criteria

As shown in Figure 2, RS3 score varies between 0 and 6. Patients with RS3 =
6 means the subject is dead after three months and RS3 = 0 means the subject
recovers quite well after three months. Based on RS3 values, patient outcomes
can be divided into good/bad groups basing on different grouping criteria. Figure
3 illustrates patient distributions under three type grouping criteria.

4.3 Prediction accuracy comparisons

Applying techniques described in Section 3, we run experiments on various
grouping criteria to test our stroke outcome prediction algorithm. We always
notice that ‘backward search’ generates more accurate prediction results, which
will thus be used as our default feature set search strategy. Figure 4 shows
prediction accuracy comparisons under all three types of grouping criteria. In
Figure 5, we also evaluate the efficiency of including trend pattern as prediction
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8 Acute Ischemic Stroke Prediction

Fig. 3. Good vs Bad outcomes under various criteria

Fig. 4. Prediction Accuracy on different grouping criteria

features. Experiment shows that by adding those simple trend features, the pre-
diction accuracy on all three grouping types is unanimously boosted from 71%
to 89∼91%.

5 Conclusion

In this paper, we describe novel algorithms to predict three months stroke out-
comes. We have quantified the great improvements brought by including phys-
iological data trend patterns as features of a classifier. We believe that these
trends play important roles on three months outcomes of stroke patients. The
efficiency and accuracy of our algorithm have also been demonstrated through
our experiments.
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Fig. 5. Prediction accuracy improved by adding trend features

In our future work, we will first try to locate the most important trend pattens
for stroke outcome predictions. Then we will work with healthcare professionals
to find clinical ground truth beneath those physiological trend patterns of stroke
patients. This will greatly benefit clinical treatments of acute ischemic stroke.
We also plan to run clinical trials to validate our prediction methods on other
real data sets of stoke patients.
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Abstract. Medical diagnosis sometimes involves detecting subtle indi-
cations of a disease or condition amongst a background of diverse healthy
individuals. The amount of information that is available for discover-
ing such indications for mammography is large and has been growing
at an exponential rate, due to population wide screening programmes.
In order to analyse this information data mining techniques have been
utilised by various researchers. A question that arises is: do flexible data
mining techniques have comparable accuracy to dedicated classification
techniques for medical diagnostic processes? This research compares a
model-based data mining technique with a neural network classification
technique and the improvements possible using an ensemble approach. A
publicly available breast cancer benchmark database is used to determine
the utility of the techniques and compare the accuracies obtained.

Keywords: latent class analysis, digital mammography, breast cancer,
clustering, classification, neural network.

1 Introduction

Medical diagnosis is an active area of pattern recognition with different tech-
niques being employed [17, 19, 12]. The expansion of digital information for dif-
ferent cohorts [15] has allowed researchers to examine relationships that were
previously not uncovered due to the limited nature of information as well as a
lack of techniques being available for the analysis of large data sets. Flexible
data mining techniques have the capacity to predict disease and reveal previous
unknown trends.

The question that arises is whether the relationships that are revealed by
those techniques are as accurate or as comparable as techniques that are specif-
ically developed for other purposes, such as a diagnostic system for a particular
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disease or condition. This research aims at contrasting the cluster analysis tech-
nique (Latent Class Analysis) of Ghassem Pour, Maeder and Jorm [4] against a
baseline neural network classifier, and then considers the effects of applying an
ensemble technique to improve the accuracies obtained.

The organisation of this paper is that section two provides a background on
the approaches that have been utilised for breast cancer diagnosis, sections three
and four detail the proposed techniques for comparison, section five outlines the
experimental results obtained and conclusions are presented in section six.

2 Background

Medical diagnosis is a problematic paradigm in that complex relationships can
exist in the diagnostic features that are utilised to map to a resultant diagnosis
about the disease state. In different cases the state of the disease condition itself
can be marked by stages where the diagnostic symptoms or signs can be subtle
or different to other stages of the disease. This means that there is often not a
clean mapping between the diagnostic features and the diagnosis [13, 14].

Breast cancer screening using mammography provides an exemplar of this
situation. Early detection and treatment have been the most effective way of
reducing mortality [2] however Christoyianni et al. [1] noted that 10-30% of
breast cancers remain undetected while 15-30% of biopsies are cancerous. Tay-
lor and Potts [22] made similar observations in their research. There are many
reasons why various cancers can remain undetected. These include the obfus-
cation of anomalies by surrounding breast tissue, the asymmetry of the breast,
prior surgery, natural differences in breast appearance on mammograms, the low
contrast nature of the mammogram itself, distortion from the mammographic
process and even talc or powder on the outside of the breast making it hard to
identify and discriminate anomalies. Even if an anomaly is detected, a high rate
of false positives exist [17, 18].

Clustering has provided a widely used mechanism for organising data into
similar groupings. The usage of clustering has also been extended to classifiers
and detection systems in order to improve detection and provide greater classi-
fication accuracy. Kim et al. [9] developed a classifier based on Adaptive Res-
onance Theory (ART2) where micro-calcifications were grouped into different
classes with a three-layered back propagation network performing the classifica-
tion. The system achieved 90% sensitivity (Az of 0.997) with a low false positive
rate of 0.67 per cropped image.

Other researchers such as Mohanty, Senapati and Lenka [16] explored the
application of data mining techniques to breast cancer diagnosis. They indi-
cated that data mining medical images would allow for the collection of effective
models, rules as well as patterns and reveal abnormalities from large datasets.
Their approach was to use a hybrid feature selection technique with a decision
tree classifier to classify breast cancer. They utilised 300 images from the MIAS
database. They achieved a classification accuracy of 97.7% however their dataset
images contained microcalcifications as well as mass anomalies.
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Comparing Data Mining with Ensemble Classification 3

3 Latent Class Analysis and Data Mining

Latent Class Analysis (LCA) has been proposed as a mechanism for improved
clustering of data over traditional clustering algorithms like k-means [11]. LCA
classifies subjects into one of K unobserved classes based on the observed data,
where K is a constant and known parameter. These latent or potential classes
are then refined based upon their statistical relationships with the observed vari-
ables.

LCA is a probabilistic clustering approach: although each object is assumed
to belong to one cluster, there is uncertainty about an object’s membership of
a cluster [11, 10]. This type of approach offers some advantages in dealing with
noisy data or data with complex relationships between variables, although as an
iterative method there is always some chance that it will be susceptible to noise
and in some cases fail to converge.

An advantage of using a statistical model is that the choice of the clus-
ter criterion is less arbitrary. Nevertheless, the log-likelihood functions corre-
sponding to LC cluster models may be similar to the criteria used by certain
non-hierarchical cluster techniques [18]. Another advantage of the model-based
clustering approach is that no decisions have to be made about the scaling of the
observed variables: for instance, when working with normal distributions with
unknown variances, the results will be the same irrespective of whether the vari-
ables are normalized or not.

Other advantages are that it is relatively easy to deal with variables of mixed
measurement levels (different scale types) and that there are more formal cri-
teria to make decisions about the number of clusters and other model features
[3]. We have successfully applied LCA for cases in health data mining when the
anomalous range of variables results in more clusters than have been expected
from a causal or hypothesis based approach [5]. This implies that in some cases
LCA may be used to reveal associations between variables that are more subtle
and complex.

Unsupervised clustering requires prior specification of the number of clusters
K to be constructed, implying that a model for the data is necessary which pro-
vides K. The binary nature of the diagnosis problem implies that K=2 should
be used in ideal circumstances, but the possibility exists that allowing more
clusters would give a better solution (e.g. by allowing several different classes
within the positive or negative groups). Consequently a figure of merit is needed
to establish that the chosen K value is optimal. In this research the Bayesian
Information Criteria (BIC) is determined for the mass dataset in order to gauge
the best number of clusters.

Repeated application of the clustering approach can also lead to different so-
lutions due to randomness in starting conditions. In this work we used multiple
applications of the clustering calculations to allow improvement in the results,
in an ensemble-like approach. Our improvement strategy was based on selection
of the most frequent membership of classes per element, over different numbers
of clustering repetitions.
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4 Neural Network and Ensemble Methods

Neural networks have been advocated for breast cancer detection by many re-
searchers. Various efforts to refine classification performance have been made,
using a number of strategies involving some means of choice between alternatives.
Ensembles have been proposed as a mechanism for improving the classification
accuracy of existing classifiers [6] providing that constituents are diverse.

Zhang et al. [23] partitioned their mass dataset obtained from the DDSM
into several subsets based on mass shape and age. Several classifiers were then
tested and the best performing classifier on each subset was chosen. They used
SVM, k-nearest neighbour and Decision Tree (DT) classifiers in their ensemble
and achieved a combined classification accuracy of 72% that was better than
any individual classifier.

Surrendiran and Vadivel [21] proposed a technique that could determine what
features had the most appropriate correlation on classification accuracy and
achieved 87.3% classification accuracy. They achieved this by using ANOVA
DA, Principal Component Analysis and Stepwise ANOVA analysis to determine
the relationship between input feature and classification accuracy.

Mc Leod and Verma [14] utilised a clustered ensemble technique that relied
on the notion that some patterns could be readily identified through cluster-
ing (atomic). Other patterns that were not so easily separable (non-atomic)
were classified by a neural network. The classification process involved an initial
lookup to determine if a pattern was associated with an atomic class however
for non-atomic classes a neural network ensemble that had been created through
an iterative clustering mechanism (to introduce diversity into the ensemble) was
employed. The advantage of this technique is that the ensemble was not ad-
versely affected by outliers (atomic clusters). This technique was applied to the
same mass dataset as utilised in this research and achieved a classification accu-
racy of 91%.

The ensemble utilised in this research was created by fusing together (using
the majority vote algorithm) constituent neural networks that were created by
varying the number of neurons in the hidden layer to create diverse networks for
incorporation into an ensemble classifier.

5 Experimental Results

The experiments were conducted for LCA and neural network techniques and
the related ensemble approaches using mass type anomalies from the Digital
Database of Screening Mammography (DDSM) [7]. The features used for classi-
fication purposes coincided with the Breast Imaging Reporting and Data System
(BI-RADS) as this is how radiologists classify breast cancer. The BI-RADS fea-
tures of density, mass shape, mass margin and abnormality assessment rank are
used as they have been proven to provide good classification accuracy [20]. These
features are then combined with patient age and a subtlety value [7].

Experiments were performed utilising the clustering technique of Ghassem
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Comparing Data Mining with Ensemble Classification 5

Pour, Maeder and Jorm [4] on this dataset. This was achieved using the La-
tent GoldR© software package. The first step was to utilise the analysis feature of
LatentGoldR© to calculate the BIC value and the classification error rate. This
information appears in Table 1 below, with Npar designating the resulting pa-
rameter value associated with the LCA.

Table 1. LCA Cluster optimisation based on Classification Error.

Clusters BIC Npar Classification Error

2 1238.8 30 0.0303
3 1240.6 38 0.0403
4 1241.8 46 0.0446
5 1254.1 54 0.0470

Minimisation of BIC and the Classification Error determines the best number
of clusters for the LCA analysis in terms of classification accuracy and this was
found to be 2 clusters. Nevertheless, it might be expected that some further
complexity could be identified in higher numbers of clusters, where multiple
clusters may exist for either positive or negative classes. The results obtained
when cases of more than 2 clusters were merged to form the dominant positive
and negative classes, are detailed in Table 2. These results show the instability

Table 2. LCA Classification Technique Accuracy.

Clusters Accuracy %

2 87.2
3 56.7
4 43.2
5 32.8

of LCA classification for this dataset at higher numbers of clusters, for example
the 2-cluster solution gives better accuracy than the 3-cluster solution (merging
into 2 clusters) and so forth. From this we conclude that the natural 2-cluster
solution is indeed optimal.

In order to provide a comparison, further experiments were performed using
a neural network and then applying an ensemble classifier. The neural network
and ensemble techniques were implemented in MATLABR© utilising the neural
network toolbox. The parameters utilised are detailed in the Table 3 below.
Experiments were first performed with a neural network classifier alone, in order
to provide a baseline for measuring the classification accuracy on the selected
dataset. The results obtained are detailed in Table 4 below. Further experiments
were then performed utilising an ensemble technique with a summary of the
neural network test results using ten-fold cross validation, as detailed in Table
5 below.

AIH 2012

59

kha031
Rectangle



6 Comparing Data Mining with Ensemble Classification

Table 3. Neural network configuration parameters.

Parameter Value

Hidden Layers 1
Transfer Function Tansig
Learning Rate 0.05
Momentum 0.7
Maximum Epochs 3000
Root Mean Square Goal 0.001

Table 4. Neural network classification technique accuracy.

Hidden Neurons Accuracy (%)

13 80
25 80
52 90
111 79

Table 5. NN-ensemble classification technique accuracy.

Networks Hidden Neurons in Ensemble Accuracy (%)

6 24,5,15,32,31,43 94
10 24,5,15,32,31,43,50,75,38,59 96.5
13 24,5,15,32,31,43,50,75,38,59,68,79,116 98
15 24,5,15,32,31,43,50,75,38,59,68,79,116,146,14 96

Experiments were also performed for the ensemble-like optimising of results
from the LCA technique. It is difficult to match this process directly with the
complexity used for the NN-ensemble experiments, so the number of repetitions
has been modelled on plausible choice based on dataset size of 100 cases. The
results for these experiments are shown in Table 6 below.

Table 6. LCA-ensemble classification technique accuracy.

Repetitions Accuracy (%)

10 87
20 89
40 91
70 94

6 Discussion and Conclusions

Examination of the results from Tables 1 to 6 demonstrates that the accuracy
obtained with the LCA technique is below that of the baseline classification
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Comparing Data Mining with Ensemble Classification 7

performed with the neural network. However an ensemble oriented approach en-
abled improvement of the results from both techniques.

In order to examine the results more closely the sensitivity, specificity and
positive predictive value have been calculated for the best performing results for
each of the trialled techniques, shown below in Table 7.

Sensitivity is the True Positive diagnosis divided by the True Positive and
False Negative components. Sensitivity can be thought of as the probability of
detecting cancer when it exists.

Specificity is the True Negative component divided by the True Negative
component plus the False Positive component. Specificity can be thought of as
the probability of being correctly diagnosed as not having cancer.

Positive Predictive Value (PPV) is the True Positive component divided by
the True Positive component plus the False Positive component. PPV is the accu-
racy of being able to identify malignant abnormalities. The latent class analysis

Table 7. Performance results for the proposed techniques.

Technique Performance(%)

Sensitivity Specificity PPV

Latent Class Analysis 80.5 93.9 95.0
LCA-ensemble 82.7 95.2 96.0

Neural Network 91.6 88.4 90.0
NN-ensemble 97.0 97.9 99.0

technique was not as sensitive as the neural network but had better specificity
and a higher positive predictive value than the neural network. Both ensemble
approaches resulted in substantially better performance, which of course must
be traded off against the increased computational cost. The NN-ensemble tech-
nique performed the best with good sensitivity, specificity and a high positive
predictive value.

The flexibility of clustering techniques such as LCA provides a mechanism for
gaining insight from large data repositories. However once patterns in the data
become evident it would appear that other less flexible but more specialised
techniques could be utilised to obtain analysis at a higher degree of granularity
of the data in question.

A summary of the overall performance of the techniques employed in this
paper are presented in Figure 1. The optimal LCA-ensemble result, while less
than the optimal NN-ensemble result, is obtained with somewhat less processing
effort and complexity, and further improvement may be possible.

Future work could look at extending the comparison of LCA with other
data mining algorithms to determine their applicability. Breast cancer represents
only one problem domain and applying these methods to other datasets would
be a logical extension. Our future research will include more experiments with
LatentGoldR© on other breast cancer datasets to determine how different numbers
of clusters produce different classification results for a more detailed analysis.
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8 Comparing Data Mining with Ensemble Classification

Fig. 1. Comparative Classification Accuracies.
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Abstract. The timely notification of cancer cases is crucial for can-
cer monitoring and prevention. However, the abstraction and classifica-
tion of cancer from the free-text of pathology reports and other relevant
documents, such as death certificates, are complex and time-consuming
activities. In this paper we investigate approaches for the automatic de-
tection of cases where the cause of death is a notifiable cancer from
free-text death certificates supplied to Cancer Registries. A number of
machine learning classifiers were investigated. A large set of features
were also extracted using natural language techniques and the Medtex
toolkit; features include stemmed words, bi-grams, and concepts from
the SNOMED CT medical terminology. The investigated approaches
were found to be very effective in identifying death certificates where the
cause of death was a notifiable cancer. Best performance was achieved by
a Support Vector Machine (SVM) classifier with an overall F-measure of
0.9647 when evaluated on a set of 5,000 free-text death certificates. This
classifier considers as features stemmed token bigrams and information
from SNOMED CT concepts filtered by morphological abnormalities and
disorders. However, our analysis shows that it is the selection of features
that most influences the performance of the classifiers rather than the
type of classifier or the feature weighting schema. Specifically, we found
that stemmed token bigrams with or without SNOMED CT concepts
are the most effective feature. In addition, the combination of token bi-
grams and SNOMED CT information was found to yield the best overall
performance.

Keywords: death certificates, Cancer Registry, cancer monitoring and
reporting, machine learning, natural language processing, SNOMED CT

1 Introduction

Cancer notification and reporting is an important and fundamental process for
providing an accurate picture of the impact of cancer, the nature and extent of
cancer, and to direct research efforts for the cure of cancer. Cancer Registries col-
lect and interpret data from a large number of sources, helping to improve cancer
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prevention and control, as well as treatments and survival rates for patients with
cancer.

The manual coding of documents, such as pathology reports and death cer-
tificates, with respect to notifiable cancers and corresponding synoptic factors
(such as primary site, morphology, etc.) is a laborious and time consuming pro-
cess. Cancer Registries strive to provide timely and accurate information on
cancer incidence and mortality in the community. They receive large quantities
of data from a range of sources, including hospitals, pathology laboratories and
Registries of Births, Deaths and Marriages (which issues releases of death cer-
tificates). It is estimated that incident cases within Cancer Registries that have
death certificate only notifications amount to about 1-5% of the total cases; de-
lays in the processing of this data may cause underestimation of the incidence of
cancer. Computational methods for the automatic abstraction of relevant infor-
mation have the possibility to enhance a Cancer Registry’s workflow, providing
time and costs savings as well as timely cancer incidence information and mor-
tality information. This automatic process is however challenging, both for the
complex nature of the language used in the reports, and for the high level of
recall and accuracy required.

Previous works have attempted to provide automatic cancer coding from
free-text pathology reports collected by Cancer Registries. For example, Nguyen
et al. [1] used natural language processing techniques and a rule-based system
to automatically extract relevant synoptic factors from electronic pathology re-
ports. Similarly, Zuccon et al. [2] showed how these techniques could cope with
character recognition errors generated by scanning free-text pathology reports
stored in paper form. Machine learning approaches have also been considered; for
instance, D’Avolio et al. [3] have tested approaches based on supervised machine
learning (Conditional Random fields and Maximum Entropy) and have shown
its effectiveness for the classification of pathology reports that were consistent
with cancer in the domains of colorectal, prostate, and lung cancer.

Cancer Registries have access to a number of data sources beyond pathology
reports. One such data source is death certificates. Death certificates are a rich
source of data that can support cancer surveillance, monitoring and reporting.
These certificates contain free-text sections that report the cause of the death of
an individual. An example of the free-text content of a death certificate where
the cause of death is a notifiable cancer is given in Figure 1, while Figure 2 is
an example of a non-notifiable death certificate.

Limited works have focused on computational methods for automatically
classifing death certificates with respect to the cause of death. The Super-
MICAR system and its related tools1 provide a semi-automatic coding of the
cause of death in death certificates. The system identifies keywords and expres-
sions from the free-text documents that indicate possible causes of death; this
is done through the use of a standard set of expressions encoded in a predefined
vocabulary. Extracted free-text expressions are then converted to one or more

1 Consult http://www.cdc.gov/nchs/nvss/mmds/super_micar.htm (last visited 19th
November 2012) for further details.
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(I)A) MAXILLARY TUMOR, 2 YEARS B) PULMONARY OEDEMA, 1 WEEK

(II) CEREBROVASCULAR ACCIDENT/DYSPLASIA, 20 YEARS ASTHMA

Fig. 1. A de-identified death certificate where the cause of death is a notifiable cancer.

I(A) CEREBROVASCULAR ACCIDENT 48 HOURS (B) CEREBRAL ARTERIOSCLEROSIS YEARS

(C) HYPERTENSION YEARS II CHRONIC ALCOHOLISM YEARS

Fig. 2. A de-identified death certificate where the cause of death is not a notifiable
cancer.

ICD-10 codes which are then aggregated into a single ICD-10 underlying cause
of death through the use of a rule-base. While doctor reported death certificates
can be fed directly into the system, Coroner reported ones require additional
pre-processing. A consistent number (between 15 and 20 percent according to a
US study [4]) of death certificates cannot be coded through SuperMICAR and
related tools, and thus require manual coding. A recent work has successfully
classified death certificates related to pneumonia and influenza using a natural
language processing pipeline and rule-based system [5]. However, to the best
of our knowledge, no previous research has been conducted to investigate fully
automatic methods that go beyond keyword spotting of standard cause of death
expressions to classifying death certificates, in particular focusing on certificates
where the main cause of death is cancer. Furthermore, while Australian Can-
cer Registries can acquire free-text death certificates on a fortnightly basis from
the Registry of Births Deaths and Marriages, coded causes of death produced
by SuperMICAR (and related products) are released by the Australian Bureau
of Statistics on a yearly basis. Computational methods able to tackle the fast
identification of death certificates where the cause of death is a notifiable can-
cer would enhance the cancer reporting and monitoring capabilities of Cancer
Registries.

In this paper, we focus on the problem of automatically identifying death
certificates where the main cause of death is cancer. This problem is cast into
a binary classification problem, i.e. death certificates are classified as containing
a death cause related to cancer or vice versa as not containing a death cause
related to cancer. Several machine learning classifiers were investigated for this
task. These include support vector machine, Naive Bayes, decision trees, and
boosting algorithms. A state-of-the-art information extraction tool (Medtex [6])
is used to create different set of features that are used to train the classifiers; dif-
ferent feature weighting schemas were also considered. Features include stemmed
tokens, n-grams, as well as SNOMED CT concept ids and tokens from fully spec-
ified names of SNOMED CT concepts, among others. SNOMED CT is a medical
terminology which formally describes in detail the coverage and knowledge of
topics and terminology used in the medical domain.

Our approaches are tested on 5,000 de-identified death certificates acquired
from an Australian Cancer Registry, using 10-fold cross validation for allow-
ing robust training and testing. Our experimental results demonstrate that the
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choice of classifier and weighting schema, although being important, is not crit-
ical for achieving high classification effectiveness. Instead, the choice of features
used to represent content of death certificates is the determining factor for high
classification effectiveness. Specifically, stemmed token bigrams are found to be
the single most important features among those extracted. Furthermore, we
found that SNOMED CT features provide consistent increments in classification
effectiveness if used along with stemmed token bigrams; although not providing a
large increment, the combined use of stemmed token bigrams and SNOMED CT
morphology provide the best classification effectiveness in our experiments.

Next, we detail the approaches adopted in this paper. Then, in Section 3 we
outline our empirical evaluation methodology; classification results obtained by
the investigated approaches are reported in Section 4. An analysis of the results
is developed in Section 4.1. The paper concludes in Section 5 summarising our
main contribution and directions for future work.

2 Approaches for Automatic Classification of Death
Certificates

In this paper we investigate supervised machine learning approaches for the
detection of death certificates where the cause of death is a notifiable cancer.
These approaches are characterised by three main variables: (1) the features
extracted from the documents (Section 2.1), (2) the weighting schemas applied
to the features to represent documents (Section 2.2), and (3) the specific binary
classifier used to individuate certificates where the cause of death is a notifiable
cancer (Section 2.3).

2.1 Automatic Feature Extraction

Machine learning algorithms require data to be represented by features, such as
the words that occur in a text document. We used the information extraction
capabilities of the Medtex system2 for obtaining a set of meaningful features
from the free-text of the death certificates.

The feature sets investigated in this paper are:

stem: a token stem, i.e. the stemmed version of a word contained in a certificates
stemBigram: the bi-gram formed by two token stems, i.e. a pair of adjacent

stemmed words as found in a certificates
concept: SNOMED CT concepts as found in the free-text of the certificates

using the Medtex system
conceptFull: the tokens of the fully specified name of the extracted SNOMED CT

concepts

2 Medtex comprises both information extraction capabilities (extracting both low level
information such as word tokens and stems, punctuation, etc., and higher level se-
mantic information such as UMLS and SNOMED CT concepts [1]) and classification
capabilities integrated via its rule-based engine.
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concFullMorph: the tokens of the fully specified name of extracted SNOMED CT
concepts that are morphologic abnormalities or disorders

concBigram: the bigram formed by two adjacent SNOMED CT concept ids

concFullBigram: the bigram formed by two adjacent tokens in the fully specified
name of concepts extracted from SNOMED CT

While features like stem and stemBigram are commonly used for classifying
free-text documents, features based on SNOMED CT concepts and its properties
such as tokens from the fully specified name have not been exploited by previ-
ous works that attempted to classify free-text death certificates. SNOMED CT
provides a standard clinical terminology used to map various descriptions of a
clinical concept to a single standard clinical concept. In this work, the SNOMED
CT ontology was used as an underlying mechanism to classify free-text using se-
mantically matching SNOMED CT concepts.

In addition, we also considered pair-wise combinations of features that pro-
vided promising results on preliminary experiments. In this paper we shall re-
port the results obtained by all features used singularly, and of the combinations
concept + stem, concept + stemBigram, concFullMorph + stemBigram, and con-
cBigram + stemBigram, which has shown promise in preliminary investigations.

Next, we consider the example death certificates given in Figure 1 and Fig-
ure 2 to describe how a feature set is constructed. To build the feature represen-
tations, we examine each death certificate and for each occurring instance of a
feature in the certificate we assign a value of 1, while the absence of a feature is
marked by a zero entry value. Note that these values are subsequently modified
according to the feature weighting functions, as we shall describe in Section 2.2.
After all certificates have been processed in this manner, we add a final feature
cancerNotifiable, whose value is obtained from ground truth judgements supplied
with the data. Table 1 shows an extract of the feature data constructed for the
two example death certificates. The task of the machine learning classifiers is to
predict the value of the cancerNotifiable feature, given the learning data supplied.
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Figure 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 ... 1
Figure 2 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 ... 0

Table 1. Feature data built from two example death certificates.
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Note that no further processing is applied to the text, for example, for remov-
ing punctuation, identifying section or list labels, or for removing or correcting
typographical errors present in the free-text. While adequate text pre-processing
may enhance the quality of the text itself and thus of the extracted features,
we left this for future work and instead we focused on investigating weighting
schemas for the selected features and binary classifiers.

2.2 Feature Weighting

A number of weighting schemes for capturing the local importance of a feature
in a report were tested.

Binary coefficients were used to encode the presence or absence of a feature.
We refer to this schema as binary.

The weighting schema composed by the feature frequency f(F) of feature F
was used to capture the number of times a specific feature appeared within a
document. We shall refer to this weighting schema as frequency.

Variations of the frequency weighting schema were also experimented with. In
this weighting schema, features frequencies were directly translated into weights,
i.e. weights are linearly derived from frequencies. Variations consider non-linear
functions of the frequency of a feature.

A first variation was to scale the appearance of feature F in a free-text
death certificate by the function 1 + log(f(F)) if f(F) ≥ 1, and 0 if the feature
was absent. This function would capture the fact that little importance is given
to subsequent appearances of a feature F in a document: the logarithm of a
number greater than one plateaus rapidly. In the following, we shall refer to this
weighting schema as LogF, i.e. logarithm of the frequency.

A second variation was to assign increasing weights to features that appear
with high frequencies within the death certificate. To this aim, the appearance of
feature F was weighted according to the function ef(F), while a zero value was
assigned to absent features. It is suggested that, given the short length of the
considered death certificates, the unexpected multiple occurrence of a feature
would provide strong evidence that that feature is important for the document.
Using the exponential function to weight occurrences of a feature would assign
dominating scores to features that occur frequently in a document. We shall refer
to this weighting function as expF.

Note that only local weighting functions were used to assign scores to fea-
tures,that is, weights were computed only by taking into account the frequencies
of appearance of a feature in a text, thus ignoring the distribution of that feature
on a global level, i.e. across the dataset. The incorporation of global occurrence
statistics within the weighting schemas is left to future work.

2.3 Automatic Classification Methodology

A number of common classifiers were evaluated. These comprised statistical mod-
els (Naive Bayes), support vector machines (SPegasos), decision trees (C4.5), and

AIH 2012

70



boosting algorithms (AdaBoost). We considered the implementations of these
algorithms provided in the Weka toolkit [7].

The multinomial Naive Bayes classifier determines the class of a death cer-
tificate according to the features that occur in the text and their weights. The
SPegasos classifier uses a stochastic gradient descent algorithm and a hinge loss
function to produce the separation hyperplane used by the linear support vector
machine. In the C4.5 classifier, information gain is used for choosing at each
level of the decision tree the most effective feature able to split the data into
the two binary classes considered here (i.e. death certificates related to cancers
and those not related to cancer). Adaboost minimises of a convex loss function
built from the prediction of a base weak classifier. A simple binary decision tree
classifier that constructs one-level trees was used as base classifier for Adaboost.

Parameters of all classifiers were set to the default values described in Witten
et al. [7].

3 Experimental Methodology

3.1 Data

A set of 5,000 free-text death certificates was acquired from Cancer Institute
NSW, the institutional entity responsible for maintaining the Central Cancer
Registry in New South Wales. Ethics approval was granted by the NSW Popu-
lation & Health Services Research Ethics Committee for this study including to
use the de-identified data. The free-text documents were short in length, con-
taining on average 13.08 words; the (unstemmed) vocabulary contained 3,751
unique words (including section headings and labels).

Cause of death classifications based on ICD-10 codes accompanied the re-
ports. This coding set was acquired from the Australian Bureau of Statistics,
who releases coded data yearly. ICD-10 codings were used to determine the
class each death certificates belonged to. A list of ICD-10 codes that are cancer
notifiable was provided by Cancer Institute NSW.

The 5,000 death certificates were extracted from Cancer Institute NSW
archives so that documents were uniformly split across the two classes, i.e. 2,500
certificates were coded with ICD-10 codes that are for notifiable cancers accord-
ing to the business rules of Cancer Institute NSW, while the remaining 2,500
were not cancer notifiable. The causes of death of the 2,500 death certificates
for notifiable cancers span a total of 367 unique ICD-10 codes.

3.2 Evaluation

A 10-fold cross validation methodology was used to train and test the classifica-
tion algorithms. In this methodology, the dataset was randomly divided into 10
stratified3 folds of equal dimensions. A model for each classifier was then learnt

3 Folds were automatically stratified with respect to the two target classes, not the
ICD-10 codes.
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on nine of these folds, leaving one fold out for testing. The process was repeated
by selecting a new fold for testing, while a new model was learnt from the re-
maining folds. Classification effectiveness was then averaged across the folds left
out for testing in each iteration.

F-Measure (F-m) was used as primary metric to evaluate the efficacy of the
implemented classifiers; accuracy, recall (sensitivity, Rec) and precision (posi-
tive predictive value, Prec) were also recorded, along with the number of true
positive (TP), false positve (FP), true negative (TN), and false negative (FN)
classifications.

4 Results and Discussion

The combination of 10 features, 4 weighting schemas, and 4 classifiers requires
the evaluation of a total of 160 classifier settings (referred to as runs in the
following) on the dataset consisting of 5,000 death certificates. While we eval-
uated all combinations of features, weighting schema and classifiers, given the
large number of combinations, it is not feasible to report the individual results
for each of the runs. Thus, we report only the settings of the 40 most effective
runs in terms on F-measure, our primary evaluation metric (Table 2), with the
F-measure of each classifier over all experimented settings graphically shown in
Figure 3. Later in the paper we shall consider a summary evaluation of the vari-
ability of results provided by features, weighting schemas, and classifiers. This
analysis will comprise of the results from all runs.

Naive Bayes Supp. Vec. Mach. C4.5 Adaboost
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Fig. 3. Boxplot summarising the F-measure performance of the investigated classifiers
over all considered settings.

The results reported in Table 2 suggest that the tested approaches are highly
effective in discriminating between those death certificates that contain a cancer
notifiable cause of death and those that do not.
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Classifier Feature Weight Prec Rec F-m TP FN FP TN

SPegasos concFullMorph + stemBigram frequency .9794 .9504 .9647 2376 124 50 2450

SPegasos concFullMorph + stemBigram logF .9786 .9500 .9641 2375 125 52 2448

SPegasos concept + stemBigram logF .9770 .9508 .9637 2377 123 56 2444

SPegasos concFullMorph + stemBigram binary .9770 .9504 .9635 2376 124 56 2444

SPegasos concept + stemBigram binary .9766 .9504 .9633 2376 124 57 2443

SPegasos concept + stemBigram frequency .9766 .9504 .9633 2376 124 57 2443

SPegasos stemBigram binary .9761 .9488 .9623 2372 128 58 2442

SPegasos concFullMorph + stemBigram expF .9773 .9476 .9622 2369 131 55 2445

SPegasos stemBigram logF .9753 .9476 .9612 2369 131 60 2440

SPegasos stemBigram expF .9785 .9444 .9611 2361 139 52 2448

SPegasos stemBigram frequency .9764 .9452 .9606 2363 137 57 2443

SPegasos concept + stemBigram expF .9741 .9460 .9598 2365 135 63 2437

C4.5 concept + stemBigram logF .9800 .9392 .9592 2348 152 48 2452

C4.5 concept + stemBigram expF .9800 .9392 .9592 2348 152 48 2452

C4.5 concept + stemBigram frequency .9800 .9392 .9592 2348 152 48 2452

C4.5 concept + stemBigram binary .9799 .9384 .9587 2346 154 48 2452

C4.5 concFullMorph + stemBigram logF .9856 .9324 .9583 2331 169 34 2466

C4.5 concFullMorph + stemBigram expF .9856 .9324 .9583 2331 169 34 2466

C4.5 concFullMorph + stemBigram frequency .9856 .9324 .9583 2331 169 34 2466

C4.5 stemBigram logF .9848 .9320 .9577 2330 170 36 2464

C4.5 stemBigram expF .9848 .9320 .9577 2330 170 36 2464

C4.5 stemBigram frequency .9848 .9320 .9577 2330 170 36 2464

C4.5 concFullMorph + stemBigram binary .9848 .9320 .9577 2330 170 36 2464

C4.5 stemBigram binary .9848 .9308 .9570 2327 173 36 2464

AdaBoost concept + stemBigram binary 1 .8816 .9371 2204 296 0 2500

AdaBoost concept + stemBigram logF 1 .8816 .9371 2204 296 0 2500

AdaBoost concept + stemBigram expF 1 .8816 .9371 2204 296 0 2500

AdaBoost concept + stemBigram frequency 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram binary 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram logF 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram expF 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram frequency 1 .8816 .9371 2204 296 0 2500

AdaBoost stemBigram binary 1 .8784 .9353 2196 304 0 2500

AdaBoost stemBigram logF 1 .8784 .9353 2196 304 0 2500

AdaBoost stemBigram expF 1 .8784 .9353 2196 304 0 2500

AdaBoost stemBigram frequency 1 .8784 .9353 2196 304 0 2500

SPegasos stem logF .9588 .9120 .9348 2280 220 98 2402

SPegasos stem frequency .9611 .9096 .9346 2274 226 92 2408

Naive Bayes stemBigram binary .9658 .9036 .9337 2259 241 80 2420

Naive Bayes concept + stemBigram binary .9606 .9076 .9334 2269 231 93 2407

Table 2. Top 40 results with respect to decrease F-measure (F-m).

Overall, the best classifier is the support vector machine implementation pro-
vided by SPegasos when used on concFullMorph + stemBigram features, i.e. the
fully specified names of concepts associated to morphological abnormalities and
disorders as encoded in SNOMED CT, weighted using raw frequencies. SPegasos
is found to be very effective also when other combinations of weighting schemas

AIH 2012

73



and features are considered. In addition, this support vector machine classifier
shows the smallest variance across all considered settings (Figure 3).

Among the best performing classifiers, AdaBoost used in conjunction with
stemmed bigrams features achieved perfect precision (Prec= 1), at the expense
of recall. Although these results are remarkable, high precision may be considered
less important than high recall in such task. In fact, in a Cancer Registry setting,
it is preferable to have high recall and be considering death certificate that are
incorrectly reported as containing cancer notifiable cause of death, than to have
missed cancer cases. This becomes particularly important if the missed cancer
cases refer to rare cancers. AdaBoost also exhibits the highest variance across
experiment settings among the considered classifiers (see Figure 3).

4.1 The Impact of Classifiers, Weighting Schemas, and Features

To better understand the role of specific features, weighting schema, and classi-
fiers on the effectiveness of the tested approaches, an analysis of the empirical
results where each of the three key characteristics were treated as the controlled
variable is performed.

We start by examining the impact of each classification model on the overall
effectiveness of the approaches. Table 3 reports maximum (Max(F-m)), mini-
mum (Min(F-m)), difference (∆), and variance of F-measure over all runs of
each classifier model. SPegasos is found to be the classifier achieving the high-
est maximum and minimum F-measure values, thus extending the observations
made on this classifier when examining the results of Table 2. Instead, while the
Naive Bayes classifier was not found to be amongst the most effective classifica-
tion models in our experiments, its robustness is second only to that of SPegasos,
with performance ranges between 0.9337 and 0.7428 in F-Measure. While models
such as C4.5 and Adaboost achieve higher values of F-measure than Naive Bayes,
their minimum performances are lower than that recorded for Naive Bayes.

Classifier Max(F-m) Min(F-m) ∆ Variance

SPegasos 0.9647 0.7767 0.1880 5.10 · 10−3

Naive Bayes 0.9337 0.7428 0.1909 5.10 · 10−3

C4.5 0.9592 0.7355 0.2237 7.35 · 10−3

AdaBoostM1 0.9371 0.6954 0.2417 7.88 · 10−3

Table 3. Classification effectiveness across the four classifiers ordered by increasing
max-min F-measure range (∆).

We continue by analysing the influence of weighting schemas on the classifi-
cation results of the approaches investigated in this work. Simple raw frequency
weighting, i.e. frequency, is found to be the most effective weighting schema. How-
ever, no weighting schema appears to be significantly better than another: while
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Weight Max(F-m) Min(F-m) ∆ Variance

binary 0.9635 0.6954 0.2681 6.81 · 10−3

frequency 0.9647 0.6954 0.2693 6.74 · 10−3

logF 0.9641 0.6954 0.2687 6.80 · 10−3

expF 0.9622 0.6954 0.2668 6.53 · 10−3

Table 4. Classification effectiveness across the four weighting schema ordered by in-
creasing max-min F-measure range (∆).

frequency achieves the best performance with a F-measure of 0.9647, the highest
F-measure of the worst performing schema is 0.9622 (expF), just 0.003% lower
than frequency. Furthermore, all weighting schema exhibit the same effectiveness
when considering the worst performing settings. Thus the range of performance
differences and their variance do not significantly differ across weighting schema.
This may be due to the fact that death certificates are in general short docu-
ments, where features occur uniformly.

Feature Max(F-m) Min(F-m) ∆ Variance

stemBigram 0.9623 0.9275 0.0348 2.02 · 10−4

concept + bigramStem 0.9637 0.9267 0.0370 2.16 · 10−4

concFullMorph + stemBigram 0.9647 0.9255 0.0392 2.33 · 10−4

concBigram + stemBigram 0.8443 0.7677 0.0766 8.01 · 10−4

concBigram 0.8443 0.7677 0.0766 8.01 · 10−4

concFullBigram 0.7768 0.6954 0.0814 8.93 · 10−4

conceptFull 0.809 0.7177 0.0913 1.17 · 10−3

concept + stemBigram 0.9302 0.838 0.0922 8.39 · 10−4

concept 0.8743 0.7792 0.0951 1.13 · 10−3

stem 0.9348 0.8131 0.1217 1.36 · 10−3

Table 5. Classification effectiveness across the ten features ordered by increasing max-
min F-measure range (∆).

Feature is the final variable of our analysis, and the one with the greatest im-
pact on classification results. The use of the concFullMorph + stemBigram feature
provide the highest F-measure (0.9647), while concFullBigram yields the lowest
maximal F-measure (0.7768): a significant difference of 19.48%. The smallest
variance was demonstrated by stemBigram (2.02 · 10−4), making it the most
robust feature in our experiment; in addition this feature yielded a maximal F-
measure of only 0.003% lower than the best value recorded in our experiments.
The minimal F-measure yield by the stemBigram feature was also greater than
the greatest F-measure values obtained when using half of the features investi-

AIH 2012

75



gated in our study. These results provide strong indication that, of the variables
analysed, the choice of feature provides the greatest contribution to the classifi-
cation effectiveness.

5 Conclusions
Timely processing of cancer notifications is critical for timely reporting of cancer
incidence and mortality. Death certificates are a rich source of data on cancer
mortality. Cancer registries acquire free-text death certificates on a regular (e.g.
fortnightly) basis. However, the cause of death information needs to be classified
to facilitate reporting of cancer mortality. Cause of death information classified
using ICD-10 codes is only available on an annual basis. In this paper we inves-
tigated the automatic classification of death certificates to individuate cancer
notifiable cause of deaths. The investigated approaches achieved overall strong
classification effectiveness, with a support vector machine classifier trained with
token bigram features and information from the SNOMED CT medical ontol-
ogy, and weighted by their frequency in the documents yielding an F-measure
of 0.9647. The choice of features, rather than that of classifiers or weighting
schema, was found to be the determining factor for high effectiveness.

Future efforts will be directed towards an in depth error analysis, in particular
examining the distance between the prediction produced by a classifier and the
decision threshold. We also plan to extend the investigation to predict the actual
ICD-10 codes associated to cause of death related to cancer, so as to further assist
clinical coders in processing cancer notifications.
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Abstract. The aim of this research is to report initial experimental results and 
evaluation of a clinician-driven automated method that can address the issue of 
misdiagnosis from unstructured radiology reports. Timely diagnosis and report-
ing of patient symptoms in hospital emergency departments (ED) is a critical 
component of health services delivery. However, due to disperse information 
resources and vast amounts of manual processing of unstructured information, a 
point-of-care accurate diagnosis is often difficult. A rule-based method that 
considers the occurrence of clinician specified keywords related to radiological 
findings was developed to identify limb abnormalities, such as fractures. A da-
taset containing 99 narrative reports of radiological findings was sourced from a 
tertiary hospital. The rule-based method achieved an F-measure of 0.80 and an 
accuracy of 0.80. While our method achieves promising performance, a number 
of avenues for improvement were identified using advanced natural language 
processing (NLP) techniques.  
 
Keywords: limb fractures, emergency department, radiology reports, classifica-
tion, rule-based method, machine learning. 

1 Introduction 

The analysis of x-rays is an essential step in the diagnostic work-up of many condi-
tions including fractures in injured Emergency Department (ED) patients. X-rays are 
initially interpreted by the treating ED doctor, and if necessary patients are appropri-
ately treated. X-rays are eventually reported on by the specialist in radiology and 
these findings are relayed to the treating doctor in a formal written report. The ED, 
however, may not receive the report until after the patient was discharged home. This 
is not an uncommon event because the reporting did not occur in real-time. As a re-
sult, there are potential delays in the diagnosis of subtle fractures missed by the treat-
ing doctor until the receipt of the radiologist’s report. The review of x-ray reports is a 
necessary practice to ensure fractures and other conditions identified by the radiolo-
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gist were not missed by the treating doctor. The review requires the reading of the 
free-text report. Large “batches” of x-rays are reviewed often days after the patient’s 
ED presentation. This is a labour intensive process which adds to the diagnostic delay. 
The process may be streamlined if it can be automated with clinical text processing 
solutions. These solutions will minimise delays in diagnosis and prevent complica-
tions arising from diagnostic errors [1-2]. This research aims to address these issues 
through the application of a gazetteer rule-based approach where keywords that may 
suggest the presence or absence of an abnormality were provided by expert ED clini-
cians. Rule-based methods are commonly used in Artificial Intelligence [3-5]. Studies 
have shown that rule-based methods can be applied for identifying clinical conditions 
from radiology reports such as acute cholecystitis, acute pulmonary embolism and 
other conditions [6]. The purpose of these methods is to simulate human reasoning for 
any given information processing task to achieve full or partial automation.  

 

2 Related Work 

Previous studies that focused on the problem of identification of subtle limb frac-
tures during the diagnosis of ED patients showed that about 2.1% of all fractures were 
not identified during initial presentation to the Emergency Department [7]. A similar 
study about radiological evidence for fracture reports that 1.5% of all x-rays had ab-
normalities that were not identified in the Emergency Department records [8]. Further 
research also reported that 5% and 2% of the x-rays of the hand/fingers and ankle/foot 
from a pediatric Emergency Department had fractures missed by the treating ED doc-
tor [9]. These small percentages of incidences may have significant impact on the 
overall patient healthcare as these missed fractures may develop into more complex 
conditions. Timely recognition of fractures is therefore important. There have been 
efforts to automatically detect fractures and other abnormalities from free-text radiol-
ogy reports using support vector machine (SVM) and machine learning tech-
niques[10-11]. Even though the results of machine learning based classifiers show 
high effectiveness, their applicability in clinical settings may be limited. Machine 
learning methods are data–driven, and as a result, if the training sample is not a repre-
sentative selection of the problem domain, then the resulting model will not general-
ise. In addition, machine learning approaches are required to be retrained on new 
corpora and tasks and collating training data to build new classifier models can be a 
timely and labour intensive process. These issues provide the motivation for the in-
vestigation of rule-based methods which have the ability to model expert knowledge 
as easily implementable rules.   

3 Methods 

A set of 99 de-identified free-text descriptions of patient’s limb x-rays reported by 
radiologists were extracted from a tertiary hospital’s picture archiving and 
communication system (PACS). An ethics approval was granted by the Human 
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Research Ethics Committee at Queensland Health to use this data. The average length 
of free-text reports is about 52 words with total 930 unique words in the vocabulary. 
Some reports are semi-structured, with section headings such as “History”, “Clinical 
Details”, “Findings”, appearing in the text. 

3.1 Ground Truth Development  

One ED visiting medical officer and one ED Registrar were engaged as assessors to 
manually classify the patient findings. Findings were assigned to either one of the 
following two classes: (1) “Normal”, means identifying no fractures or dislocations 
and (2) “Abnormal”, identifying the presence of a reportable abnormality such as 
fracture, dislocation, displacement etc., which requires further follow-up. To gather 
ground truth labels about the data, an in-house annotation tool was developed. This 
tool allowed the assessors to manually annotate and classify the free-text reports into 
one of the two target categories. The two assessors initially agreed on the annotations 
of 77 of the 99 reports and disagreed on the remaining 22 reports. The disagreed 
reports were resolved and validated by a senior Staff Specialist in Emergency 
Medicine, who acted as a third assessor.   

3.2 Rule-based classifier 

A rule-based classifier was developed and implemented with rules as a set of key-
words extracted from the x-ray reports assessment criteria as documented by the cli-
nicians prior to the ground truth annotation task. The classifier was implemented to 
classify the text into “Normal” and “Abnormal” categories as shown in Table 1.  
Table 1. Keywords used for building the rule-base. 
 

Keywords Suggested Classification 
no + fracture Normal 
old + fracture Abnormal 
Fracture Abnormal 
x ray + follow up Abnormal 
Dislocation Abnormal 
FB Abnormal 
Osteomyelitis Abnormal 
Osteoly Abnormal 
Displacement Abnormal 
intraarticular extension Abnormal 
foreign body Abnormal 
articular effusion Abnormal 
Avulsion Abnormal 
septic arthritis Abnormal 
Subluxation Abnormal 
Osteotomy Abnormal 
Callus Abnormal 
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4 Results and Discussion 

Results obtained by our gazetteer rule-based approach on the dataset containing 99 
radiology reports are reported in Table 2, along with the performance of a Naïve 
Bayes classifier that was used to classify on the same dataset [12]. The Naïve Bayes 
classifier was trained and evaluated using a 10-fold cross validation approach. This 
approach used 90% of reports for training and subsequently evaluated on the remain-
ing 10% within each cross validation fold. The average of the evaluation results 
across the 10 folds was reported as the classifier’s performance. A set of stemmed 
tokens in combination with high order semantic features such as SNOMED CT con-
cepts related to morphological abnormalities and disorders generated by the Medtex 
system [13] were used to represent the reports. Classification results were evaluated in 
terms of F-measure and accuracy (see Table 2). The number of true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) instances were also report-
ed. 

Table 2. Classification results obtained by rule-based and NB classification 

Method F-measure Accuracy TP TN FP FN 
Rule-based 0.80 0.80 39 40 11 9 
Naive Bayes 0.92 0.92 44 47 4 4 

 
The rule-based system classified 49 reports as “Normal”. Thirty-three of these were 
classified as “normal” due to the “no + fracture” rule. The remaining 16 reports did 
not match any rule, and thus were classified as “normal” (i.e. “no rule fired”). The 
high false negative count from the rule-based system suggests that the keywords that 
were used to characterise “Abnormal” cases by the clinician were not complete or 
adequate to capture all possible cases of abnormalities.  Although the proposed key-
word rule-based approach is simplistic but shows promise, advanced Natural Lan-
guage Processing techniques such as those adopted in Medtex [14] can be used to 
improve classification performances. More keywords can also be learnt using compu-
tational linguistic methods, such as the Basilisk bootstrapping algorithm  [15].  

5 Conclusion and Future Research 

This work has described an initial investigation of a clinician-driven rule-based meth-
od for automatic classification of free-text limb fracture x-ray findings. We described 
a simple keyword spotting approach where keywords were derived from classification 
criteria provided by clinicians. The rule-based classification method achieved promis-
ing results with F-measure performances of 0.80 and an accuracy of 0.80. As future 
work, the research will aim to improve the simple keyword approach with more ad-
vanced clinical text processing techniques to complement the proposed rule-based 
classification method. The possible integration of our method in real-life workflow of 
hospital emergency departments will also be considered.   
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Abstract. Stochastic activity durations, uncertainty in the arrival process of pa-
tients, and coordination of multiple activities are some key features of surgery 
planning and scheduling. In this paper we provide an overview of challenges 
around elective surgery scheduling and propose a predictive model for elective 
surgery scheduling to be evaluated in a major tertiary hospital in Queensland. 
The proposed model employs waiting lists, peri-operative information, work-
load predictions, and improved procedure time estimation models, to optimise 
surgery scheduling. It is expected that the resulting improvement in scheduling 
processes will lead to more efficient use of surgical suites, higher productivity, 
and lower labour costs, and ultimately improve patient outcomes.  

Keywords: Surgery scheduling, Predictive optimisation, Waiting list 

1 Introduction 

Ageing population and higher rates of chronic disease increase the demand 
on health services. The Australian Institute of Health and Welfare reports a 
3.6% per year increase in total elective surgery admissions over the past four 
years [1]. These factors stress the need for efficiency and necessitate the 
development of adequate planning and scheduling systems in hospitals. 
Since operating rooms (ORs) are the hospital’s largest cost and revenue cen-
tre that has a major impact on the performance of the hospital, OR schedul-
ing has been studied by many researchers.  
The surgery scheduling problem deals with the allocation of ORs under un-
certain demand in a complex and dynamic hospital environment to optimise 
use of resources. Different techniques such as Mathematical programming[2-
4], simulation [5, 6], Meta-heuristics [5, 7] and Distributed Constraint Opti-
mization [8] have been proposed to address this problem. However most 
current efforts to solve this problem either make simplifying assumptions 
(e.g. considering only one department or type of surgery [4]), or employ 
theoretic data [3, 5]  which make them difficult to use in hospitals. 
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In this paper, we propose a prediction based methodology for surgery 
scheduling to address the above limitations. By using predicted workload 
information and retrospective analysis of waiting lists and theatre utilization, 
we predict a theatre template representing optimal case mix. The proposed 
model also employs accurate estimation of procedure time and predicted 
workload information to drive optimal elective surgery scheduling, and help 
hospitals fulfil National Elective Surgery Targets (NEST) [1].  

2 Elective Surgery Scheduling at the Evaluation Hospital 

Long waiting lists for elective surgery in Australian hospitals during recent 
years has driven a nationwide research agenda to improve the planning, 
management and delivery of health care services. This work is to be evalu-
ated at a major tertiary hospital which has a total of 15 operating theatres 
performing 124 elective operating sessions and 23 emergency sessions per 
week. Currently allocation of available elective operating sessions at the 
hospital have been broken down to different specialties and teams of sur-
geons based on a static case mix planning. This static allocation of available 
sessions between emergency and elective patients and among different de-
partments results in underutilization or cancellation due to demand fluctua-
tions. Also, the allocation of patients to theatres is carried out without con-
sidering the uncertainty and possible changes that might happen. Procedure 
times are estimated by using generic data or recommended by relevant sur-
geons not based on individual patient and surgery characteristics. Patients 
are booked into schedules in a joint process between surgeons and the book-
ing department. Due to the dynamic environment and rapid changes, these 
schedules need to be updated quickly. Usually department managers have 
regular meetings to make any changes needed. Department managers try to 
locally optimise their department goals, but since there is no global objective 
usually these solutions are not the optimal global solutions. 

3 An Optimal Surgery Scheduling Model 

Although the surgery scheduling problem has been well addressed in litera-
ture, it still remains an open problem in Operations Research and Artificial 
Intelligence. Despite the dynamic nature of the hospital environment, the 
majority of previous studies ignore the underlying uncertainty. This leads to 
simplistic models that are not applicable in real world situations.  
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3.1  Current State of the Art 

Cardoen et al. present a comprehensive literature review on operating room 
scheduling including different features such as performance measures, pa-
tient classes, solution technique and uncertainty [9]. One of the major issues 
associated with the development of accurate operating room schedules or 
capacity planning strategies is the uncertainty inherent to surgical services. 
Uncertainty and variability of frequency and distribution of patient arrivals, 
patient conditions, and procedure durations, as well as ‘‘add-on’’ cases are 
some instances of uncertainty in surgery scheduling [10]. Among them sto-
chastic arrival and procedure duration are two type of uncertainty studied by 
many researchers.  Procedure duration depends on several factors such as 
experience of the surgeon, supporting staff, type of anaesthesia, and pre-
condition of the patient. Devi et al. estimate surgery times by using Adaptive 
Nero Fuzzy Inference Systems, Artificial Neural Networks and Multiple Linear 
Regression Analysis [2] but they just focus on one department and use a very 
limited sample to build and validate their model. Lamiri et al. developed a 
stochastic model for planning elective surgeries under uncertain demand for 
emergency surgery [3]. Lamiri et al. also address the elective surgery plan-
ning under uncertainties related to surgery times and emergency surgery 
demands by combining Monte Carlo simulation and a column generation 
approach[5]. Although their method addresses uncertainties, it is based on 
theoretic data and it has not been tested on real data. What is needed is a 
whole of theatre approach to provide better prediction of surgery time, in-
corporation of predicted workload in planning the weekly surgery template, 
and target guided optimization to ensure optimal allocation of resources.  

3.2  Proposed Method 

To improve the planning and optimization tasks underlying the process, we 
propose a two stage methodology for elective surgery scheduling. As a first 
stage, predicted workload information (drawn from Patient Admission Pre-
diction Tool [11] currently used at the evaluation hospital), current Waiting 
List information and Historic utilization information is used to manage thea-
tre allocation and case mix distribution for each week (see Figure 1). This 
allows the prediction based sharing of theatres between elective and emer-
gency surgery, and allocation of theatre time to surgery teams/departments 
and results in a theatre schedule template that works better than a static 
allocation model (as demonstrated by Khanna et al. [8]). 
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Figure 1. Proposed Methodology for Improving Surgery Scheduling 

In the second stage of the process, the allocation of patients to the weekly 
theatre schedule is guided by an improved prediction algorithm to estimate 
the surgery duration. The algorithm takes into account current patient, sur-
gery, and surgeon information and related historic peri-operative informa-
tion to forecast the planned procedure time. Incorporating NEST compliance 
in the optimization function and improved resource estimation deliver fur-
ther improvements to the scheduling process and help deliver a more robust 
and optimal schedule (Figure 1). We are currently working towards collecting 
over 5 years of surgery scheduling, waiting list and peri-operative informa-
tion for the evaluation hospital from the corporate information systems. This 
data will be used for modelling and independently validating the prediction 
algorithms and building historic resource utilization knowledge banks to 
guide other stage of the scheduling process.  

4 Conclusion 

The proposed model has the potential to improve elective surgery scheduling 
by providing more accurate procedure time estimation and predicting arrival 
demand of elective and emergency patients. 
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The	
  intention	
  of	
  this	
  paper	
  is	
  to	
  stimulate	
  discussion	
  on	
  Hebb’s	
  Law	
  and	
  

its	
  pedagogic	
  implications.	
  
	
  
At	
  a	
  basic	
  cellular	
  level,	
  Hebb’s	
  Law	
  states	
  that	
  is	
  Cell	
  A	
  and	
  Cell	
  B	
  persis-­‐

tently	
   fire,	
   the	
   connection	
   between	
   them	
   strengthens.	
   Figure	
   1	
   illustrates	
  
the	
   interactions.	
  This	
   is	
  a	
  cellular	
   levels	
  process,	
   suggesting	
   that	
  brain	
  pro-­‐
cesses	
  that	
  occur	
  repeartedly	
  tend	
  to	
  become	
  grafted	
  together	
  [1].	
  	
  

	
  

	
  
Fig	
  1.	
  Hebb’s	
  Law.	
  Repeated	
  stimulation	
  results	
  in	
  a	
  stronger	
  signal	
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This	
  scientific	
  theory	
  explains	
  the	
  adaptation	
  of	
  neurons	
  during	
  the	
  learn-­‐
ing	
  process.	
   Importantly,	
   this	
   type	
  of	
  plasticity	
  does	
  not	
   involve	
   increasing	
  
the	
  number	
  of	
  cells,	
  but	
  rather	
  strengthening	
  the	
  existing	
  cells’	
  connectivity.	
  
Understanding	
   such	
   biological	
   phenomena	
   opens	
   up	
   new	
   paradigms	
   and	
  
laws	
  that	
  AI	
  can	
  utilise.	
  The	
  question	
  is	
  whether	
  Hebb’s	
  law	
  would	
  stand	
  at	
  a	
  
higher	
  level	
  of	
  abstraction?	
  There	
  are	
  suggestive,	
  but	
  not	
  conclusive	
  indica-­‐
tions.	
  For	
  example,	
  a	
  friendship	
  is	
  considered	
  stronger	
  with	
  time,	
  indicating	
  
a	
  strengthening	
  of	
  wiring	
  between	
  the	
  friends.	
  

	
  
Models	
  based	
  on	
  “firing	
  together	
  to	
  wire	
  together”	
  have	
  been	
  suggested	
  

in	
  health	
  and	
  therapy	
  [2].	
  For	
  example,	
   if	
  a	
  patient	
  presents	
  with	
  a	
  mental	
  
trauma	
   that	
   causes	
  extreme	
  anger,	
   the	
   therapist	
   introduces	
  a	
   counter	
  and	
  
positive	
   stimulus	
   that	
   occurs	
  whenever	
   the	
   anger	
   occurs.	
   Both	
   (anger	
   and	
  
the	
   positive	
   stimulus)	
   are	
   repeated	
   over	
   and	
   over	
   again,	
   thus	
   following	
  
Hebb’s	
  Law	
  and	
  adding	
  strength	
  to	
  this	
  connection	
  between	
  the	
  two	
  stimuli,	
  
resulting	
  in	
  relief	
  to	
  the	
  patient.	
  	
  

	
  
This	
  also	
  implies	
  causal	
  and	
  temporal	
  conjectures	
  based	
  on	
  causality.	
  The	
  

causality	
  is	
  in	
  the	
  firing	
  sequence;	
  that	
  if	
  A	
  fires	
  first	
  and	
  then	
  B	
  fires,	
  A	
  is	
  the	
  
cause.	
   If	
  B	
   fires	
  before	
  A,	
  a	
   reverse	
   interpretation	
   is	
  possible	
   that	
  may	
  de-­‐
crease	
   the	
   strength	
   between	
   them.	
   There	
   seems	
   evidence	
   to	
   suggest	
   that	
  
the	
  “firing”	
  and	
  “wiring”	
  may	
  be	
  a	
  sequential	
  process.	
  	
  

	
  
Causality	
  is	
  a	
  subject	
  of	
  intense	
  philosophical	
  interest	
  from	
  ancient	
  times.	
  

Most	
   causal	
  models	
   are	
   rule-­‐based	
   systems.	
   They	
   demand	
   descriptions	
   of	
  
the	
  world	
  at	
  two	
  points	
  in	
  time	
  –	
  a	
  before	
  and	
  an	
  after.	
  Two	
  problems	
  arise	
  
here:	
   the	
   practical	
   computational	
   compulsions	
   make	
   these	
   rules	
   crudely	
  
simplistic.	
  In	
  addition,	
  it	
  is	
  challenging	
  to	
  incorporate	
  temporal	
  effects	
  within	
  
the	
  framework	
  of	
  rule	
  based	
  systems.	
  Hebb’s	
  law,	
  while	
  suggesting	
  causali-­‐
ty,	
  does	
  not	
  provide	
  any	
  quantification.	
  Thus,	
  it	
  is	
  unlikely	
  that	
  an	
  alternative	
  
formulation	
   of	
   causation	
   would	
   emerge	
   from	
   Hebb’s	
   law	
   alone.	
   We	
   may	
  
look	
  for	
  another,	
  additional	
  neural	
  network	
  perspective	
  of	
  causation	
  here.	
  

	
  
Nevertheless,	
  causality	
  as	
   implied	
  with	
  Hebb’s	
   law	
  has	
  been	
  used	
  in	
  sci-­‐

entific	
  research	
  and	
  therapeutics	
  to	
  a	
  large’	
  extent.	
  For	
  example,	
  oftentimes	
  
doctors	
  complain	
  of	
  their	
  patients	
  being	
  unable	
  to	
  add	
  minor	
  and	
  incremen-­‐
tal	
  changes	
   in	
  their	
  daily	
  routines	
  (such	
  as	
  exercise).	
  Understanding	
  Hebb’s	
  
law	
  will	
  open	
  new	
  insights	
   into	
  why	
  this	
  might	
  be	
  so.	
   It	
   is	
  possible	
  that	
  the	
  
patient	
   is	
  not	
  yet	
  “wired”	
   in	
   this	
  activity	
  and	
   requires	
  more	
  “firing”	
  before	
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these	
  changes	
  can	
  be	
  established.	
  An	
  avenue	
  for	
  AI	
  research	
  is	
  to	
  aide	
  in	
  the	
  
development	
  of	
  tools	
  to	
  help	
  such	
  people	
  to	
  “re-­‐wire”.	
  	
  
	
  

Indeed,	
   such	
   tools	
   exist	
   to	
   some	
  extent	
   to	
   treat	
   spinal	
   cord	
   injured	
  pa-­‐
tients	
  who	
  have	
  lost	
  motor	
  control	
  of	
  their	
  limbs.	
  In	
  a	
  non-­‐injured	
  situation,	
  
the	
  brain	
  delivers	
  pulses	
  to	
  the	
  lower	
  limbs	
  in	
  a	
  rhythmic/patterned	
  fashion	
  
to	
   allow	
  walking	
   action.	
  Once	
   a	
   spinal	
   injury	
  occurs,	
   the	
   connectivity	
   from	
  
the	
  brain	
  to	
  the	
  limbs	
  is	
  lost,	
  thereby	
  leaving	
  the	
  patient	
  immobile.	
  Stimula-­‐
tors	
  are	
  often	
  placed	
  below	
  the	
  level	
  of	
  the	
  injury,	
  which	
  deliver	
  patterned	
  
pulses	
   in	
  a	
   similar	
  manner	
   to	
  what	
   the	
  brain	
  was	
  previously	
  doing.	
  Over	
  a	
  
period	
  of	
  time,	
  a	
  spinal	
  pattern	
  generator	
  emerges,	
  which	
  thus	
  allows	
  some	
  
motion	
  of	
   the	
   lower	
   limbs	
   [3].	
  This	
  area	
  of	
   research	
   is	
  as	
  yet	
   in	
   its	
   infancy	
  
and	
  calls	
  for	
  a	
  better,	
  more	
  intelligent	
  systems	
  to	
  aide	
  these	
  patients.	
  
	
  
Conclusions:	
  	
  

Artificial	
   intelligence	
   in	
  health	
  opens	
  up	
  chapters	
  of	
  great	
  opportunities	
  
and	
   exciting	
   challenges.	
   The	
   logical	
   calculus	
   articulated	
   by	
  McCulloch	
   and	
  
Pitts	
  [4]	
  forms	
  the	
  initial	
  basis	
  for	
  both	
  Symbolic	
  and	
  Connectionist	
  AI.	
  Since	
  
then	
  a	
  number	
  of	
  paradigms	
  have	
  emerged	
  on	
  all	
  aspects	
  of	
  AI	
  and	
  relating	
  
to	
  health	
  and	
  health	
  care.	
  The	
  emergence	
  of	
  the	
  convergence	
  of	
  computing	
  
and	
   communication	
   provides	
   us	
   boundless	
   opportunities	
   to	
   exploit	
   these	
  
paradigms	
  and	
  discover	
  the	
  new	
  ones.	
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