
Ontology and automatic code generation on

modeling and simulation

Youcef Gheraibia

Computing Department

University Md Messadia

Souk Ahras, 41000, Algeria

youcef.gheraibia@gmail.com

Abdelhabib Bourouis

Computing Department

University of Larbi Ben M'Hidi

Oum El Bouaghi, 4000, Algeria

habib.bourouis@univ-batna.dz

Abstract— In this paper we present a new approach for using

semantic web technologies in modeling and simulation. In recent

years ontologies have been used popularly in many fields to

represent and structure their concepts. This work is an attempt

to create a specific ontology for the process oriented discrete

event simulation domain. The ontology instances represent the

model instances. This instance described in XML format and

then transformed to another form that is used to generate the

simulation code via XSLT rules. The code is generated according

to the open source library Japrosim. The objective of this work is

to enhance interoperability and automation of the transition from

the ontology to the code execution.

Keywords-component; Ontology, Semantic Web, modeling and

simulation, code generation, interoperability.

I. INTRODUCTION

The web of today is basically syntactic and the

interpretation of the resources content is available only to

humans, the machine addresses only document structure.

Generally there is no rigid method for classifying semantic

content of Web documents. This is one of the reasons of the

development of semantic web. The Semantic Web is an

extension of the syntactic web, we add semantics layer, its

objectives to make the semantic content of Web resources

accessible by the software agents through a set of languages,

meta-data and formal knowledge representation tools. One of

the rich knowledge representation tools is the ontology, which

is a set of concepts based on the meaning of an information

field [9].

The use of ontologies is now become widespread because

many fields have used this technology like medicine,

architecture, geography and computing [6]. The simulation is

one of the computing fields that can make a successful

exploitation of ontologies, especially during the first stages of

a simulation project that is the formulation of the problem and

develop the conceptual model.

XML (eXtensible Markup Language) is a computer

language that allows structuring of information and promotes

the exchange of information on the Internet. It ensures high

interoperability in the exchange of models [4]. This benefit

has motivated to define an XML dialect (noted XPISM) for

describing discrete events simulation models according to the

process approach.

Today, technology developing and ambitions of researchers

are increasing. One of these ambitions is the automatic code

generation from a conceptual model, which is not something

easy. It allows avoiding several error sources, save the time,

and verifying the transition from conceptual model to the

executable model with formal methods. With the definition of

transformation rules, the passage from an XPISM instance to

executable simulation code (especially Java) became possible,

these rules are written using XSLT (extensible Stylesheet

Language Transformation), which is a declarative language.

By carefully examining the course of our work, we build the

domain ontology, the construction of the scheme XPISM and

finally defining the XSLT rules to build the conceptual model

and executable code generation, it will be obvious to see the

interest of this work, which aims to enhance interoperability,

define a standard vocabulary to represent concepts of

simulation model, and full automate of the process of

modeling and simulation.

 In the next section, we present the motivation and use of
ontologies in modeling and simulation. Section 3 presents the
related work on the use of ontologies in process-oriented
discrete event simulation. Section 4 is devoted to develop
PIDESO ontology. Section 5 deals with devolved XML
schema XPISM. In Section 6, we present the whole passage
from domain ontology to exactable model and in section 7 a
conclusion is given which focus on the path from the domain
ontology to simulation executable.

II. ONTOLOGIES IN SIMULATION.

Simulation knowledge representation approaches require
the handling of highly structured knowledge, including
ontologies. Ontologies are useful in the process of modeling,
simulation and analysis cycle, particularly in the problem
analysis and in the conceptual model development [12]. One
of the motivations for modeling and simulation is the
decomposition of the model of the whole system into smaller
components and easy manipulated to distribute the
development effort of the model to different working groups,
and also in communication between deferent groups work
[10]. Ontologies play an important role in the development

process of the conceptual model. This occurs mainly in two
ways; capture the needs and the formulation of the conceptual
model [15].

A. Identifying needs

The simulation model is often designed to achieve a set of

modeling objectives or respond to a set of questions. The

ambiguity of natural language is always a problem but

ontologies can help to facilitate the different tasks as described

below [11]:

 Provide a mechanism to interpret and understand the

description of the problem.

 Assist the designer to capture the user requirements

(the information necessary and sufficient for the

model set).

B. Conceptual model formulation

The process of constructing the conceptual model includes the

following activities: acquisition and analysis system

description, identification and classification of goals in

modeling, determining the roles of system objects, boundaries

and level of abstraction and the determining the model

structure and logic of it, [11], [10].

1) Acquire and analyze the system description :

Ontologies can facilitate the identification of inconsistency

and incompleteness in a description of a system. For example,

ontologies can be used to interpret the descriptive information

on system objects.

2) Identify and classify targets modeling :

An important step in developing the conceptual model is to

determine the specific goals of the simulation study based on

"the application of decision data" provided by the domain

expert. This process of reasoning uses knowledge of the report

and stresses in the system description (these are interpreted

using domain ontologies).

3) Determine the roles of objects, boundaries and level of

abstraction:

The following tasks are performed once the specific aims of

the analysis were established.

 Establish the boundaries of the model: the first

activity in the development of the conceptual model

is to choose the part of the system under study.

 Establish the level of abstraction: A simple rule for

determining the appropriate level of abstraction is to

"include only those elements of a system that is able

to meet the objectives and content and the level of

abstraction as up ".

 Identify the roles of objects in the model: this step is

to determine the model objects (resource, entity …),

and the role of each object, for example queue 'x' is

the activity therein '.

4) Determine the model structure and logic

The model structure and logic refer to the characterization of

the relationship between activities in the model. An activity

represents the dynamic behavior that occurs when objects

interact one over the other. Ontologies play a key role in

eliminating the ambiguity of interpretation of information

contained in the description of the system to correctly

understand the logical flow of objects and the decision logic in

real-world process.

III. Similar works

A. PIMODES

 The Process Interaction Modeling Ontology for Discrete

Event Simulation (PIMODES) [7], is a general ontology for

the domain of process-oriented discrete event simulation, it is

using ontologies to formalize a representation language for

process-oriented discrete event simulation models. This

formalization is intended to lead to a formal specification of

concepts for the automatic interpretation of these concepts.

 PIMODES proposes a set of classes for models

representation, each model must be identified with a single

identifier and a clear description (annotation), the structure of

the model represented by a set of processes, a set of activities

and a graph of traffic control of entities [7]. PIMODES offers

a strong structure and a clear chain of concepts but the

management of activities in the same level as the process,

causes increased complexity in synchronizing the activities of

the control graph.

Figure 1. Activities control graph of PIMODES [PER 07]

B. PIMODEL

 The Demo (The Discrete Event Modeling Ontology) [13], is

an ontology for domain of discrete event simulation. OWL

(OWL: Ontology Web Language) has been used to define

more than 60 classes and several properties associated with

them. This ontology consists of four main parts: Concept

Model, DeModel, Model Component Model and Mechanism.

DeModel is also divided into four parts representing the

simulation approaches, State Oriented Model, Activity Model

Activity #A1

Node

#N1
Arc #C1

Flowchart Nodes and Arcs

Activity #A4

takes place at

Node

#N2

Node

#N3

Node

#N4
Arc #C2

Arc #C3

control flow

relationship

represented by

Location

#L2

Location

#L3

Location

#L1

takes place at

takes place at

Activity #A3

Activity #A2

takes place at

control flow

relationship

represented by

control flow

relationship

represented by
control flow

relationship

represented by

Oriented, Event-Oriented Model and Process Oriented Model

[13]. PIModel is the DEMO class that focuses on process-

oriented simulation models. Models can be represented with

OWL instances that can undergo treatment to achieve the

automatic programmed model.

C. Automatic generation of simulation code

Automated code generation is a difficult task that falls
within the agile development movement. The generation of the
code is done automatically from a set of information (model,
meta-data ...). In the simulation, the model can be
programmed directly from the encoded conceptual model
using translation rules (type: IF THEN) with high-level
language or languages of the simulation. These rules are
written in software which does not facilitate their maintenance
in the event of changes in the target language. At this level
there is a lack of interoperability is a low reuse [3].

IV. Process Interaction Discrete Event Simulation

Ontology (PIDESO)

 Process interaction discrete event simulation ontology

(PIDESO), it’s an ontology specific to represents the concepts

of process-oriented discrete event simulation domain. It

consists of a set of classes organized in different levels in a

hierarchy very clear to help designers to build their models

without ambiguity and in a formal framework provided by

OWL. A model is a set of processes where each is a set of

activities and controlled by a control graph [1]. PIDESO plays

an important role in the exchange of simulation models by

providing a standard vocabulary for communication and reuse.

The construction of ontology PIDESO passes through three

stages, Conceptualization, Operationalization and

ontologization [7], [12].

A. Conceptualization

 This step allows reaching an informal model, semantically

ambiguous and therefore usually expressed in natural

language. This step is done to identify concepts and

relationships between these concepts from raw data, these

concepts to describe informally cognitive entities of

simulation domain. The ontology in this research is divided

into two levels. The first one is to identify the major elements

of the system: model, processes, activities (general view) and

the graphs of control. The second level is to represent the

elements of characterization of first-level classes such as the

types of each activity, the components of graph control,

additional information on the model ... etc.

 First level:

 Model

 Process

 Graph Activity

 Activities

 Second level:

 Project Description

 Attributes Feature

 Feature Type

 Resource

 Variable

 Arc

 Node

 Transition

 Connecting Activities

 Creation of entities Activities

 Change of activities

 Queue Activity

 Duration of activity

 Manage resource

B. Ontologization

 This step leads to a semi-formal. This partial formalization

facilitates its subsequent representation in a formal language

and fully operational. Here is a diagram used to specify each

class of the ontology. Figure 1 shows the classes in the

ontology PIDESO and semantic links between different

concepts [8].

Figure 2. Ontology classes diagram (PIDESO)

Resource

Variable

Entity

Attributes

Contains

*

Controlled

by

Contain *

Activity graph

Arc

Transition

Node

Activity Type

Manage resource

Queue

Exit

Contains

Contains

*

contain *

Process Activity

Defined by

Model
Project

description

C. Operationalization

 Operationalization aims to have a formal structure of

concepts and relations between them, represented as a web

language OWL classes using an ontology editor Protégé-2000

[13]. In the knowledge model of Protégé-2000 ontologies

consist of a hierarchy of classes that have properties (slots),

which may themselves have certain properties (facets). The

edition of these three types of objects is with a GUI, without

need to express what was specified in an operational target

language, it is enough to fill out the forms corresponding that

we want to specify.

Figure 3. Ontology classes representation with Protégé-2000

V. Extensible Process Interaction Simulation Model

(XPISM schema)

 An XML document is well formed if it adheres to XML

syntax rules that are explicitly designed to make documents

easily interpreted by a computer, and an XML document is

valid if it adheres to the rules described in a document as an

Associate DTD or schema.

We have defined an XML dialect to describe process-oriented

discrete event simulation models, named XPISM (extensible

process interaction simulation model). It describes the

simulation models in a hierarchy. The model consists of a

project description (sets the name of analyst / designer /

author, title of project, etc) And the whole model process

components such as activities, resources associated with each

activity, variables, attributes associated with such entities and

the graph of activities [14]. A simulation model for discrete

event oriented process consists of a set of entities that flow

through the system. Entities arrive according to a probability

distribution and perform activities that are supported by

resources and managed queues [5]. These model elements are

represented by an XML schema by limiting the principles of

discrete event simulation, process-oriented. Each class of

XPISM is associated with a class of ontology (PIDESO). The

OWL ontology instances are transformed into another form

for code generation according to the scheme XPISM. This

intermediate representation simplifies the transformation of

the conceptual model into a model program, provides a clear

structure of the model concepts.

Figure 4. XPISM Schema

VI. Automatic generation of Java code from the ontology

instance

A. From PODESO instance to XPISM instance

 Process-oriented discrete event simulation models can be

described as instances of OWL (Ontology instance). The idea

is to change the shape of the model (OWL instances) to

another more appropriate form (XPISM instance). This new

description of the model (XPISM pending) is an intermediate

representation for the executable model. An XSLT stylesheet

containing the transformation rules allows instances of classes

in ontology elements XPISM by an XSLT processor. XSLT

rules are based on a locator called XPath to identify nodes in

the source document (OWL instance) and build a result

document (instance XPISM). This transformation is

independent of all simulation languages or programming that

ensures and strengthens interoperability and facilitates reuse.

B. From XPISM instance of java code

 Generating java code contains a main class containing a

main () method that initializes the variables of the simulation

model reflects its original state (number of replications, the

simulation time ... etc.). It also launches the first arrivals in the

simulation, then it call the start method (start ()) that initializes

the coordinator and the simulation begins. After initialization

of the first arrivals of each process, must be defined for each

body that represents its life cycle in the system. Each process

contains its own resources, variables, queues… etc

Figure 5. Generated simulation code

C. XPISM instance to java code

 Models of discrete event simulation can be described as an

instance of the schema XPISM well organized according to

the process approach (a model contains several processes each

process has several activities etc). An XSLT stylesheet

contains the transformation rules allow instances XPISM

(conceptual model) to a java code. These rules are executed

via an XSLT processor.

D. Experiment of the result

 JAPROSIM, (JAva PRocess Oriented SIMulation) [2],

Java is a framework for building discrete event simulators

oriented process. The code generated by our application is

directly executable on the machine using the java library

JAPROSIM. Figure 5 shows an example of experimentation

using JAPROSIM.

Figure 6. Experimentation of generated code

VII. CONCLUSIONS

 PIDESO is a complete and comprehensive ontology for

the process interaction discrete event simulation domain. It

allows analysts and designers to improve their models with a

semantic dimension. Models can be represented with an

instance PIDESO and this instance will be transformed into

another form more appropriate XPISM noted. Also, it is easy

to obtain a conceptual model based on domain ontology. A set

of rules defined XSLT transforms this model into an

executable Java code based on the framework JAPROSIM.

 The interest of our approach is summarized in three main

points. First, the introduction of semantics in the simulation

models, automatic generation of executable model, and the

automation of the first steps of a simulation project. The result

is certainly a gain in productivity, security development,

enhanced interoperability and ease of maintenance and

updating. To this is added clarity of approach and is now more

rigorous.

 We envision in the future work, to use the results to extend

the code generation part to other simulation languages, given

that the approach is independent of any simulation languages

and simulation tools. And it is possible to provide new

ontologies for other approaches to discrete event simulation,

especially for events.

REFERENCES

[1] Bachimont B, “Engagement sémantique et engagement ontologique:
conception et réalisation d’ontologies en ingénierie des connaissances”.
Eyrolles, 2000.

[2] Bourouis A et Belattar B, “JAPROSIM: A Java framework for Process
Interaction Discrete Event Simulation: JOURNAL OF OBJECT
TECHNOLOGY Vol. 7, No. 1, pp. 103-119, Janry-February 2008 ,
http//www.jot.fm/issues/issue_2008_01/article3/

[3] Bourouis A et Belattar B, “Using XML IN SIMULATION MODELING
automatique code generation for XML based models" CARI 2008
MAROC , pp. 101-109.

[4] Charlet, P. Laublet & C. Reynaud. “Web sémantique”. Octobre 2003.

[5] Fishwick P, “Handbook of Dynamic System Modeling “, Chapman &
Hall/CRC, New York 2004.

[6] T.R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing”. International Journal of Human Computer Studies.
1995.

[7] Lacy L, “Interchanging Discrete Event Simulation Models using
PIMODES and SRML”. Proceedings of the Fall 2006 Simulation
Interoperability Workshop.

[8] M.Leclere, F. Trichet & F. Furst, “Operationalising domain ontologies:
towards an ontological level for the SG family”, in Foundations and
Applications of Conceptual Structure, contributions to the International
Conference on Conceptual Structures. 2002.

[9] T. Berners-Lee, J. Hendler & O. Lassila. “The Semantic Web”.
Scientific American. 2001.

[10] Miller A et Fishzick,” ontolgies for modeling and simulation: issues and
approaches”, Proceedings of the 2004 Winter Simulation Conference,
pp. 259- 364.

[11] Miller A, Silver G, et Lacy L,” ontology based representation of
simulation models following the processes interaction world of view
“Proceedings of the 2006 Winter Simulation Conference,p 1168-1176.

[12] Natalya F. Noy et Deborah L. McGuinness, ” Ontology Development
101: A Guide to Creating Your First Ontology”. Stanford University,
Stanford, CA, 94305, 2005.

[13] N. Noy & D. McGuinness “Ontology Development 101: A Guide to
Creating Your First Ontology”, Stanford Medical Informatics Report,
SMI-2001-0880. 2001.

[14] R. Studer, V. Benjamins & D. Fensel. “Knowledge Engineering:
Principles and Methods”. In Data and Knowledge Engineering. 25,
1998.

[15] M.Uschold & M.Grüninger, “ONTOLOGIES: Principles, Methods and
Applications”. Knowledge Engineering Review. 1996.

