YAM++ — Results for OAEI 2012*

DuyHoa Ngo, Zohra Bellahsene

University Montpellier 2, INRIA, LIRMM
{duyhoa.ngo, bella}@lirmm.fr

Abstract. The YAM++ system is a self configuration, flexible and extensible
ontology matching system. YAM++ takes advantages of many techniques com-
ing from different fields such as machine learning, information retrieval, graph
matching, etc. in order to enhance the matching quality. In this paper, we briefly
present the YAM++ approach and its results on OAEI 2012 campaign.

1 Presentation of the system

YAM++ - (not) Yet Another Matcher is an automatic, flexible and self-configuring
ontology matching system for discovering semantic correspondences between entities
(i.e., classes, object properties and data properties) of ontologies. In YAM++ approach,
multiple working strategies and matching techniques coming from machine learning,
information retrieval, graph matching have been implemented in order to deal with
both terminological and conceptual heterogeneity of ontologies. In the past, YAM++
achieved good results and gained high ranking positions in comparison with other par-
ticipants in Benchmark, Conference and Multifarm tracks in OAEI 2011 and OAEI
2011.5 campaigns. This year, YAM++ participates in six tracks including Bench-
mark, Conference, Multifarm, Library, Anatomy and Large Biomedical Ontolo-
gies tracks.

1.1 State, purpose, general statement

The major principle of the matching strategy in YAM++ approach is utilizing as much
useful information as possible of entities in ontologies effectively and efficiently. In
the previous YAM++ (OAEI 2011 version), it is a combination of machine learning
and graph matching techniques. In particular, Decision Tree learning model is used to
combine different terminological similarity measures, whereas, a similarity propagation
method is used to discover mappings by exploiting structural information of entities.
The drawback of the previous version of YAM++ lies in its low performance in terms
of time and high memory consuming. Therefore, it was inapplicable for large scale
ontology matching scenarios.

In the current version (OAEI 2012), several changes of YAM++ have been done.
Firstly, since OAEI 2011.5 campaign, we have proposed new similarity measures based
on techniques coming from information retrieval field in order to compare short and
long texts. These measures are an alternative solution to the machine learning method,

* Supported by ANR DataRing ANR-08-VERSO-007-04.

which was used in the YAM++ 2011 version, in the case where no training data is avail-
able. Next, a semantic verification component have been added in YAM++ in order
to enhance the matching quality. Finally, a candidate filtering component have been de-
signed for reducing computational space when dealing with large scale ontology match-
ing scenarios.

1.2 Specific techniques used

In this section, we will briefly describe the workflow of YAM++ and its main compo-
nents, which are shown in Fig.1.

g Y ™y ™y Ty

- . A =

S @ Terminological K= =

=
e 8 ' e Matcher g =
g-‘-‘,, o @© = S [
fraket c O [18] M vy @D (]
] c = = ' I w =
E;'__ < "; Instance-based o3 o
=2 : © | 5 Matcher i o
- L o (=) —-— -—
(@] S 3 5] = =

= O Structural =]

n = Matcher S w

" AN AN AN AN . _/

Fig. 1. Main components of YAM++ system

In YAM-++ approach, a generic workflow for a given ontology matching scenario is
as follows.

—_

Input ontologies are loaded and parsed by a Ontology Parser component;

2. Information of entities in ontologies are indexed by the Annotation Indexing and
the Structure Indexing components;

3. Candidates Filtering component filters out all possible pairs of entities from the
input ontologies, whose descriptions are highly similar;

4. Among those candidate mappings, the Terminological Matcher component pro-
duces a set of mappings by comparing the annotations of entities;

5. The Instance-based Matcher component supplements new mappings through shared

instances between ontologies;
6. In YAM++, matching results of the Terminological Matcher and the Instance-

based Matcher are aggregated into an element level matching result. The Struc-
tural Matcher component then enhances element level matching result by exploit-

ing structural information of entities;
7. The mapping results obtained from the three matchers above are then combined

and selected by the Combination & Selection component to have a unique set of
mappings;

8. Finally, the Semantic Verification component refines those mappings in order to
eliminate the inconsistent ones.

Ontology Parser To read and parse input ontologies, YAM++ uses OWLAPI open
source library. In addition, YAM++ makes use of Pellet - an OWL 2 Reasoner in order
to discover hidden relations between entities in ontologies. Here, the whole ontology is
stored in the main memory.

Annotation Indexing In this component, all annotations information of entities such as
ID, labels and comments are extracted. The languages used for representing annotations
are considered. In the case where input ontologies use different languages to describe
the annotations of entities, a multilingual translator (Microsoft Bing) is used to translate
those annotations to English. Those annotations are then normalized by tokenizing into
set of tokens, removing stop words, and stemming. Next, tokens are indexed in a table
for future use.

Structure Indexing In this component, the main structure information such as IS-A and
PART-OF hierarchies of ontologies are stored. In particular, YAM++ assigns a com-
pressed bitset values for every entity of the ontologies. Through the bitset values of
each entity, YAM++ can fast and easily gets its ancestors, descendants, etc. A benefit
of this method is to easily access to the structure information of ontolgy and minimize
memory for storing it. After this step, the loaded ontologies can be released to save
main memory.

Candidates Filtering The aim of this component is to reduce the computational space
for a given scenario, especially for the large scale ontology matching tasks. In YAM++,
two filters have been designed for the purpose of performing terminology-based match-
ers efficiently.

— A Description Filter is a search-based filter, which filters out candidate mappings
before computing the real similarity values between the description of entities.
Here, a description of an entity consists of its labels, synonym labels and com-
ments. The idea of this filter is as follows. Firstly, the descriptions of all entities
in the bigger size ontology are indexed by Lucene search engine. For each entity
in the smaller size ontology, a multiple terms query created by tokens within the
description of this entity is executed in order to find the top-K similar entities.

— A Label Filter is used to fast detect candidate mappings, where labels of entities in
each candidate mapping are similar or differ in maximum two tokens. The intuition
is that if two labels of two entities differ by more than three tokens, any string-
based method will produce a low similarity score value. Then, these entities are
highly unmatched.

Terminological Matcher In YAM++, the Terminological Matcher component is com-
pounded by two sub-matcher namely Label Matcher and Context Profile Matcher.

— The Label Matcher splits all labels of entities into tokens and calculates the infor-
mation content of each token in the whole ontology. Then, it makes use of Tversky
similarity measure to compute similarity score between labels of entities. Let we

explain how this method works by an example with two entities: cmt . ow1#Co-
author and conference. owl#Contribution_co-author. After splitting and nor-
malizing labels, we have 2 sets of tokens such as: {coauthor} and {coauthor,
contribution}. Token coauthor appears in each input ontology only one
time, whereas, token contribution appears 10 times among 60 concepts in
the ontology conference.owl. Therefore, the information content of the to-
ken contribution is less than that of the token coauthor. In particular, the
normalized TFIDF weights of each token inside the input ontologies are equal:
{Weoauthor = 1.0}, {Weoauthor = 1.0, Weontribution = 0.34}. Two sets of tokens
share only token coauthor, then the similarity computed by Tversky method is
oL = 0.855.
1.0+1.0+0.34

— The Context Profile Matcher is used to compute similarity value of entities by
comparing their context profiles, which are normally a long text. Like in the first
YAM-++ version, a context profile of an entity may be an Individual Profile, Se-
mantic Profile or External Profile. We refer to [4] for more detail about the con-
struction of these profiles and computation of the similarity between them.

Instance-based Matcher In many situation, the input ontologies provide data (instances),
therefore, the aim of the Instance-based Matcher is to discover new mappings which
are complement to the result obtained from the Terminological Matcher. Basically,
the Instance-based Matcher is not changed in from the first YAM++ version to the
current version. Therefore, for saving space, we refer to section Extensional Matcher
of [3] for more detail.

Structural Matcher The Structural Matcher component contains two similarity prop-
agation methods namely Similarity Propagation and Confidence Propagation.

— Similarity Propagation method is a graph matching method, which inherits the
main features of the well-known Similarity Flooding algorithm [2]. The only dif-
ference is about transforming an ontology to a directed labeled graph. This matcher
is not changed from the first YAM++ version to the current version. Therefore, for
saving space, we refer to section Similarity Flooding of [3] for more detail.

— The intuition of the Confidence Propagation method is as follows. Assume (a1, b1, =, ¢1)

and (as, by, =, co) are two initial mappings, which are maybe discovered by the el-
ement level matcher (i.e., terminological matcher or instance-based matcher). If a4
and by are ancestors of ay and by respectively, then after running confidence propa-
gation, we have (a1,b1, =, ¢1 + ¢2) and {ag, ba, =, c2 + ¢1). Note that, confidence
values are propagated only among collection of initial mappings.

In YAM++, the aim of the Similarity Propagation method is discovering new map-
pings by exploiting as much as possible the structural information of entities. This
method is used for a small scale ontology matching task, where the total number of
entities in each ontology is smaller than 1000. In contrary, the Confidence Propa-
gation method supports a Semantic Verification component to eliminate inconsistent
mappings. This method is mainly used in a large scale ontology matching scenario.

Mappings Combination and Selection The aim of the Mappings Combination and
Selection component is to produce a unique set of mappings from matching results
obtained by terminological matcher, instance-based matcher and structural matcher. In
this component, a Dynamic Weighted Aggregation method have been implemented.
Given an ontology matching scenario, it automatically computes a weight value for each
matcher and establishes a threshold value for selecting the best candidate mappings. The
main idea of this method can be seen in [3] for more detail.

Semantic Verification After running the similarity or confidence propagation on overall
candidate mappings, the final achieved similarity values reach a certain stability. Based
on those values, YAM++ is able to remove inconsistent mappings with more certainty.
There are two main steps in the Semantic Verification component such as (i) identify-
ing inconsistent mappings, and (ii) elimination inconsistent mappings.

In order to identify inconsistencies, several semantic conflict patterns have been
designed in YAM++ as follows:

— Two mappings (a1, b;) and {as, by) are crisscross conflict if a; is an ancestor of as
in ontology O; and bs is an ancestor of b; in ontology Os.

— Two mappings (a1, b1) and (as, by) are disjointness subsumption conflict if a; is
an ancestor of ay in ontology O and by disjoints with by in ontology Os.

— A property-property mapping (p1,p2) is inconsistent with respect to alignment A
if {Doms(p1) x Doms(p2)} N A = () and {Rans(p1) X Rans(p2)} N A = 0
then (p1,p2), where Doms(p) and Rans(p) return a set of domains and ranges of
property p.

— Two mappings {a, b1) and {a, bo) are duplicated conflict if the cardinality matching
is 1:1 (for a small scale ontology matching scenario) or the semantic similarity
SemSim(by, ba) is less than a threshold value 6 (for a large scale matching with
cardinality 1:m).

In order to eliminate inconsistent mappings, a Greedy Selection method is used.
The idea of this method is that it iteratively selects the mapping with the highest confi-
dence value, which does not conflict with the mappings already selected before.

In YAM++, we used Alcomo [1] - an effective open source tool to eliminate incon-
sistent mappings for the first three conflict patterns. For the last pattern, a supplementary
method called Duplicate Removing have been implemented. In this method, semantic
similarity of two classes in ontology is computed by Resnik method [5], where an in-
formation content value of a class is computed by an intrinsic method described in [6].

1.3 Adaptations made for the evaluation

Before running the matching process, YAM++ analyzes the input ontologies and adapts
itself to the matching task. In particular, if annotations of entities in input ontologies
are described by different languages, YAM++ automatically translates them in English.
If the number of entities in input ontologies is smaller than 1000, YAM++ is switched
to small scale matching regime, otherwise, it runs with large scale matching regime.
The main difference between two regime lies in the Structural Matcher and Semantic
Verification components as we discussed above.

1.4 Link to the system and parameters file

A SEALS client wrapper for YAM++ system and parameter files can be download at:
http://www?2.lirmm.fr/dngo/YAMplusplus2012.zip. See the instructions in tutorial from
SEALS platform' to test our system.

1.5 Link to the set of provided alignments (in align format)

The results of all tracks can be downloaded at: http://www2.lirmm.fr/dngo/ YAMplus-
plus2012Results.zip.

2 Results

In this section, we present the evaluation results obtained by running YAM++ with
SEALS client with Benchmark, Conference, Multifarm, Library, Anatomy and
Large Biomedical Ontologies tracks. All experiments are executed by YAM++ with
SEALS client version 4.1 beta and JDK 1.6 on PC Intel 3.0 Pentium, 3Gb RAM, Win-
dow XP SP3.

2.1 Benchmark

In OAEI 2012, Benchmark includes 2 open tests (i.e. biblio, finace) and 3 blind tests
(i.e., Benchmark 2, 3, 4). Table 1 shows the results of YAM++ running on the Bench-
mark data set.

Test set |H-mean Precision |H-mean Recall |[H-mean Fmeasure
Biblio 0.98 0.72 0.83
Benchmark 2 0.96 0.82 0.89
Benchmark 3 0.97 0.76 0.85
Benchmark 4 0.96 0.72 0.83
Finance 0.97 0.84 0.90

Table 1. YAM++ results on pre-test Benchmark track

2.2 Conference

Conference track now contains 16 ontologies from the same domain (conference orga-
nization) and each ontology must be matched against every other ontology. This track
is an open+blind, so in the Table 2, we can only report our results with respect to the
available reference alignments

Test set |H-mean Precision |H-mean Recall |H-mean Fmeasure
Conference 0.802 0.692 0.743
Table 2. YAM++ results on Conference track

! http://oaei.ontologymatching.org/2012/seals-eval html

2.3 MultiFarm

The goal of the MultiFarm track is to evaluate the ability of matcher systems to deal
with multilingual ontologies. It is based on the OntoFarm dataset, where annotations
of entities are represented in different languages such as: English (en), Chinese (cn),
Czech (cz), Dutch (nl), French (fr), German (de), Portuguese (pt), Russian (ru) and
Spanish (es). For saving space, we do not list all results here. Instead, the results of
YAM-++ can be found at at SEALS result repository?.

2.4 Anatomy

The Anatomy track consists of finding an alignment between the Adult Mouse Anatomy
(2744 classes) and a part of the NCI Thesaurus (3304 classes) describing the human
anatomy. Table 3 shows the evaluation result and runtime of YAM++ on this track.

Test set Precision Recall Fmeasure | Run times
Anatomy 0.944 0.868 0.904 201 (s)
Table 3. YAM++ results on Anatomy track

2.5 Library

The library track is a real-word task to match the STW (6575 classes) and the TheSoz
(8376 classes) thesaurus. Table 4 shows the evaluation result and runtime of YAM++
against an existing reference alignment on this track.

Test set Precision Recall Fmeasure | Run times
Library 0.595 0.750 0.663 759 (s)
Table 4. YAM++ results on Library track

2.6 Large Biomedical Ontologies

This track consists of finding alignments between the Foundational Model of Anatomy
(FMA), SNOMED CT, and the National Cancer Institute Thesaurus (NCI). There are 9
sub tasks with different size of input ontologies, i.e., small fragment, large fragment and
the whole ontologies. Table 5 shows the evaluation results and run times of YAM++ on
those sub tasks.

3 General comments

This is the third time YAM++ participates to the OAEI campaign. We found that SEALS
platform is a very valuable tool to compare the performance of our system with the
others. Besides, we also found that OAEI tracks covers a wide range of heterogeneity in
ontology matching task. They are very useful to help developers/researchers to develop
their semantic matching system.

2 http://www.seals-project.eu/

Test set Precision Recall Fmeasure | Run times
Small FMA - NCI 0.980 0.848 0.9093 482 (s)
Large FMA - NCI 0.923 0.821 0.869 1908 (s)
Whole FMA - NCI 0.906 0.821 0.861 3864 (s)
Small FMA - SNOMED 0.972 0.693 0.809 1990 (s)
Large FMA - SNOMED 0.879 0.684 0.769 7709 (s)
Whole FMA - SNOMED 0.878 0.683 0.768 9907 (s)
Small SNOMED - NCI 0.951 0.604 0.739 5643 (s)

Large SNOMED - NCI 0.864 0.599 0.708 13233 (s)

Whole SNOMED - NCI 0.859 0.599 0.706 17690 (s)

Table 5. YAM++ results on Large Biomedical Ontologies track

3.1 Comments on the results

The current version of YAM++ has shown a significant improvement in terms of match-
ing quality and runtime with respect to the previous version. In particular, the H-mean
Fmeasure value of the Conference track increases 0.74 — 0.65 = 0.09; this version
is able to run with not only scalability dataset but also very large scale dataset (i.e.,
Library, Biomedical ontologies).

4 Conclusion

In this paper, we have presented our ontology matching system called YAM++ and
its evaluation results on different tracks on OAEI 2012 campaign. The experimental
results are promising and show that YAM++ is able to work effectively and efficiently
with real-world ontology matching tasks. In near future, we continue improving the
matching quality and efficiency of YAM++. Furthermore, we plan to deal with instance
matching track also.

References

1. Christian Meilicke. Alignment incoherence in ontology matching phd. thesis. In University
of Mannheim, Chair of Artificial Intelligence, 2011.

2. Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding: A versatile
graph matching algorithm and its application to schema matching. In ICDE, pages 117-128,
2002.

3. DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta. Yam++ results for oaei 2011. In OM,
2011.

4. DuyHoa Ngo, Zohra Bellasene, and Remi Coletta. A generic approach for combining linguis-
tic and context profile metrics in ontology matching. In ODBASE Conference, 2011.

5. Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy. In
IJCAI, pages 448-453, 1995.

6. David Sanchez, Montserrat Batet, Aida Valls, and Karina Gibert. Ontology-driven web-based
semantic similarity. J. Intell. Inf. Syst., pages 383—413, 2010.

