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Abstract. The potential applications of Wireless Sensor Networks (WSNs) 

span a very wide range. One of the application domains is in healthcare indus-

try. The diverse WSN application requirements signify the need of application 

specific methodology for system design and performance evaluation. Moreover 

the performance of typical wireless network is stochastic in nature, Probability 

is an essential instrument needed to assess the performance characteristics. Be-

fore WSNs widespread involvement in life or death critical applications, an ur-

gent need is a generic systematic evaluation methodology for decision makers 

to evaluate performance among alternative solutions taking into account the co-

hesion characteristic. This paper offers a quantative decision making procedure 

to incorporate performance deviation as a target performance metric. Decision 

making is guided by goals and objectives for the particular application specified 

by application domain experts.  

 

Keywords: Uncertainty Quantification, WSNs, Multi Criteria, Statistical Per-

formance, Generic Methodology, Fair comparison  

1 Introduction  

We have witnessed in recent years the emergence of WSNs in healthcare. These ap-

plications aim to improve and expand the quality of care across wide variety settings 

and for different segments in the healthcare system.  They range from real-time pa-

tient monitoring in hospitals, emergency care in large disasters through automatic 

electronic triage, improving the life quality of the elderly through smart environments, 

to  large-scale field studies of human behavior and chronic diseases [1].  However, the 

barrier for wide spread adoption of the technology is still high. Fulfilling the potential 

of WSNs in healthcare requires addressing a multitude of technical challenges. These 

challenges reach beyond the resource limitations that all WSNs face in terms of lim-

ited network capacity and energy budget, processing and memory constraints. Particu-

larly, healthcare applications impose stringent and diverse requirements on system 

response time, reliability, quality of service, and security. 

 

12

mailto:10743387@student.uts.edu.au


The uniqueness of WSNs in its resources limitation, transient channel state and drastic 

different application requirements, brings in application specific system design meth-

odology. From WSNs research kickoff at early stage, research efforts are mostly fo-

cused on the isolated programming issue of single layer protocols with little concern 

of other layer functionality. This leads to protocols that exist in a vacuum which per-

form well on theoretical basis, but have problems when deployed under real-life cir-

cumstances [2, 3]. Many of these protocols are further validated using ad-hoc experi-

mental tests to the benefit of one specific solution, leaving little room for objective 

comparison with other protocols. Up to now, there exists no fixed set of accepted 

testing methods, scenarios, parameters or metrics to be applied to guarantee fair com-

parison between competing solutions. This lack of standardization significantly in-

creases the difficulty for a developer to assess the relative performance of their proto-

cols compared to the current state of the art.  

 

Essentially, multiple-criteria evaluation is a well studied realm. There exist plenty of 

methodologies in multi criteria decision making domain [12]. But we can not apply 

these techniques directly to WSNs evaluation without considering the uniqueness of 

the target domain. In this paper, we try to apply analytic hierarchy process (AHP) to 

WSNs performance evaluation. It is a method to evaluate system performance accord-

ing to application scenario and application expert preference, it is generic enough to 

provide a platform to fairly compare alternative solutions.  Most importantly, we in-

troduce statistical metrics to reflect uncertainty attribute impact on final performance.  

 

The rest of the paper organized as such: Section 2 establishes a background under-

standing of performance uncertainty in WSNs that serves as the foundation for build-

ing our proposed solutions. The section presents uncertainty attribute of WSN per-

formance, statistical concepts in performance evaluation. Section 3 introduces appli-

cation specific evaluation based on AHP method. We emphasize that while applica-

tion specific design is necessary to build efficient application based on limited energy 

budget, for a fair comparison of alternative design solutions, a generic evaluation 

algorithm is needed to deal with all of the components aforementioned. Section 4 

provides the practical algorithm for uncertainty performance evaluation. Workflow 

and algorithm are given to get a single QoS performance index. We summarize our 

work in section 5. 

2 Uncertainty Performance in WSNs   

2.1 Source of Uncertainty of WSN performance   

 

Several factors contribute to the fact that wireless sensor networks often do not work 

as expected when deployed in a real-world setting. Firstly, there is possibility of 

wrong expectation from system designer side: analytical model does not fit into the 

problem in hands. That is often a problem for inexperienced designers. For all simula-

tion or other experiments methods, first step is to eliminate the possibility of this kind 

of profound design problem in preliminary stage. Secondly, there is possible wrong 
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expectation from simulation results: Simulation modeling can not faithfully reflect the 

System Under Test (SUT). 

Except the designer’s preliminary problem of analytical model mismatching design 

target, we can further identify fault point of performance disagreement between ex-

pectation and real world implementation into components of WSNs hierarchy [11].  

 

1.  Environmental influences which may lead to non-deterministic behavior of radio 

transmission.  

2. Node level problem: Malfunction of the sensors, or even the complete failure of a 

sensor node due to cheap manufacturing cost. Scarce resources and missing protec-

tion mechanisms on the sensor nodes may lead to program errors: operating system 

reliability and fault-tolerance.   

3. Network level problem: Network protocols especially (MAC and Routing) are not 

robust to link failure, contention, topology dynamics.  

4. Unforeseen traffic load pattern: A common cause for network problems is an un-

foreseen high traffic load. Such a traffic burst may occur for example, when a sen-

sor network observes a physical phenomenon, and all nodes in the vicinity will try 

to report at once, causing the occurrence of packet collisions combined with a high 

packet loss. 

 

All these factors contribute to the uncertainty of the sensor network behavior and 

function. These elements increase the probability of network functionality deviation 

from its normal operation and affects its' collected data accuracy.  

 

 
 

Fig. 1. Uncertainty modeling in WSN 
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In order to effectively develop parameters, we in [11] congregate hierarchical possible 

points of deviation into four groups.  

1. Spatial elements uncertainty: include site specific characteristic: fading, signal at-

tenuation, interferences, and network scale: topology, network size and density.  

2. Temporal elements uncertainty: even on one particular spot, link state flips with 

time.  

3. Data communication pattern uncertainty: include load burst pattern uncertainty  

(The volume, frequency of the data burst), communication interval difference (how 

often is the data communication happening, how long is the interval between two 

adjacent communications), and different communication modes (inquiry triggered, 

regular report, or event triggered communication).   

4. Algorithm internal programming uncertainty: include malfunctioned models, as-

sumption realization problem and other normal cooperation problem in program-

ming, 

We summarize above observation into  Equation (1). 

 P = F (spatial, temporal, traffic load pattern, SUT)        (1) 

The parameters in equation (1) as show in Figure 1 represent system level perfor-

mance dynamics involving all four factors. As the input elements display statistical 

behaviors, output performance definitely will have a statistical distribution pattern 

with certain norm and deviations for specific scenarios. Since wireless performance is 

inherently statistical in nature, accurate performance testing must account for these 

random components [5]. More over, comparing performance curves produced by a 

number of metrics makes it difficult to evaluate how well a given protocol suits for 

the purpose of an application. It may also be difficult to estimate, which of the proto-

cols at hand would perform the best with respect to that application [6]. 

2.2 Characterizing WSNs Uncertainty Performance with Statistical Concepts. 

WSNs sense the targeted phenomenon, collect data and make decision to store, ag-

gregate or send the data according to distributed local algorithm. The modulated elec-

tromagnetic waves propagate in free-space; interact with the environment through 

physical phenomenon such as reflection, refraction, fast fading, slow fading, attenua-

tion and human activities. Even with the best wireless protocols, the best chipsets, the 

best RF design, the best software, wireless performance is going to vary. Wireless 

performance is inherently statistical in nature, and accurate performance evaluation 

must reflect this nature.  

 

We observed that currently most ad hoc evaluations in wireless network field, espe-

cially in WSNs research, no matter in the form of test bed experiment or simulation, 

only focus on mean value of performance metrics, and do not pay much attention on 

performance deviation. For some applications, average performance is sufficient for 

data gathering and collective data analysis. However, average ‘throughput’, ‘lifetime’, 
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‘reliability’ or ‘delay response’ are not sufficient enough to predict performance on 

certain application scenarios. Any dip in performance, no matter how short, can result 

in dropped packets that cause visual artifacts or pixilation of the image of wireless 

video monitoring application. In extreme cases like in healthcare emergency monitor-

ing application, any dropped packet may cause life or death difference. Consequently, 

the viewer/user experience is completely dependent on the wireless system ‟worst-

case‟ performance [4]. 

 

Fig. 2. An example PDF Bell curve graph depicting different average and standard deviation 

parameters from [5] 

Figure 2 represents Probability Density Function‟ (PDF) of a sample performance 

metric with four different Systems Under Test (SUT), each with different average and 

standard deviation (variability) parameters. The graph illustrates „normal‟ probability 

distribution revealing statistical characteristics of metric X, representing at least ap-

proximately, any variable that tends to cluster around the mean as norm , shown as, 

but not necessary, the familiar „bell curve‟. It shows the relative probabilities of get-

ting different values. It answers the question: 

 What is the chance I will see a certain result?  

 What is the mean value or norm of the respective SUT at this specific performance 

metric?  

  How cohesive and stable is the performance for each SUT?  

Examining the random process represented by the red curve in figure 3, we would 

expect outcomes with a value around „0‟ to be twice as prevalent as outcomes of 

around 1.25 (40% versus 20%). However, in some cases, we are more interested in a 

threshold performance value as benchmark value than individual probability point, 
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what is the probability of having performance being less or greater than a threshold 

value? A transformed PDF ,Cumulative Distribution Function (CDF) (Figure 3.) helps 

answer this question. 

When you use probability to express your uncertainty, the deterministic side has a 

probability of one (or zero), while the other end has a flat (all equally probable) prob-

ability. For example, if you are certain of the occurrence (or non-occurrence) of an 

event, you use the probability of one (or zero). If you are uncertain, and would use the 

expression “I really don't know,” the event may or may not occur with a probability of 

50 percent. This is the Bayesian notion that probability assessment is always subjec-

tive. That is, the probability always depends upon how much the decision maker 

knows. Due to statistics science the quality of information and variation are inversely 

related. That is, larger variation in data implies lower quality data (i.e., information) 

[7]. 

  

 

Fig. 3.   A typical cumulative distribution function (CDF) graph from [5] 

 

Examining the random performance metric represented by the red curve in figure 3,  

 

 The probability of producing a result less than -0.75 is about 20%.  

 The probability of producing a result less than 0 is 50% and  

 The probability of producing a result less than 2 is about 95%.  

 

To characterize wireless performance, CDF graphs can provide immensely useful 

information for system designers to compare performance of alternative solutions. 

Ideally, we prefer better mean value and smaller deviation, but if the ideal choice is 

unavailable, we have different optional solution to choose. All the choices should be 

put in application specific context to choose the right protocol for right application. 

The principle is:  
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─ Drastic different mean value, if mean value represent positive metrics, like 

throughput or lifetime, bigger is better, ideally we prefer SUT with bigger mean 

value and less deviation.  

─ Same mean value, different deviation: long tail means performance not stable, we 

prefer smaller deviation.  

─ Slightly different mean value, but one with long tail, we prefer stable over slightly 

improved peak performance.  

─ But if the optimal solution is not available, we have choice over performance sta-

bility and higher norm performance according to different application scenario.  

 (option 1) Higher performance potential but less predictable performance  

 (option 2) Less performance potential but higher stable performance  

 

Reference [5] presents practical guidelines on how to actually acquire the statistical 

performance PDF and CDF curve of a SUT; nevertheless sampling is the key to re-

cover statistical performance and drawing the PDF and CDF curve of a wireless sys-

tem. Furthermore, to predict real-life performance accurately, researchers ideally 

should conduct sampling tests across all relevant dimensions and variable if possible. 

However, in most cases, the design space is too big to exhaustively investigate all 

factors influencing the final performance. But planners must at least consider three 

rough dimensions, as we have mentioned above, to characterize wireless performance 

accurately: time, space, and data pattern. Under each category, there are vast known 

or unknown parameters that can affect the performance. Hence it is worthwhile to 

investigate the effect of parameter change to specific performance metric (sensitivity 

analysis). The effective way to deal with the vast design space is parameter reduction 

and inter-dependency analysis.  

3  Application Specific Evaluation Based on AHP Method  

WSNs energy-oriented research originates from conflict between application per-

formance requirements and limited energy supply by battery. In foreseeable future, it 

will remain as a bottleneck for its widespread development unless a breakthrough at 

relevant material science field occurs. However, we can not overemphasize energy 

conservation while ignoring application specific requirements. To what extent we 

should emphasize the importance of energy aspect comparing other QoS objectives 

depends on application scenarios. Tradeoffs have to be made on per application basis. 

 

Typically WSN lifetime (energy efficiency), response time (delay), reliability, and 

throughput are among the main concerns in the design and evaluation process. Under 

the constraint of wireless sensor node size, the energy budget and computing re-

sources are unfeasible to afford any luxury algorithms. Under such constraint, there 

does not exist a perfect optimal solution satisfying all performance metrics in the 

problem (NP hard problem), rather, the question we sought is how to tradeoff multiple 

criteria explicitly leading to more informed and better decisions. The methodology 
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should be general enough to contain different application scenario according to deci-

sion maker’s preferences. 

 

There have been few works on application-driven protocol stack evaluation for 

WSNs. Our evaluation methodology, similar to analytic hierarchy process (AHP) [9, 

10], using a Single Performance Index (SPI) for each alternative solution or System 

Under Test (SUT), as the final quantified goodness measurement for alternative solu-

tions comparison. 

 

The end-user configures the relative importance of the individual design metrics in 

a function that maps the individual metric values to a single SPI value. Firstly we 

define the default overall objective function as a weighted sum of the individual de-

sign metric normalized values as other AHP methodologies normally do: separation 

of defining design metric, and weighing those functions’ importance in an overall 

objective function.    

normSPI = a * m (L) + b * m (R) + c * m (T);              (2) 

Here (a, b, c) represent corresponding weight of performance metrics such as life-

time (L), reliability(R) and timeliness (T). (m (L), m (R), m (T)) represents the mean 

value of multiple measurement of corresponding metric.    A key feature of our ap-

proach is that, we introduce the statistical analysis of the resulting experiment data, 

not only using measurement mean value as supposed normalized value (which is not 

realistic representation of the dynamic truth of the wireless network nature), we intro-

duce deviation of performance measurement PDF as a critical secondary performance 

metric to emphasis the importance of performance stability and cohesion. Even a 

higher mean performance metrics, if the performance spreads over a wide spectrum of 

measurement, not cohesive to so called norm performance (mean) value, it will be 

problematic for certain application scenarios which require consistent performance , 

such as health monitoring application and multimedia application. We introduce sta-

bility performance index, as: 

stabilitySPI =
'a * (1/δ

2
(L)) + 

'b *(1/ δ
2

(R)) + 
'c * (1/δ

2
(T))          (3) 

Here (a’, b’, c’) indicates the relative importance of the metrics cohesive character-

istic of metrics (L, R, T) represented by deviation (1/δ
2

).   So overall we have: 

 SPI= normSPI + stabilitySPI =



n

i

iiii WmeanMetricW
1

2' ))/1(*)(*(     (4)                         

Here ‘n’ represent the number of metrics considered, iW  = (a, b, c…) represents 

respectively the user specified relative importance of the performance metrics. And  
'

iW  = ( a’, b’, c’ …) indicates the relative importance of the metrics cohesive charac-

teristic. The relative importance of each design metric as weight is assigned by con-
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sidered application specific scenarios, how important in your application is certain 

metric (network lifetime, reliability, throughput, delay, etc ) respectively? How im-

portant is cohesive characteristic of performance to your application? Which metric is 

utmost important for you? 

4 The Algorithm Proposed 

System evaluation process starts with the end users as application experts who know 

very well what kind of performance they needs; they specify the most concerned QoS 

performance metrics, and the weights of each metric.  

 

The WSNs designers decide the initial parameters according to the literature studies 

and previous experiment experience. Then for each performance metric start the itera-

tive experiment process as such: 

 

1.  Parameters significance analysis for imetric . 

Repeat l experiment measurements, record each experiment the state of each parame-

ter ix  as jif  f (1<i<n, 1< j<l) and corresponding performance measurement 

j (1<j<l). Then use linear aggregation and P-value to decide significant parameters 

to imetric . 

 

2. Design space reduces from n parameters to m parameters for imetric . 

 

3. m parameters interaction analysis for imetric . 

Tune the parameters based on the reduced parameters set, Repeat l experiment meas-

urements, record the state of each parameter ix  as jif  (1<i<n, 1< j<l) and corre-

sponding performance measurement j (1<j<l). Then use the Choquet nonlinear 

aggregation model as described in later chapter to decide the most effective parame-

ters set including interaction effect of individual parameter. 
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4.  Now we have finally approach the effective parameters set. Tune the effective pa-

rameters set, repeat measurement and get the performance curve, get the 

( )( 2imetric ) and imetric  (mean) for imetric . 

5.  Change another metric of interest, start over again from (1). 

6. When all metrics of interest finish evaluation, calculate the Single Performance in-

dex as aforementioned formula. 

SPI=



n

i

iiii WmeanMetricW
1

2' ))/1(*)(*(   

 

7.  For competing solution for pair wise comparison, repeat the above process and get 

SPI value and compare: 

If system1 SPI > system2 SPI then system1 perform better 

than system 2 

Notice that we can setup threshold value as prerequisite filter for minimum require-

ment, any time if  iMetric  mean or deviation is less than the threshold value, the 

candidate solution is not qualified for further comparison due to unsatisfactory for 

minimum user specification. 

 

 

Prerequisite Filter: 

If  { 

every imetric (mean)> threshold(mean) 

 

And )( 2imetric < threshold(
2 ) 

} 

Then{ 

Single Performance Index: SPI= 

)

))/1(*)(*(
1

2'



n

i

iiii WmeanMetricW 
 

Else  

SPI=0 (not satisfy minimum requirement, 

Not qualified for comparison) 

Return 
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Fig. 4. Workflow of proposed benchmarking solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Users specify QoS weights of 

metrics of interest: iw * imetric  

a*L(lifetime) 

b*T(Throughput) 

c*R(reliability) 

 

and corresponding stability in-

dicator: 

'a *(1/ δ
2

(L)) 

'b * (1/δ
2

(T)) 

'c *(1/ δ
2

(R)) 

……. 

Initial parameters 

Development  

Parameter significance 

analysis for imetric  

Design space reduction 

for imetric  

Parameters  interaction 

analysis for imetric  

Repeat experiment and 

measurement in effective 

design space for imetric  

PDF /CDF acquisition 

for imetric : 

 )( 2imetric ; 

 imetric (mean) 

 

 

 

Prerequisite Filter: 

 

 

 

1. Repeat above procedure for any oth-

er    SUT alternatives,    

 

2. Pairwise Comparison: 

If 1systemSPI > 2systemSPI   

 

3. Conclusion 

System1 perform better than system 2 

Under user specified requirement.  
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5 Conclusion and Future Work 

In this paper, we introduce a procedure to evaluate WSNs application performance 

according to application scenarios, in our approach, uncertainty attributes contribute 

to final performance index. Our future research direction is how to capitalize data 

mining technique to further dig deep experiment data and distil invaluable collective 

information from randomness.  “Large-scale random phenomena in their collective 

action create strict, nonrandom regularity” [10].  

References 

1. Ko, B.J.G.; Lu, C.; Srivastva, M.B.; Stankovic, J.A.; Terzis, A.; Welsh, M. Wireless Sen-

sor Network for Healthcare. Proc. IEEE 2010, 98, 1947-1960. 

2. M. Ali, T. Voigt, U. Saif, K. Rmer, A. Dunkels, K. Langendoen, J. Polastre, and Z. A. 

Uzmi, “Medium access control issues in sensor networks,” SIGCOMM 2006, pp. 33–36, 

2006.  

3. G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The Hitchhiker‟s Guide to 

Successful Wireless Sensor Network Deployments.” in SenSys, 2008, pp. 43–56.  

4. Yu, D., Nanda, P. He, X. “Performance Uncertainty Impact on WSNs Design Evaluation”. 

IEEE Conference on Control Engineering and Communication Technology 

(ICCECT2012), 7-9 December 2012. Shenyang, China. Accepted.  

5. The Ruckus white paper, available at: 

   http://www.ruckuswireless.com/whitepapers/preview/wireless-network-performance   

6. J. Haapola, F. Martelli, and C. Pomalaza-R´aez, “Application-driven analytic toolbox for 

wsns,” in 8th International Conference on Ad-Hoc Networks and Wireless (ADHOC-

NOW), LNCS 5793, pp. pp. 112 – 125, September 2009. 

7. K. Khalili Damghani, M. T. Taghavifard, R. Tavakkoli Moghaddam, “Decision Making 

Under Uncertain and Risky Situations”, Enterprise Risk Management Symposium Mono-

graph Society of Actuaries - Schaumburg, Illinois, 2009.  

8. J. Haapola, F. Martelli, and C. Pomalaza-R´aez, “Application-driven analytic toolbox for 

wsns,” in 8th International Conference on Ad-Hoc Networks and Wireless (ADHOC-

NOW), LNCS 5793, pp. pp. 112 – 125, September 2009. 

9. T. Saaty, The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.  

10. B. V. Gnedenko and A. N. Kolmogorov  Limit distributions f or sums of independent ran-

dom variables.  . Trans, and annotated by K. L. Chung. Cambridge, Addison-Wesley, 

1954. 264+9 pp. 

11. Yu, D., Nanda, P. He, X. “Performance Uncertainty Impact on WSNs Design Evaluation”. 

IEEE Conference on Control Engineering and Communication Technology 

(ICCECT2012), 7-9 December 2012. Shenyang, China 

12. Köksalan, M., Wallenius, J., and Zionts, S. (2011). Multiple Criteria Decision Making: 

From Early History to the 21st Century. Singapore: World Scientific 

23




