
The experiment database for machine learning (Demo)
Joaquin Vanschoren1

Abstract. We demonstrate the use of the experiment database
for machine learning, a community-based platform for the sharing,
reuse, and in-depth investigation of the thousands of machine learn-
ing experiments executed every day. It is aimed at researchers and
practitioners of data mining techniques, and is publicly available at
http://expdb.cs.kuleuven.be. This demo gives a hands-
on overview of how to share novel experimental results, how to in-
tegrate the database in existing data mining toolboxes, and how to
query the database through an intuitive graphical query interface.

1 Introduction

Experimentation is the lifeblood of machine learning (ML) research.
A considerable amount of effort and resources are invested in assess-
ing the usefulness of new algorithms, finding the optimal approach
for new applications or just to gain some insight into, for instance, the
effect of a parameter. Yet in spite of all these efforts, experimental re-
sults are often discarded or forgotten shortly after they are obtained,
or at best averaged out to be published, which again limits their fu-
ture use. If we could collect all these ML experiments in a central
resource and make them publicly available in an organized (search-
able) fashion, the combined results would provide a highly detailed
picture of the performance of algorithms on a wide range of data
configurations, speeding up ML research.

In this paper, we demonstrate a community-based platform de-
signed to do just this: the experiment database for machine learn-
ing. First, experiments are automatically transcribed in a common
language that captures the exact experiment setup and all details
needed to reproduce them. Then, they are uploaded to pre-designed
databases where they are stored in an organized fashion: the results
of every experiment are linked to the exact underlying components
(such as the algorithm, parameter settings and dataset used) and thus
also integrated with all prior results. Finally, to answer any ques-
tion about algorithm behavior, we only have to write a query to the
database to sift through millions of experiments and retrieve all re-
sults of interest. As we shall demonstrate, many kinds of questions
can be answered in one or perhaps a few queries, thus enabling fast
and thorough analysis of large numbers of collected results. The re-
sults can also be interpreted unambiguously, as all conditions under
which they are valid are explicitly stored.

1.1 Meta-learning

Instead of being purely empirical, these experiment databases also
store known or measurable properties of datasets and algorithms.
For datasets, this can include the number of features, statistical and

1 LIACS, Leiden University, The Netherlands, email: joaquin@liacs.nl

information-theoretic properties [7] and landmarkers [10], while al-
gorithms can be tagged by model properties, the average ratio of bias
or variance error, or their sensitivity to noise [3].

As such, all empirical results, past and present, are immediately
linked to all known theoretical properties of algorithms and datasets,
providing new grounds for deeper analysis. For instance, algorithm
designers can include these properties in queries to gain precise in-
sights on how their algorithms are affected by certain kinds of data
or how they relate to other algorithms.

1.2 Overview of benefits
We can summarize the benefits of this platform as follows:

Reproducibility The database stores all details of the experimental
setup, resulting in truly reproducible research.

Reference All experiments, including algorithms and datasets, are
automatically organized in one resource, creating an overview of
the state-of-the-art, and a useful ‘map’ of all known approaches,
their properties, and their performance. This also includes nega-
tive results, which usually do not get published.

Querying When faced with a question on the performance of learn-
ing algorithms, e.g., ‘What is the effect of the training set size on
runtime?’, we can answer it in seconds by writing a query, instead
of spending days (or weeks) setting up new experiments. More-
over, we can draw upon many more experiments, on many more
algorithms and datasets, than we can afford to run ourselves.

Reuse It saves time and energy, as previous experiments can be
readily reused. For instance, when benchmarking a new algorithm,
there is no need to benchmark the older algorithms over and over
again as well: their evaluations are likely stored online, and can
simply be downloaded.

Larger studies Studies covering many algorithms, parameter set-
tings and datasets are very expensive to run, but could become
much more feasible if a large portion of the necessary experiments
are available online. Even when all the experiments have yet to be
run, the automatic storage and organization of experimental re-
sults markedly simplifies conducting such large scale experimen-
tation and thorough analysis thereof.

Visibility By using the database, users may learn about (new) algo-
rithms they were not previously aware of.

Standardization The formal description of experiments may cat-
alyze the standardization of experiment design, execution and ex-
change across labs and data mining tools.

The remainder of this paper is organized as follows. Sect. 2 out-
lines how we constructed our pilot experiment database and the un-
derlying models and languages that enable the free exchange of ex-
periments. In Sect. 3, we demonstrate how it can be used to quickly
discover new insights into a wide range of research questions and to
verify prior studies. Sect. 4 concludes.

interface (API)

Exposé
Ontology

ExpML
 files

DM platforms /
algorithms

 share

Query
interface

Researcher ExpDB Mining Meta-models

Figure 1. Components of the experiment database framework.

2 Framework description
In this section, we outline the design of this collaborative framework,
outlined in Fig. 1. We first establish a controlled vocabulary for data
mining experimentation in the form of an open ontology (Exposé),
before mapping it to an experiment description language (called
ExpML) and an experiment database (ExpDB). These three elements
(boxed in Fig. 1) will be discussed in the next three subsections. Full
versions of the ontologies, languages and database models discussed
below will be available on http://expdb.cs.kuleuven.be.

Experiments are shared (see Fig. 1) by entering all experiment
setup details and results through the framework’s interface (API),
which exports them as ExpML files or directly streams them to an
ExpDB. Any data mining platform or custom algorithm can thus use
this API to add a ‘sharing’ feature that publishes new experiments.
The ExpDB can be set up locally, e.g., for a single person or a single
lab, or globally, a central database open to submissions from all over
the world. Finally, the bottom of the figure shows different ways to
tap into the stored information:

Querying. Querying interfaces allow researchers to formulate ques-
tions about the stored experiments, and immediately get all results
of interest. We currently offer various such interfaces, including
graphical ones (see Sect. 2.3.2).

Mining. A second use is to automatically look for patterns in al-
gorithm performance by mining the stored evaluation results and
theoretical meta-data. These meta-models can then be used, for
instance, in algorithm recommendation [1].

2.1 The Exposé Ontology
The Exposé ontology describes the concepts and the structure of data
mining experiments. It establishes an unambiguous and machine-
interpretable (semantic) vocabulary, through which experiments can
be automatically shared, organized and queried. We will also use it
to define a common experiment description language and database
models, as we shall illustrate below. Ontologies can be easily ex-
tended and refined, which is a key concern since data mining and
machine learning are ever-expanding fields.

2.1.1 Collaborative Ontology Design

Several other useful ontologies are being developed in parallel: On-
toDM [8] is a top-level ontology for data mining concepts, EXPO
[11] models scientific experiments, DMOP [4] describes learning
algorithms (including their internal mechanisms and models) and
workflows, and the KD ontology [13] and eProPlan ontology [5]

describe large arrays of DM operators, including information about
their use to support automatic workflow planning.

To streamline ontology development, a ‘core’ ontology was de-
fined, and an open ontology development forum was created: the
Data Mining Ontology (DMO) Foundry2. The goal is to make the
ontologies interoperable and orthogonal, each focusing on a particu-
lar aspect of the data mining field. Moreover, following best practices
in ontology engineering, we reuse concepts and relationships from
established top-level scientific ontologies: BFO,3 OBI,4 IAO,5 and
RO.6 We often use subproperties, e.g. implements for concretizes,
and runs for realizes, to reflect common usage in the field. Exposé is
designed to integrate or be similar to the above mentioned ontologies,
but focusses on aspects related to experimental evaluation.

2.1.2 Top-level View

Fig. 2 shows Exposé’s high-level concepts and relationships. The full
arrows symbolize is-a relationships, meaning that the first concept
is a subclass of the second, and the dashed arrows symbolize other
common relationships. The most top-level concepts are reused from
the aforementioned top-level scientific ontologies, and help to de-
scribe the exact semantics of many data mining concepts. For in-
stance, when speaking of a ‘data mining algorithm’, we can seman-
tically distinguish an abstract algorithm (e.g., C4.5 in pseudo-code),
a concrete algorithm implementation (e.g., WEKA’s J48 implemen-
tation of C4.5), and a specific algorithm setup, including parameter
settings and subcomponent setups. The latter may include other algo-
rithm setups, e.g. for base-learners in ensemble algorithms, as well as
mathematical functions such as kernels, distance functions and eval-
uation measures. A function setup details the implementation and
parameter settings used to evaluate the function.

An algorithm setup thus defines a deterministic function which can
be directly linked to a specific result: it can be run on a machine given
specific input data (e.g., a dataset), and produce specific output data
(e.g., new datasets, models or evaluations). As such, we can trace
any output result back to the inputs and processes that generated it
(data provenance). For instance, we can query for evaluation results,
and link them to the specific algorithm, implementation or individual
parameter settings used, as well as the exact input data.

Algorithm setups can be combined in workflows, which addition-
ally describe how data is passed between multiple algorithms. Work-
flows are hierarchical: they can contain sub-workflows, and algo-
rithm setups themselves can contain internal workflows (e.g., a cross-
validation setup may define a workflow to train and evaluate learning
algorithms). The level of detail is chosen by the author of an ex-
periment: a simple experiment may require a single algorithm setup,
while others involve complex scientific workflows.

Tasks cover different data mining (sub)tasks, e.g., supervised clas-
sification. Qualities are known or measurable properties of algo-
rithms and datasets (see Sect. 1.1), which are useful to interpret
results afterwards. Finally, algorithms, functions or parameters can
play certain roles in a complex setup: an algorithm can sometimes
act as a base-learner in an ensemble algorithm, and a dataset can act
as a training set in one experiment and as a test set in the next.

2 The DMO Foundry: http://dmo-foundry.org
3 The Basic Formal Ontology (BFO): http://www.ifomis.org/bfo
4 The Ontology for Biomedical Investigations (OBI): http:
//obi-ontology.org

5 The Information Artifact Ontology (IAO): http://bioportal.
bioontology.org/ontologies/40642

6 The Relation Ontology (RO): http://www.obofoundry.org/ro

Algorithm

p=?

Data

Implementation

Run

thing

Quality
Material
Entity

Planned
Process

Digital
Entity

Information
Content Entity

Role

Machine

Workflow

runs Model

Parameter
Setting

Implementation
Parameter

Algorithm
Parameter

has parameter has parameter

hp = has part

hp

executed
on

Mathematical
Function

Task

implements

Data
Quality

Algorithm
Quality

hq

hq

BFO/OBI/IAO

implements

hq = has quality

achieves

Plan

concretizes

Algorithm
Setup

DM setup
hphp

has input/output data
Dataset

evaluates

Experiment

hp

FunctionSetup

f(x)

f(x) p=?p=!

Evaluations

KernelFunction
Perf.Measure

...

has part

hp

concretizes

concretizes

Figure 2. An overview of the top-level concepts in the Exposé ontology.

2.1.3 Experiments

An experiment tries to answer a question (in exploratory settings) or
test a hypothesis by assigning certain values to these input variables.
It has experimental variables: independent variables with a range of
possible values, controlled variables with a single value, or depen-
dent variables, i.e., a monitored output. The experiment design (e.g.,
full factorial) defines which combinations of input values are used.

One experiment run may generate several workflow runs (with dif-
ferent input values), and a workflow run may consist of smaller al-
gorithm runs. Runs are triples consisting of input data, a setup and
output data. Any sub-runs, such as the 10 algorithm runs within a
10-fold CV run, could also be stored with the exact input data (folds)
and output data (predictions). Again, the level of detail is chosen by
the experimenter. Especially for complex workflows, it might be in-
teresting to afterwards query the results of certain sub-runs.

2.2 ExpML: A Common Language

Returning to our framework in Fig. 1, we now use this ontology to de-
fine a common language to describe experiments. The most straight-
forward way to do this would be to describe experiments in Exposé,
export them in RDF7 and store everything in RDF databases (triple-
stores). However, such databases are still under active development,
and many researchers are more familiar with XML and relational
databases, which are also widely supported by many current data
mining tools. Therefore, we will also map the ontology to a sim-
ple XML-based language, ExpML, and a relational database schema.
Technical details of this mapping are outside the scope of this paper.
Below, we show a small example of ExpML output to illustrate our
modeling of data mining workflows.

7 Resource Description Framework: http://www.w3.org/RDF

2.2.1 Workflow Runs

Fig. 3 shows a workflow run in ExpML, executed in WEKA [2] and
exported through the aforementioned API, and a schematic represen-
tation is shown in Fig. 4. The workflow has two inputs: a dataset
URL and parameter settings. It also contains two algorithm setups:
the first loads a dataset from the given URL, and then passes it to
a cross-validation setup (10 folds, random seed 1). The latter eval-
uates a Support Vector Machine (SVM) implementation, using the
given parameter settings, and outputs evaluations and predictions.
Note that the workflow is completely concretized: all parameter set-
tings and implementations are fixed. The bottom of Figure 3 shows
the workflow run and its two algorithm sub-runs, each pointing to the
setup used. Here, we chose not to output the 10 per-fold SVM runs.

The final output consists of Evaluations and Predictions. As
shown in the ExpML code, these have a predefined structure so
that they can be automatically interpreted and organized. Evaluations
contain, for each evaluation function (as defined in Exposé), the eval-
uation value and standard deviation. They can also be labeled, as for
the per-class precision results. Predictions can be probabilistic, with
a probability for each class, and a final prediction for each instance.
For storing models, we can use existing formats such as PMML.

8
6

Evaluations

7 Predictions

Weka.
ARFFLoader

p=! location=
 http://...

2:loadData

Weka.
Evaluation

p=! F=10

3:crossValidate

Weka.SMO

p=! C=0.01

4:learner

Weka.RBF

f(x)
5:kernel

p=! G=0.01

p=! S=1

data

data

eval

pred

url evalu-
ations

predic-
tions

par

logRuns=true logRuns=false
logRuns=true

data data eval
pred

predictions

evaluations
1:mainFlow

Weka.Instances

Figure 4. A schematic representation of the run.

<Run machine=" " timestamp=" " author=" ">
<Workflow id="1:mainflow" template="10:mainflow">

<AlgorithmSetup id="2:loadData" impl="Weka.ARFFLoader(1.22)" logRuns="true">
<ParameterSetting name="location" value="http://.../lymph.arff"/>
</AlgorithmSetup>
<AlgorithmSetup id="3:crossValidate" impl="Weka.Evaluator(1.25)" logRuns="true" role="CrossValidation">
<ParameterSetting name="F" value="10"/>
<ParameterSetting name="S" value="1"/>
<AlgorithmSetup id="4:learner" impl="Weka.SMO(1.68)" logRuns="false" role="Learner">
<ParameterSetting name="C" value="0.01"/>
<FunctionSetup id="5:RBFKernel" impl="Weka.RBF(1.3.1)" role="Kernel">
<ParameterSetting name="G" value="0.1"/>
</FunctionSetup>

</AlgorithmSetup>
</AlgorithmSetup>
<Input name="url" dataType="Tuples" value="http://.../lymph.arff"/>
<Input name="par" dataType="Tuples" value="[name:G,value:0.1]"/>
<Output name="evaluations" dataType="Evaluations"/>
<Output name="predictions" dataType="Predictions"/>
<Connection source="2:loadData" sourcePort="data" target="3:crossValidate" targetPort="data" dataType="Weka.Instances"/>
<Connection source="3:crossValidate" sourcePort="evaluations" target="1:mainflow" targetPort="evaluations" dataType="

Evaluations"/>
<Connection source="3:crossValidate" sourcePort="predictions" target="1:mainflow" targetPort="predictions" dataType="

Predictions"/>
</Workflow>

<OutputData name="evaluations">
<Evaluations id="6">
<Evaluation function="PredictiveAccuracy" value="0.831081" stDev="0.02"/>
<Evaluation function="Precision" label="class:normal" value="0" stDev="0"/>
. . . < / Evaluations>

</OutputData>
<Run setup="2:loadData">
<OutputData name="data">
<Dataset id="8" name="lymph" url="http://.../lymph.arff" dataType="Weka.Instances"/>
</OutputData>

</Run>
<Run setup="3:crossValidate">
<InputData name="data"><Dataset ref="8"/> </InputData>
<OutputData name="evaluations"><Evaluations ref="6"/> </OutputData>
<OutputData name="predictions"><Predict ions ref="7"/> </OutputData>
</Run>

</Run>

Figure 3. A workflow run in ExpML.

 dataType

quality
data
DataQuality

value
parameter
setup
ParameterSetting

value

description,...
name

Algorithmformula
name

Quality

 description,...

implementation

parent

AlgorithmSetup

role
algorithm

logRuns
isDefault

function

sid
FunctionSetup

implementation

role

generalName

implementation
name

Parameter

shortName

suggestedValues
defaultValue

min, max,...
algorithm

name
fullName
Implementation

version

url, library, ...

sid
Workflow

template

machine

parent
rid

Run

setup

name
did

Dataset

url,...

data
run
InputData

name

data
run
OutputData

name

 function
did
Evaluation

label
value
stdev

source
did

Data
sid

Setup

 rootWorkflow

name
sid
Experiment

description,...

ExperimentalVariable

target
source sourcePort

workflow
Connection

targetPort

Function

formula
name

Function

description,...

quality
implementation

AlgorithmQuality

value

Input,Output...

Inheritance Many-to-one 0/1-to-one

sid

label

label

Figure 5. The general structure of the experiment database. Underlined columns indicate primary keys, the arrows denote foreign keys. Tables in italics are
abstract: their fields only exist in child tables.

2.3 Organizing Machine Learning Information
The final step in our framework (see Fig. 1) is organizing all this
information in searchable databases such that it can be retrieved,
rearranged, and reused in further studies. This is done by col-
lecting ExpML descriptions and storing all details in a predefined
database. To design such a database, we mapped Exposé to a rela-
tional database model. In this section, we offer a brief overview of
the model to help interpret the queries in the remainder of this paper.

2.3.1 Anatomy of an Experiment Database

Fig. 5 shows the most important tables, columns and links of
the database model. Runs are linked to their input- and out-
put data through the join tables InputData and OutputData,
and data always has a source run, i.e., the run that generated
it. Runs can have parent runs, and a specific Setup: either a
Workflow or AlgorithmSetup, which can also be hierar-
chical. AlgorithmSetups and FunctionSetups can have
ParameterSettings, a specific Implementation and a
general Algorithm or Function. Implementations and
Datasets can also have Qualities, stored in Algorithm
Quality and DataQuality, respectively. Data, runs and setups
have unique id’s, while algorithms, functions, parameters and quali-
ties have unique names defined in Exposé.

2.3.2 Accessing the Experiment Database

The experiment database is available at http://expdb.cs.
kuleuven.be. A graphical query interface is provided (see the ex-
amples below) that hides the complexity of the database, but still sup-
ports most types of queries. In addition, it is possible to run standard
SQL queries (a library of example queries is available. Several video
tutorials help the user to get started quickly. We are currently updat-
ing the database, query interface and submission system, and a public
submission interface for new experiments (described in ExpML) will
be available shortly.

3 Example Queries
In this section, we illustrate the use of the experiment database.8 In
doing this, we aim to take advantage of the theoretical information
stored with the experiments to gain deeper insights.

3.1 Comparing Algorithms
To compare the performance of all algorithms on one specific dataset,
we can plot the outcomes of cross-validation (CV) runs against the
algorithm names. In the graphical query interface, see Fig. 6, this
can be done by starting with the CrossValidation node, which will
be connected to the input Dataset, the outputted Evaluations and the
underlying Learner (algorithm setup). Green nodes represent data,
blue nodes are setups and white nodes are qualities (runs are hid-
den). By clicking a node it can be expanded to include other parts of
the workflow setup (see below). For instance, ‘Learner’ expands into
the underlying implementation, parameter settings, base-learners and
sub-functions (e.g. kernels). By clicking a node one can also add a
selection (in green, e.g. the used learning algorithm) or a constraint
(in red, e.g. a preferred evaluation function). The user is always given

8 See [12] for a much more extensive list of possible queries

a list of all available options, in this case a list of all evaluation func-
tions present in the database. Here, we choose a specific input dataset
and a specific evaluation function, and we aim to plot the evaluation
value against the used algorithm.

Running the query returns all known experiment results, which are
scatterplotted in Fig. 7, ordered by performance. This immediately
provides a complete overview of how each algorithm performed. Be-
cause the results are as general as allowed by the constraints written
in the query, the results on sub-optimal parameter settings are shown
as well (at least for those algorithms whose parameters were varied),
clearly indicating the performance variance they create. As expected,
ensemble and kernel methods are dependent on the selection of the
correct kernel, base-learner, and other parameter settings. Each of
them can be explored by adding further constraints.

Figure 7. Performance of all algorithms on dataset ‘letter’.

3.2 Investigating Parameter Effects
For instance, we can examine the effect of the used kernel, or even
the parameters of a given kernel. Building on our first query, we zoom
in on these results by adding two constraints: the algorithm should be
an SVM9 and contain an RBF kernel. Next, we select the value of the
‘gamma’ parameter (kernel width) of that kernel. We also relax the
constraint on the dataset by including three more datasets, and ask
for the number of features in each dataset.

The result is shown in Fig. 10. First, note that much of the varia-
tion seen for SVMs on the ‘letter’ dataset (see Fig. 7) is indeed ex-
plained by the effect of this parameter. We also see that its effect on
other datasets is markedly different: on some datasets, performance
increases until reaching an optimum and then slowly declines, while
on other datasets, performance decreases slowly up to a point, after
which it quickly drops to default accuracy, i.e., the SVM is simply
predicting the majority class. This behavior seems to correlate with
the number of features in each dataset (shown in brackets). Further
study shows that some SVM implementations indeed tend to overfit
on datasets with many attributes [12].

3.3 Preprocessing Effects
The database also stores workflows with preprocessing methods, and
thus we can investigate their effect on the performance of learning

9 Alternatively, we could ask for a specific implementation, i.e., ‘implemen-
tation=weka.SMO’.

Figure 6. The graphical query interface.

Figure 8. Querying the performance of SVMs with different kernel widths on datasets of different dimensionalities.

Figure 9. Building a learning curve.

Figure 10. The effect of parameter gamma of the RBF kernel in SVMs on
a number of different datasets (number of attributes shown in brackets).

Figure 11. Learning curves on the Letter-dataset.

algorithms. For instance, when querying for workflows that include
a downsampling method, we can draw learning curves by plotting
learning performance against sample size. Fig. 9 shows the query:
a preprocessing step is added and we query for the resulting num-
ber of instances, and the performance of a range of learning algo-
rithms (with default parameter settings). The result is shown in Fig.
11. From these results, it is clear that the ranking of algorithm per-
formances depends on the size of the sample: the curves cross. While
logistic regression is initially stronger than C4.5, the latter keeps im-
proving when given more data, confirming earlier analysis [9]. Note
that RandomForest performs consistently better for all sample sizes,
that RacedIncrementalLogitBoost crosses two other curves, and that
HyperPipes actually performs worse when given more data, which
suggests that its initially higher score was largely due to chance.

3.4 Bias-Variance Profiles

The database also stores a series of algorithm properties, many of
them calculated based on large numbers of experiments. One in-
teresting algorithm property is its bias-variance profile. Because the

Figure 12. Query for the bias-variance profile of algorithms.

database contains a large number of bias-variance decomposition ex-
periments, we can give a realistic numerical assessment of how ca-
pable each algorithm is in reducing bias and variance error. Fig. 13
shows, for each algorithm, the proportion of the total error that can
be attributed to bias error, calculated according to [6], using default
parameter settings and averaged over all datasets. The simple query
is shown in Fig. 12. The algorithms are ordered from large bias (low
variance), to low bias (high variance). NaiveBayes is, as expected,
one of the algorithms whose error consists primarily of bias error,
whereas RandomTree has relatively good bias management, but gen-
erates more variance error than NaiveBayes. When looking at the en-
semble methods, Fig. 13 shows that bagging is a variance-reduction
method, as it causes REPTree to shift significantly to the left. Con-
versely, boosting reduces bias, shifting DecisionStump to the right in
AdaBoost and LogitBoost (additive logistic regression).

3.5 Further queries

These are just a few examples the queries that can be answered using
the database. Other queries allow algorithm comparisons using mul-
tiple evaluation measures, algorithm rankings, statistical significance
tests, analysis of ensemble learners, and especially the inclusion of
many more dataset properties and algorithm properties to study how
algorithms are affected by certain types of data. Please see [12] and
the database website for more examples.

4 Conclusions

Experiment databases are databases specifically designed to collect
all the details on large numbers of experiments, performed and shared
by many different researchers, and make them immediately available
to everyone. They ensure that experiments are repeatable and auto-
matically organize them such that they can be easily reused in future
studies.

This demo paper gives an overview of the design of the frame-
work, the underlying ontologies, and the resulting data exchange for-
mats and database structures. It discusses how these can be used to
share novel experimental results, to integrate the database in exist-
ing data mining toolboxes, and how to query the database through
an intuitive graphical query interface. By design, the database also
calculates and stores a wide range of known or measurable proper-
ties of datasets and algorithms. As such, all empirical results, past
and present, are immediately linked to all known theoretical prop-
erties of algorithms and datasets, providing new grounds for deeper
analysis. This results in a great resource for meta-learning and its
applications.

Figure 13. The average percentage of bias-related error for each algorithm averaged over all datasets.

Acknowledgements
We acknowledge the support of BigGrid, the Dutch e-Science Grid,
supported by the Netherlands Organisation for Scientific Research,
NWO. We like to thank Larisa Soldatova and Pance Panov for many
fruitful discussions on ontology design.

REFERENCES
[1] P Brazdil, C Giraud-Carrier, C Soares, and R Vilalta, ‘Metalearning:

Applications to data mining’, Springer, (2009).
[2] MA Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, and

IH Witten, ‘The WEKA data mining software: An update’, SIGKDD
Explorations, 11(1), 10–18, (2009).

[3] M Hilario and A Kalousis, ‘Building algorithm profiles for prior model
selection in knowledge discovery systems’, Engineering Intelligent
Systems, 8(2), 956–961, (2000).

[4] M Hilario, A Kalousis, P Nguyen, and A Woznica, ‘A data min-
ing ontology for algorithm selection and meta-mining’, Proceedings
of the ECML-PKDD’09 Workshop on Service-oriented Knowledge
Discovery, 76–87, (2009).

[5] J Kietz, F Serban, A Bernstein, and S Fischer, ‘Towards co-
operative planning of data mining workflows’, Proceedings of
the ECML-PKDD’09 Workshop on Service-oriented Knowledge
Discovery, 1–12, (2009).

[6] R Kohavi and D Wolpert, ‘Bias plus variance decomposition for zero-
one loss functions’, Proceedings of the International Conference on
Machine Learning (ICML), 275–283, (1996).

[7] D Michie, D Spiegelhalter, and C Taylor, ‘Machine learning, neural and
statistical classification’, Ellis Horwood, (1994).

[8] P Panov, LN Soldatova, and S Džeroski, ‘Towards an ontology of data
mining investigations’, Lecture Notes in Artificial Intelligence, 5808,
257–271, (2009).

[9] C Perlich, F Provost, and J Simonoff, ‘Tree induction vs. logistic
regression: A learning-curve analysis’, Journal of Machine Learning
Research, 4, 211–255, (2003).

[10] B Pfahringer, H Bensusan, and C Giraud-Carrier, ‘Meta-learning
by landmarking various learning algorithms’, Proceedings of the
International Conference on Machine Learning (ICML), 743–750,
(2000).

[11] LN Soldatova and RD King, ‘An ontology of scientific experiments’,
Journal of the Royal Society Interface, 3(11), 795–803, (2006).

[12] J Vanschoren, H Blockeel, B Pfahringer, and G Holmes, ‘Experiment
databases: A new way to share, organize and learn from experiments’,
Machine Learning, 87(2), (2012).

[13] M Zakova, P Kremen, F Zelezný, and N Lavrač, ‘Planning to
learn with a knowledge discovery ontology’, Proceedings of the
ICML/UAI/COLT’08 Workshop on Planning to Learn, 29–34, (2008).

