
Cloud computing for teaching and learning MPI with improved network
communications

F. Gomez-Folgar, R. Valin, A. Garcia-Loureiro and T.F. Pena
Centro de Investigación en Tecnoloxı́as da Información (CITIUS)

University of Santiago de Compostela
Santiago de Compostela, Spain

(fernando.gomez.folgar, raul.valin, antonio.garcia.loureiro, tf.pena)@usc.es

I. Zablah
Sistema de Difusión de Radio y Televisión

Universidad Nacional Autónoma de Honduras
Tegucigalpa, Honduras

mrzablah@unah.tv

Abstract—Nowadays, the teaching-learning processes are
being supported by the development of new technologies.
During the recent past, technologies such as email, chat, au-
dioconferencing, videoconferencing and webconferencing were
incorporated as new tools in the teaching-learning process.
Currently, another step is being walked with the development
and the popularization of cloud technologies that are arousing
great interest in educational environments. There has been
an actively development of cloud platforms with the release
of several open-source solutions to build private, public and
hybrid clouds such as OpenNebula, Eucalyptus, OpenStack
and CloudStack. Each of them has unique features that are
not found in the others.

In the most basic cloud service model, Infrastructure as a
Service, it is possible to provide computational resources as
virtual machines. In Computer Science this model offers to
teachers and students the possibility of managing virtual infras-
tructures in which system administration and programming
languages practices can be performed without compromising
the configuration of the underlying physical compute nodes.

In order to test a cloud infrastructure as a tool for learning
MPI, two different scenarios were evaluated in this work using
CloudStack: a virtual cluster as a MPI execution environment,
and an improved virtual cluster whose MPI communication
latency was improved. The results of this study are presented
in this paper.

Keywords-cloud; CloudStack; OpenMPI; Open-MX;

I. INTRODUCTION

Cloud technologies [1]–[6] are arousing great interest in
educational environments as well as in business compa-
nies [7], and they are emerging as new tools that can be
employed to support teaching-learning processes in a similar
way that, in the past, technologies such as email, chat, audio-
conferencing, videoconferencing, webconferencing, virtual
classrooms, and collaboration suites were incorporated to
support these processes. As a result, there is an increasing
number of open-source solutions to build private, public
and hybrid clouds. Some of the most popular platforms
are OpenNebula [8], Eucalyptus [9], OpenStack [10] and
CloudStack [11]. All of them have unique features that are
not found on the others.

In the teaching-learning processes, clouds, under Infras-
tructure as a Service (IaaS) model, could be very useful

due to the fact that cloud users usually employ virtualized
resources. Hypervisors provide the necessary abstraction
layer and isolation in the same way as a sandbox. As a
result, virtualized learning environments allow us to use the
computational power of the compute nodes without the need
of changing the physical host configuration, reducing the
systems administration effort and isolating the physical host
configuration from the student’s virtualized environment.
Furthermore, they allow users installing different guests
operating systems and testing software that can coexist under
the same physical hosts without compromising or modifying
its configuration.

In this work, two different scenarios of a cloud infrastruc-
ture based on CloudStack for MPI learning are introduced:
a virtual cluster as a MPI execution environment and an
improved virtual cluster whose MPI communication latency
was reduced. This paper is organized as follows. In section II
the architecture and characteristics of the CloudStack plat-
form are presented. Section III describes the two teaching
scenarios deployed under CloudStack for learning MPI. In
the first one a basic deployment is described, whereas the
second one describes a scenario with improved performance.
Section IV describes the benchmarks to evaluate the perfor-
mance of both scenarios. The results obtained are presented
in section V. Finally, the conclusions of this paper are drawn
in section VI.

II. CLOUDSTACK

CloudStack is an open-source cloud management plat-
form, owned by Citrix, whose software architecture is
shown in Fig. 1. It is composed by five types of compo-
nents: Compute Nodes (CNs), Clusters, Pods, Availability
Zones, and a Management Server. The Compute Nodes are
hypervisor-enabled hosts that have installed and configured
the CloudStack agent. These hosts are the basic physical
block that allow us scaling the platform. Additional hosts
can be added at any time to increase the provided capacity
for guest Virtual Machines (VMs). The hosts are not visible
to the end users, therefore, they can not determine which
hosts have been assigned to them to execute their guest

1st International Workshop on Cloud Education Environments (WCLOUD 2012)

22



VMs. A Cluster is a collection of CNs that share the
same hypervisor type and have also access to the same
Primary Storage system. The Primary Storage stores the root
filesystem of guest VMs. Clusters are not visible to end
users and represent the second level of scaling. A Pod is a
collection of clusters. It represents the third level of physical
scaling in the CloudStack platform. As clusters, Pods are not
visible to end users. The Availability Zone is a collection of
Pods and a Secondary Storage that stores predefined VM
templates and ISO images. It represents the fourth level of
physical scaling. The Availability Zones are visible to the
end user who must select one of those to start a VM for
the first time. The Management Server manages the entire
cloud.

Figure 1. CloudStack architecture.

CloudStack supports three user roles: root administrator,
domain administrator and not privileges users. The root
administrator can manage the entire cloud. Domain admin-
istrators can perform the administrative operations for users
who belong to that domain and do not have visibility into
the physical CNs. The not privileged users can manage their
own VMs.

The hypervisors supported by CloudStack are KVM [12],
Citrix XenServer [13] and VMware vSphere [14].

This cloud platform can be managed completely through
the Web management server. It also provides a RESTFUL
API access to all its features. CloudStack also provides
CloudBridge, which is a server process that runs in com-
panion to CloudStack and provides an Amazon EC2 [15]
compatible API to access to CloudStack using existing EC2-
compatible tools. CloudBridge translates the EC2 API calls
to the CloudStack’s native API.

One of the most notable characteristics in CloudStack is
the Web interface that provides a complete management of

the cloud. We have observed very interesting options like
the ability to define highly available VMs. They are kept
operational by CloudStack without user or administrator
intervention at all. Another interesting option for educational
environments is the installation of an operating system using
a standard ISO image. Its installation can be accomplished
through the web interface without the need of using addi-
tional tools. This feature is very interesting because teachers
or students can install their own VMs without the need
of using predefined VM templates. Furthermore, teachers
and students can create templates of their VMs that can be
private, only visible for the users of a specific account, or
public, visible for all users.

III. TEACHING AND LEARNING MPI WITH CLOUDSTACK

Message Passing Interface (MPI) is a language-
independent communications protocol that has become a
de facto standard for communication among processes that
implements a parallel program using the message-passing
model. Distributed memory supercomputer clusters often
offers the use of MPI to their users.

The main goal of this article is to show how a cloud
infrastructure can be used to teach MPI but following, at the
same time, the Constructivism theory that allows students
construct their own knowledge by means of their personal
experience and interpretations. The role of the teacher is
to be a help in the understanding, improving the learning
quality and fostering the knowledge construction.

Students can deploy a safe infrastructure under Cloud-
Stack to learn the complete process including the installation
of a VM, the configuration of the operating system, the
installation of the MPI environment and the related develop-
ment tools. Under this infrastructure, students must be able
to carry out the performance analysis of their applications
and testing and implementing different approaches to release
a MPI solution for a given computational problem.

In order to test the CloudStack cloud infrastructure as a
teaching-learning tool for MPI programming paradigm two
scenarios were prepared and deployed. The first one is a
basic testing setup scenario deployed as proof of concept,
and the last one constituted an improvement from the first
one, with the purpose of getting better performance. Both
of them are described in the next subsections.

The purpose of these scenarios is to prepare the students
for solving problems in complex environments. The Cloud
technology will help to achieve this objective and thanks to
the CloudStack Web interface, the teacher can assist the stu-
dents easily and review their progress, focusing the attention
on the most relevant topics. CloudStack provides flexibility
to the teaching-learning process providing independence of
time and space. The students can perform their activities
without the need of being present in the computer laboratory.

The cloud infrastructure used is based on CloudStack
2.2.14 employing commodity hardware. CNs are Intel Core

1st International Workshop on Cloud Education Environments (WCLOUD 2012)

23



i5 nodes with 8 GB of RAM, employing CentOS 6.3 64 bits
as operating system, and KVM as the CloudStack managed
hypervisor. The NFS server, acting as CloudStack Primary
Storage, is a Core 2 DUO 6600 @ 2.40 GHz, with 4 GB of
RAM, 500 GB hard disk (7200 RPM SATA) and CentOS
6.3 64 bit. The interconnection network of this cloud is an
Ethernet Gigabit Network with a MTU of 1500 bytes.

A. Basic scenario

In order to test the CloudStack cloud infrastructure as
a learning tool for the MPI programming paradigm, it is
necessary to deploy a virtual cluster. A virtual cluster can
be defined as a cluster composed by Virtual Machines (VMs)
where the parallel applications are executed.

In computer science, a cluster is a group of interconnected
computers that work together, and which can be viewed as
a single system. Typically, as shown in Fig. 2, two types of
components can be part of a cluster attending the way that
they are used: head and nodes. The head, or master, is the
computer where the users connect. The nodes are intended as
computational resources that will be employed to run user
applications. Typically, users do not have direct access to
nodes so they cannot log in. Users will launch applications
from the head that will be executed on the nodes. Each
computer that compounds the cluster runs its own instance
of an operating system.

Figure 2. Cluster architecture.

The virtual cluster that students must deploy in Cloud-
Stack is composed by a VM configured as the head and
two VMs configured as nodes. The deployed head is a VM
employing a 10 GB hard disk, one core, 1 GB of RAM
and CentOS 6.3 operating system. It also serves the home
directory to the nodes that will compound the virtual cluster
employing Network File System (NFS) as a distributed file
system protocol.

The deployed nodes are VMs with a 10 GB hard disk,
each one has one core CPU and 1 GB of RAM under
CentOS 6.3 operating system. The nodes mount the head
shared directories. A 1 Gb Ethernet network interconnection
is being shared by the deployed virtual machines.

The deployed virtual cluster employs OpenMPI 1.6 [16]
as MPI implementation. OpenMPI is an open source MPI-
2 [17] implementation developed by a consortium composed
by research, academic and industry partners. Its features
include full MPI-2 standards conformance, thread safety
and concurrency, dynamic process spawning, network and
process fault tolerance, network heterogeneity support, and
run-time instrumentation, among others.

B. Improved scenario

Due to the high latency of MPI communications over
Ethernet networks using TCP, the performance obtained is
limited. However, this latency can be reduced using Open-
MX [18].

Open-MX is a high-performance implementation of the
Myrinet Express message-passing stack over generic Eth-
ernet networks. It implements the capabilities of the MX
firmware running in Myri-10G NICs as a driver in the Linux
kernel. For legacy applications, a user-space library exposes
the MX interface to legacy applications. Open-MX supports
Linux on any architecture and works at least on Linux
kernels equal or greater than 2.6.15 version. It works on
all Ethernet hardware that the Linux kernel supports and all
connected peers, or compute nodes, must be on the same
LAN. Therefore, any router can not be between them but
switches. Open-MX is compatible with the IP traffic and
can perfectly coexist on the same network and drivers. To
setup Open-MX to be used by OpenMPI, it is necessary
to take into account that OpenMPI must be compiled and
installed enabling the Open-MX support.

The purpose of this scenario is to make students aware of
the importance of the analysis of computer performance.

The virtual cluster employed in this setup has the same
configuration as described previously but MPI communica-
tions are held by Open-MX, avoiding the overhead of TCP
for communicating MPI processes.

IV. BENCHMARKS DESCRIPTION

In order to test the scenarios described previously, and
making students aware of the importance of performance
evaluation, three types of applications were executed: Intel
MPI Benchmarks [19], the HEAT MPI [20] example, and
the Gadget-2 [21] application. The first one, the Intel MPI
Benchmarks 3.2.3 (IMB), provides a concise set of elemen-
tary MPI benchmark kernels. It has several program param-
eters such as message lengths or selection of communicators
to run a specific benchmark. IMB also provides a standard
and an optional configuration. If standard mode is used, all
parameters mentioned previously are fixed and must not be

1st International Workshop on Cloud Education Environments (WCLOUD 2012)

24



changed. The mode selected to test the virtual infrastructure
is the standard ones. In this mode, message lengths varies
from 0, 1, 2, 4, 8, 16 to 4194304 bytes.

The current version of IMB, contains different classes
of benchmarks: Single Transfer, Parallel Transfer and Col-
lective. The Single Transfer benchmarks are PingPong
and PingPing. The Parallel Transfer benchmarks are
Exchange and Sendrecv. The collective benchmarks
are Bcast, Allgather, Allgatherv, Alltoall,
Alltoallv, Reduce, Reduce_scatter, Allreduce
and Barrier. PingPong is used for measuring startup
and thoughput of a single message send between two pro-
cesses. PingPing measures also the startup and throughput
of single messages with the difference that messages are
obstructed by oncoming messages. Sendrecv is based on
MPI_Sendrecv and each process sends to its right and
receives from its left neighbour in a chain. Exchange
is a communication pattern often used in grid splitting
algorithms, in which the group of processes is seen as
a periodic chain, and each process exchanges data with
both left and right neighbours in the chain. Reduce is
the benchmark for the MPI_reduce function. It reduces
a vector of length L float items employing the MPI_SUM
operation. Reduce_scatter is the benchmark for the
MPI_Reduce_scatter function that reduces a vector of
length L float items employing the MPI_SUM operation. In
the scatter stage, the L items are split as evenly as possible.
Allreduce is the benchmark for the MPI_Allreduce
function that reduces a vector of length L float items employ-
ing the MPI_SUM operation. Allgather is the benchmark
for the MPI_Allgather function in which every process
sends r bytes and receives a number of bytes that is equal
to r multiplied by the number of processes. Allgatherv
is the benchmark for the MPI_Allgatherv function that
shows whether MPI produces overhead due to the more
complicated situation as compared to MPI_Allgather.
Alltoall is the benchmark for the MPI_Alltoall
function in which every process inputs a number of bytes
equal to r multiplied by the number of processes (r for each
process) and receives a number of bytes equal to r multi-
plied by the number of processes (r from each process).
Alltoallv is the benchmark for the MPI_Alltoallv
function. Bcast is the benchmark for MPI_Bcast in
which the root process broadcast r bytes to all. In this
benchmark the root process of the operation is changed
cyclically.

In the second place, we test the performance of the virtual
cluster employing John Burkardt’s HEAT MPI [20], which
is a C implementation of the 1D time Dependent Heat
Equation employing a form of domain decomposition.

In the third place, we test the infrastructure employing
the Gadget-2 software [21]. Gadget-2 is a freely available
code for cosmological N-body/SPH simulations on parallel
computers with distributed memory. It uses an explicit com-

munication model implemented with the standardized MPI
communication interface. Gadget-2 computes gravitational
forces with a hierarchical tree algorithm and represents
fluids by means of smoothed particle hydrodynamics (SPH).
Gadget-2 can be used for studies of isolated systems, or
in simulations that include the cosmological expansion of
space, with or without periodic boundary conditions in both
cases. In these types of simulations, Gadget-2 follows the
evolution of a self-gravitating collisionless N-body system,
and allows gas dynamics to be optionally included.

V. RESULTS

This section shows the results for the three applications
described in IV. They were obtained for the basic scenario,
using TCP for communicating MPI processes, and for the
improved scenario, using Open-MX for communicating MPI
processes.

In the first place, we are going to show the obtained
results for both TCP and Open-MX of the Intel MPI
Benchmarks. The results obtained for both the PingPong
and the PingPing single transfer benchmarks are depicted
in Fig. 3. Notice that in all these figures the X-axis is
in logarithmic scale. For the PingPong benchmark, the
latency is reduced by around a 30% when Open-MX is
used for communication in comparison to TCP, such as is
shown in the square marks of the figure. The PingPing
benchmark also gets its latency reduced, even in a bigger
quantity (around a 36%) than PingPong, when Open-MX
is used.

Figure 3. PingPong and PingPing single transfer benchmarks.

The results obtained for both the Exchange and the
Sendrecv parallel transfer benchmarks are depicted in
Fig. 4. For the Exchange benchmark, the latency is re-
duced by around 45% when Open-MX is used in comparison
to TCP, such as is shown in the square marks of the figure.

1st International Workshop on Cloud Education Environments (WCLOUD 2012)

25



Figure 4. Exchange and Sendrecv parallel transfer benchmarks.

The Sendrecv benchmark also gets its latency reduced in
35% when Open-MX is used for communications.

The results obtained for both the Allgather and the
Allgatherv collective benchmarks are depicted in Fig. 5.
For the Allgather benchmark, the latency is reduced
around 33% when Open-MX is used in comparison to
TCP, such as is shown in the square marks of the figure.
The Allgatherv benchmark also gets its latency reduced
around 31% when Open-MX is used for communications.

Figure 5. Allgather and Allgatherv collective transfer benchmarks.

The results obtained for both the Alltoall and the
Alltoallv collective benchmarks are depicted in Fig. 6.
For the Alltoall benchmark, the latency is reduced
around 35% when Open-MX is used in comparison to
TCP, such as is shown in the square marks of the figure.
The Alltoallv benchmark also gets its latency reduced
around 35% in a similar way as described previously when

Figure 6. Alltoall and Alltoallv collective transfer benchmarks.

Open-MX is used for communications.
The results obtained for both the Reduce and the

Reduce_scatter collective benchmarks are depicted in
Fig. 7. For the Reduce benchmark, the latency is reduced
around 35% when Open-MX is used in comparison to
TCP, such as is shown in the square marks of the figure.
The Reduce_scatter benchmark also gets its latency
reduced around 32% when Open-MX is used for communi-
cations.

Figure 7. Reduce and Reduce scatter collective transfer benchmarks.

In the second place, for the HEAT MPI example, the per-
formance is measured employing the computational elapsed
time. When TCP is used to communicate MPI processes,
employing two virtual nodes deployed under CloudStack,
the elapsed time obtained was 22.708 milliseconds. When
Open-MX is used, the elapsed time obtained was 15.878
milliseconds (a 30% better than TCP).

1st International Workshop on Cloud Education Environments (WCLOUD 2012)

26



Finally, as a counter-example, Gadget-2 does not get a bet-
ter performance when Open-MX is used for communicating
MPI processes. This shows that the obtained improvements
depend on a large extent of the problem.

VI. CONCLUSIONS

The development of cloud technologies are arousing great
interest in educational environments. Cloud technologies
are emerging as new tools to support teaching-learning
processes in a similar way that, in the past, technologies
such as email, chat, audioconferencing, videoconferencing,
webconferencing, virtual classrooms or collaboration suites
were incorporated to support these processes. Two character-
istics of clouds are the use of virtualization technologies and
the isolation between virtualized resources and the physical
infrastructure. These characteristics convert this type of
infrastructures into a very useful tool in teaching environ-
ments where teachers and students can perform experiments,
avoiding compromising the configuration of the underlying
physical infrastructure and reducing the effort of system ad-
ministration tasks. As we have seen, teaching MPI on clouds,
following the Constructivism theory, can be performed with
the purpose of preparing the students for problem solving in
complex environments. Therefore, two different scenarios,
using commodity hardware and commodity interconnection
networks, were deployed under CloudStack using KVM as
hypervisor. The first one constitutes a virtual cluster for
executing MPI applications. A virtual cluster can be defined
as a cluster composed by virtual machines. The second one
is an improved virtual cluster using Open-MX to get better
latency of the MPI communications to make students aware
of the importance of performing the computer performance
analysis. Both virtual MPI infrastructures were tested em-
ploying the Intel MPI benchmarks, the HEAT MPI example,
and the Gadget-2 software. The obtained results show that
executing MPI applications over the cloud were suitable
and the latency of the MPI communications was reduced
around a 30% using Open-MX in comparison to TCP. The
elapsed time obtained for the HEAT MPI example is also
around a 30% better than TCP. However, depending on the
implementation of the applications that will be executed
using MPI, there are cases in which the improvements on the
latency are not observed, as happened with Gadget-2. As it
was shown, the experiments described can be performed by
teachers or students as system administration, programming
languages and performance measurement practices.

ACKNOWLEDGMENT

This work has been supported by FEDER funds and
Xunta de Galicia under project 09TIC001CT, contracts
2010/28, and by Spanish Government (MCYT) under project
TEC2010-17320.

REFERENCES

[1] C. Babcock, Management Strategies For The Cloud Revolu-
tion, USA, 2010.

[2] T. Mather, S. Kumaraswamy, and S. Latif, Cloud Security and
Privacy. Sebastopol: O’REILLY, 2009.

[3] B. Chee and C. Franklin, Cloud Computing. Technologies and
Strategies of the Ubiquitous Data Center. Boca Raton: CRC
Press, 2010.

[4] R. Krutz and R. Vines, Cloud Security. Indianapolis: Wiley
Publishing, 2010.

[5] J. Rittinghouse and J. Ransome, Cloud Computing: Imple-
mentation, Management, and Security. Boca Raton: CRC
Press, 2010.

[6] A. Velte, T. Velte, and R. Elsenpeter, Cloud Computing: A
Practical Approach. USA: McGrawHill, 2010.

[7] K. Stanoevska-Slabeva, T. Wozniak, and S. Ristol, Grid and
Cloud Computing: A Business Perspective on Technology and
Applications. Germany: Springer, 2010.

[8] OpenNebula Project Leads. http://opennebula.org

[9] Eucalyptus. http://open.eucalyptus.com

[10] OpenStack. http://www.openstack.org

[11] CloudStack. http://www.cloud.com

[12] KVM. http://www.linux-kvm.org

[13] Xen. http://xen.org

[14] VMware. http://www.vmware.com

[15] Amazon Elastic Compute Cloud EC2.
http://aws.amazon.com/ec2

[16] Open MPI. http://www.open-mpi.org

[17] MPIForum. http://www.mpi-forum.org

[18] OpenMX. http://open-mx.gforge.inria.fr

[19] Intel MPI Benchmarks: Users Guide and Methodology De-
scription, Germany, 2006.

[20] MPI examples. http://people.sc.fsu.edu/ jburkardt/c src/mpi/mpi.html

[21] Gadget. http://www.mpa-garching.mpg.de/gadget

1st International Workshop on Cloud Education Environments (WCLOUD 2012)

27




