AIH 2012 If  you  fire  together,  you  wire  together   Prajni  Sadananda1,  Ramakoti  Sadananda2,  3   1   Department  of  Anatomy  and  Neuroscience,  University  of  Melbourne  Australian,  Australia   prajni.sadananda@unimelb.edu.au 2   Institute  for  Integrated  and  Intelligent  Systems,  Griffith  University,  Australia   3 NICTA,  Sydney  Australia   rsadananda@griffith.edu.au   The  intention  of  this  paper  is  to  stimulate  discussion  on  Hebb’s  Law  and   its  pedagogic  implications.     At   a   basic   cellular   level,   Hebb’s   Law   states   that   is   Cell   A   and   Cell   B   persis-­‐ tently   fire,   the   connection   between   them   strengthens.   Figure   1   illustrates   the   interactions.   This   is   a   cellular   levels   process,   suggesting   that   brain   pro-­‐ cesses  that  occur  repeartedly  tend  to  become  grafted  together  [1].         Fig  1.  Hebb’s  Law.  Repeated  stimulation  results  in  a  stronger  signal     89 AIH 2012     This  scientific  theory  explains  the  adaptation  of  neurons  during  the  learn-­‐ ing   process.   Importantly,   this   type   of   plasticity   does   not   involve   increasing   the  number  of  cells,  but  rather  strengthening  the  existing  cells’  connectivity.   Understanding   such   biological   phenomena   opens   up   new   paradigms   and   laws  that  AI  can  utilise.  The  question  is  whether  Hebb’s  law  would  stand  at  a   higher  level  of  abstraction?  There  are  suggestive,  but  not  conclusive  indica-­‐ tions.  For  example,  a  friendship  is  considered  stronger  with  time,  indicating   a  strengthening  of  wiring  between  the  friends.     Models   based   on   “firing   together   to   wire   together”   have   been   suggested   in  health  and  therapy  [2].  For  example,  if  a  patient  presents  with  a  mental   trauma   that   causes   extreme   anger,   the   therapist   introduces   a   counter   and   positive   stimulus   that   occurs   whenever   the   anger   occurs.   Both   (anger   and   the   positive   stimulus)   are   repeated   over   and   over   again,   thus   following   Hebb’s  Law  and  adding  strength  to  this  connection  between  the  two  stimuli,   resulting  in  relief  to  the  patient.       This  also  implies  causal  and  temporal  conjectures  based  on  causality.  The   causality  is  in  the  firing  sequence;  that  if  A  fires  first  and  then  B  fires,  A  is  the   cause.   If   B   fires   before   A,   a   reverse   interpretation   is   possible   that   may   de-­‐ crease   the   strength   between   them.   There   seems   evidence   to   suggest   that   the  “firing”  and  “wiring”  may  be  a  sequential  process.       Causality  is  a  subject  of  intense  philosophical  interest  from  ancient  times.   Most   causal   models   are   rule-­‐based   systems.   They   demand   descriptions   of   the  world  at  two  points  in  time   –  a  before  and  an  after.  Two  problems  arise   here:   the   practical   computational   compulsions   make   these   rules   crudely   simplistic.  In  addition,  it  is  challenging  to  incorporate  temporal  effects  within   the  framework  of  rule  based  systems.  Hebb’s  law,  while  suggesting  causali-­‐ ty,  does  not  provide  any  quantification.  Thus,  it  is  unlikely  that  an  alternative   formulation   of   causation   would   emerge   from   Hebb’s   law   alone.   We   may   look  for  another,  additional  neural  network  perspective  of  causation  here.     Nevertheless,  causality  as  implied  with  Hebb’s  law  has  been  used  in  sci-­‐ entific  research  and  therapeutics  to  a  large’  extent.  For  example,  oftentimes   doctors  complain  of  their  patients  being  unable  to  add  minor  and  incremen-­‐ tal  changes  in  their  daily  routines  (such  as  exercise).  Understanding  Hebb’s   law  will  open  new  insights  into  why  this  might  be  so.  It  is  possible  that  the   patient   is   not   yet   “wired”   in   this   activity   and   requires   more   “firing”   before   90 AIH 2012     these  changes  can  be  established.  An  avenue  for  AI  research  is  to  aide  in  the   development  of  tools  to  help  such  people  to  “re-­‐wire”.       Indeed,   such   tools   exist   to   some   extent   to   treat   spinal   cord   injured   pa-­‐ tients   who   have   lost   motor   control   of   their   limbs.   In   a   non-­‐injured   situation,   the  brain  delivers  pulses  to  the  lower  limbs  in  a  rhythmic/patterned  fashion   to   allow   walking   action.   Once   a   spinal   injury   occurs,   the   connectivity   from   the   brain   to   the   limbs   is   lost,   thereby   leaving   the   patient   immobile.   Stimula-­‐ tors  are  often  placed  below  the  level  of  the  injury,  which  deliver  patterned   pulses   in   a   similar   manner   to   what   the   brain   was   previously   doing.   Over   a   period  of  time,  a  spinal  pattern  generator  emerges,  which  thus  allows  some   motion   of   the   lower   limbs   [3].   This   area   of   research   is   as   yet   in   its   infancy   and  calls  for  a  better,  more  intelligent  systems  to  aide  these  patients.     Conclusions:     Artificial   intelligence   in   health   opens   up   chapters   of   great   opportunities   and   exciting   challenges.   The   logical   calculus   articulated   by   McCulloch   and   Pitts   [4]   forms   the   initial   basis   for   both   Symbolic   and   Connectionist   AI.   Since   then  a  number  of  paradigms  have  emerged  on  all  aspects  of  AI  and  relating   to  health  and  health  care.  The  emergence  of  the  convergence  of  computing   and   communication   provides   us   boundless   opportunities   to   exploit   these   paradigms  and  discover  the  new  ones.       ReferenceƐ:     1. Hebb,   D.   O.:   Organization   of   Behavior:   a   Neuropsychological   Theory.   John  Wiley,  New  York  (1949).   2. Atkinson,  B.,  Atkinson,  L.,  Kutz,  P.,  Lata,  L.,  Lata,  K.W.,  Szekely,  J.,  Weiss,   P.:  Rewiring  Neural  States  in  Couples  Therapy:  Advances  from  Affective   Neuroscience.  In:  Journal  of  Systemic  Therapies.  24,  3-­‐13  (2005)   3. Edgerton,   V.R.,   Roy,   R.R.:   A   new   age   for   rehabilitation.   Eur   J   Phys   Re-­‐ habil  Med.  48,  99-­‐109  (2012)   4. McCulloch,  W.S.,  Pitts,  W.:  A  logical  Calculus  of  the  ideas  immanent  in   nervous   activity,   Bulletin   of     mathematical     Biophysics.   5,   115-­‐137   (1943).         91