
PCFG Extraction and Pre-typed Sentence

Analysis

Noémie-Fleur Sandillon-Rezer
nfsr@labri.fr

LaBRI, CNRS
351 cours de la Libération, 33405 Talence

Abstract. We explain how we extracted a PCFG (probabilistic context-
free grammar) from the Paris VII treebank. First we transform the syn-
tactic trees of the corpus in derivation trees. The transformation is done
with a generalized tree transducer, a variation from the usual top-down
tree transducers, and gives as result some derivation trees for an AB
grammar, which is a subset of a Lambek grammar, containing only the
left and right elimination rules. We then have to extract a PCFG from
the derivation tree. For this, we assume that the derivation trees are rep-
resentative of the grammar. The extracted grammar is used, through a
slightly modified CYK algorithm that takes in account the probabilities,
for sentences analysis. It enables us to know if a sentence is include in
the language described by the grammar.

1 Introduction

This article describes a method to extract a PCFG from the Paris VII treebank [1]. The
first step is the transformation of the syntactic trees of the treebank into derivation
trees representative of an AB grammar [13], which corresponds to the elimination rules
of Lambek Calculus, as shown in Fig. 1. We chose an AB grammar because we want our
approach to be potentially compatible with some usual learning algorithms, like the
one of Buszkowski and Penn [4] or Kanazawa [12]. Once we have the derivation trees,
we extracted the PCFG from them, and use it for sentence analysis. This analysis helps
us to know how we can improve our grammar and all the processing line used to get
it, by analyzing why some correct sentences cannot be parsed or why some incorrect
ones are still parsed. In a more long-viewed aim, parsing french sentences can be use
for grammatical checking, and with semantic information over a lexicon, the grammar
could be used for generate coherent sentences.

A/B B

A
[/E]

B B\A

A
[\E]

Fig. 1. Elimination rules of Lambek Calculus. An AB grammar is composed of instan-
tiations of these two rules, where A and B are Lambek types.

R.K. Rendsvig and S. Katrenko (Eds.): ESSLLI 2012 Student Session Proceedings, CEUR Work-
shop Proceedings vol.: see http://ceur-ws.org/, 2012, pp. 150–159.

http://ceur-ws.org/

PCFG Extraction and Sentence Analysis 151

The Paris VII treebank [1] contains sentences from the newspaper Le Monde, ana-
lyzed and annotated by the Laboratoire de linguistique de Paris VII. The flat shape of
trees does not allow the direct application of a usual learning algorithm, so we decided
to use a generalized tree transducer. For our work, we use a subpart of the treebank,
on a parenthesized form, composed by 12, 351 sentences. Even if the whole treebank
was in an XML form, the parenthesized form is easier to treat with the transducer.
The 504 sentences left aside will be an evaluation treebank that we use as a control
group.

Another new treebank, Sequoia [5], which is composed by 3, 200 sentences coming
from different horizons, will also be used for experimentation. It is annotated using the
same convention as the French Treebank.

This article will firstly overfly the transducer we use to transform syntactic trees
into derivation trees, then we will focus on PCFG extraction. In a third part, we will
detail the experimental results, obtained by using our PCFG to find the best analysis
for a sentence, via the CYK algorithm [19].

2 Generalized Tree Transducer

It exists many way to make a syntactic analysis of a treebank, as we can see with the
work of Hockenmaier [8], or Klein and Manning [10], but they were not applicable over
the French Treebank or they did not gave simple AB grammar.

The transducer we created is the central point of the grammar extraction process.
Indeed, the binarization of syntactic trees parametrize the extracted grammar. We
based our works on usual derivation rules of an AB grammar used in computational
linguistic and the annotations of the treebank itself [2]. The annotations give two types
of information about the trees :

POS-tag: the Part-Of-Speech tags, booked for the pre-terminal nodes, indicates the
POS-tag of the daughter node. For example NC will be used for Common Noun,
DET for a determinant, etc.

Phrasal types: the nodes which are not a terminal or a pre-terminal node are anno-
tated with their syntactic categories and sometime the role of the node. A NP-SUJ
node will correspond to a Noun Phrase used as a subject for the sentence.

For the usual derivation rules, they are instantiation of elimination rules of Lambek
calculus (see Fig. 1). We based ourselves on other annotation methods : a NP node will
have the type np, a sentence type will be s, a preposition phrase taken as an argument
will have the type pp, and so on.

A transducer, like defined by TATA [7], is an automaton which read an input and
write something on output. It can be applied to trees and transform the shape of them.
The transducers have some feature especially important for our work. Indeed, they are
non erasing (it ensures us that we do not lost informations during the transduction),
linear (the transduction will not change the order of the words in the sentence) and
ǫ-free (gives more control over the transduction). The G transducer, developed by
Sandillon-Rezer in [17], has additional features that feet better with the global shape
of the treebank:

Recursivity: Our transducer can apply a rule to a node, looking only on its label but
with an arbitrary arity. It generalize the usual definition of transduction rule, by
matching node with an arbitrary number of daughters. The study of each specific
case of the rule can transform the recursive rule into a set of ordinary rules.

152 Sandillon-Rezer

Parametrization: We allow the rules to have some generic nodes which replace a
node from a finite set of nodes. This quantification is equivalent to write each
instantiation of the generic node.

Priority system: As our transducer needs to be deterministic, we decided to apply
the rules always in a given order. It ensures us to have only one output tree.

The transduction rules have been written from a systematic analysis of the different
shapes we could find in the treebank. As an example, a syntactic tree from the treebank
and its transduction is shown Fig. 2.

SENT

VN

CLS-SUJ

On

V

ouvre

PP-P OBJ

P

sur

NP

NPP

la Cinq

PONCT

,

COORD

CC

mais

Sint

VN

CLS-SUJ

on

V

glisse

AdP-MOD

ADV

assez

ADV

vite

PONCT

.

TEXT txt

SENT s

VN s

CLS-SUJ np

On

np\s

V (np\s)/pp

ouvre

PP-P OBJ pp

P pp/np

sur

NP np

NPP np

la Cinq

s\s

PONCT (s\s)/(s\s)

,

COORD s\s

CC (s\s)/s

mais

Sint s

VN s

CLS-SUJ np

on

V np\s

glisse

AdP-MOD s\s

ADV (s\s)/(s\s)

assez

ADV s\s

vite

PONCT s\txt

.

Fig. 2. Syntactic tree and derivation tree for the sentence: ”On ouvre sur la Cinq, mais
on glisse assez vite.” (We open on la Cinq, but we slip fast enough.).

3 Grammar extraction

Even if the lexicon, extracted from the derivation trees, is representative enough of
an AB grammar, and gives a probabilistic distribution of different types for words, it
limits the sentence analysis to the sole lexicon of the treebank. This is the reason we
decided to extract a PCFG from the derivation trees.

The output trees give both syntactic (we keep the initial labels) and structural
information over sentences. We decided to proceed to a preprocessing step, in order for
the user to control the extracted information. The only part of information we always
keep is the type of nodes. The extracted grammar is a PCFG, the probabilities are
computed based on their root node. We remind that our grammar is defined by a tuple

PCFG Extraction and Sentence Analysis 153

{N,T, S,R}, where N is the set of non-terminal symbols (internal nodes of trees), T
the set of terminal symbols (typed leaves), S the initial symbol1 and R the set of rules.

The extraction algorithm parses the trees and stores the derivation rules it sees. A
rule is composed by a root and one or two daughters, then this is the usual case of a
right or left elimination rule (a → a/b b or a → b a\b). Otherwise, it is only a type
transmission which appears when a noun phrase is composed by a proper name only;
or at the pre-terminal node level when the POS-tag node transmits type to the leaf.
The probabilities are computed on a root related group.

The table 1 summarizes the grammars potentially generated. Each one presents
useful information: the first one, from the derivation trees without preprocessing step,
keeps the syntactic informations given by the treebank. The others are more useful for
the application of a sentence analysis algorithm, like CYK (see section 4), on non-typed
sentences. The table 2 shows some extracted rules.

Table 1. Extracted grammar. ni ∈ N and ti ∈ T

Shape of trees Extracted rules Specification Number of rules

Raw derivation trees
n1 → n2 n3 Easy normalization in

CNF: just need to
remove some unary
rules.

63, 368
n1 → n2

n1 → t1

Removal of unary
chains and labels
exept POS-tags and
words

n1 → n2 n3
The grammar is in
CNF.

59, 505
n1 → t1

Removal of unary
chains and labels. No
difference between N
and T .

n1 → n2 n3 The words do not even
appear, we only have
the skeleton of trees.

3, 494

4 Sentence analysis

The analysis process can be subdivided in two parts. On the one hand, we have to type
the words, while staying as close as possible to standard Lambek derivations. On the
other hand, the needed rules must belong to the input grammar.

4.1 Word typing

By gathering the leaves of the derivation trees, we have a lexicon, as we can see Fig. 3.
However, a typing system based only on this lexicon reduces the possibility of parsing to
the sentences composed by words from the French Treebank. We decided to type words
with the Supertagger (see Moot [15, 16]), which enabled us to validate the Supertagger
results and to analyze sentences which did not occur in the Paris VII treebank.

The Supertagger is trained with the lexicon extracted from the transduced deriva-
tion trees.

1S = TXT:txt or txt, depending of the preprocessing step.

154 Sandillon-Rezer

Table 2. Example of rules extracted from various input trees.

Raw derivation trees

Rule example
NP:np → NPP:np 1.01e−1

NP:np → DET:np/n NC:n 2.02e−1

Removal of unary chains and labels but POS-tags and words

Rule example
:(np\si)/(np\sp) → VINF:(np\si)/(np\sp) 9.53e−1

:(np\s)/(np\sp) → CLR:clr :clr\((np\s)/(np\sp)) 2.88e−2

Removal of unary chains and labels.

Rule example

np → np/n n 8.02e−1

s → np np\s 3.81e−1

s → s s\s 2.65e−1

the sentence has a ”sentence modifier” at its end.
s → np\sp (np\sp)\s 1.13e−3

the type np\sp corresponds to a past participle, used as an
argument of the whole sentence.

5968:le:det: - 5437:np/n, 140:(n\n)/n, 79:(s/s)/n, 68:(s\s)/n

Fig. 3. Extract of the lexicon. It gives the occurrence in the derivation trees, the
POS-tag of the words and the associated types. Here, the determiner ”le” occurs 5968
times in the derivation trees, and the most probable type is np/n, the usual one for
a determiner at the beginning of a noun phrase. The three other types correspond to
noun phrases used as modifiers.

4.2 Typed sentence analysis

We decided to use the CYK [19] algorithm, already tested and considered as a reference,
with a probabilistic version for the parsing of sentences. We removed the typing step
done initially by CYK with the rules n1 → t1 1, replaced by the Supertagger work. We
use the simplest grammar (of 3, 494 rules) for the analysis. The first test, to assure
the correct running of the program, was to re-generate the trees from the transduced
sentences with the grammar extracted from the derivation trees. Then, we tested the
analysis with sentences typed by the Supertagger, using the grammar extracted from
the main treebank (see results section 5.

The derivation trees corresponding to the sentence ”Celui-ci a importé à tout va
pour les besoins de la réunification.” (”This one imported without restraint for the
need of reunification need.”) are shown in Fig. 4. We took the two most probable trees,
typed by the Supertagger and analyzed with the grammar extracted from the main
treebank. Two types of information are relevant to choose the best trees: we took into
account the probability and the complexity of types. However, it is known that the
comparison between two trees that do not have the same shape or leaves is complex.
The main difference between the two trees is the prepositional phrase attachment; the
most probable tree is more representative of the original treebank.

PCFG Extraction and Sentence Analysis 155

txt

s

s

s

Celui-ci np np\s

a (np\s)/(np\sp) importé np\sp

à tout va s\s

s\s

pour (s\s)/np np

les np/n n

besoins n n\n

de (n\n)/np np

la np/n réunification n

. s\txt

txt

s

Celui-ci np np\s

a (np\s)/(np\sp) np\sp

(np\sp)/pp

importé (np\sp)/pp à tout va ((np\sp)/pp)\((np\sp)/pp) pp

pour pp/np np

les np/n n

besoins n n\n

de (n\n)/np np

la np/n réunification n

. s\txt

Fig. 4. Probability of the first tree: 5.12e−05; probability of the second one: 2.29e−08.

5 Results and evaluation

5.1 G-Transducer

From now, the transducer treats at least 88% of the corpora (see Table 3 for details).
The lower percentage on the evaluation treebank can be explained by the study of the
remaining sentences: they are colloquial and complex. On Sequoia, the better results
can be explain by the greater simplicity of sentences.

Table 3. Coverage of the G-Transducer

Treebank Number of sentences Transduced sentences Percentage

Main treebank 12,348 11,456 92.6%
Evaluation treebank 504 446 88.5%
Sequoia 3200 3014 94.2%

156 Sandillon-Rezer

The use of rules, for the main treebank, is summarized in Table 4. We note that
even if many rules are used infrequently, they do not have a real weight in the global
use of the rules. Some of the important rules are shown in the Table 5 in the Tregex [14]
parenthesized way. We were surprised too by the few occurrences of the rule that treats
the determiner at the beginning of a noun phrase, despite the amount of NP in the
treebank, but there is a rule which treats only the case of a noun phrase composed by
a determinant and a noun, called 8, 892 times.

The derivation trees of the three corpora allow us to extract three different gram-
mars, and in addition, lexicon were created, containing words and their formulas. The
lexicon covers 96.6% of the words of the Paris VII treebank, i.e. 26, 765 words on
27, 589, and for Sequoia, it covers 95.1%, i.e. 18, 350 word on 19, 284.

Table 4. Summary of the rule usage.

Number of rules Minimal and maximal occurrence. Number of applications

1,148 between 1 and 20 5, 818
473 between 21 and 1, 000 68, 440
41 between 1, 001 and 10, 000 125,405

4 greater than 10, 000 60, 779

Table 5. Some important rules of the transducer, including the four most important.

input pattern output pattern applications

(NP:* NC PP) (NP:* NC:n PP:n*) 17, 767
(NP:* DET tree) (NP:* DET:np/n NP:n) 16, 232
(PP:* P NP) (PP:* P:*/np NP:np) 16, 037
(SENT tree PONCT) (TEXT:txt SENT:s PONCT:s\ txt) 10, 819
(NP:* tree (COORD CC NP)) (NP:* (:* NP:*

(COORD:** CC:(**)/np NP:np))) 2, 511
(SENT:* NP-SUJ VN NP-OBJ) (SENT:* NP-SUJ:np

(:np* VN:(np*)/np NP-OBJ:np)) 1, 820

NP :∗

CC : (∗\∗)/np NP : np

COORD : ∗\∗
[/E]

NP : ∗
[\E]

Fig. 5. Rule for the coordination between two NP, as shown in Table 5.

PCFG Extraction and Sentence Analysis 157

5.2 Sentence parsing

The parsing of typed sentences is done with the grammar extracted from the main
treebank, which is the most covering one. Each treebank has been divided in two part,
the transduced one and the non-transduced one. For the Supertagger, we used a β
equal to 0.01: even if the supertagging and the parsing steps are slower, the results
are much better than a β of 0.05. The results are gathered in Table 6. We note that
non-transduced sentences are nevertheless analyzed, even if the results are less accurate
than for the other sentences.

We also tested the precision of the Supertagger (for the whole tests, see [18]): the
Supertagger can adjust the number of types given to a word, with the β parameter. It
enables to select formula which the confidence of the Supertagger is at least β times
the confidence of the first supertag. We summarize the time spent to analyze the
fragment of 440 sentences of the evaluation corpus, the effectiveness of the algorithm
by modifying β in Table 7. The high number of types is due to the limitations of
AB-grammar. When the Supertagger is used for multimodal categorial grammars, the
average number of formulas is around 2.4 with a β equal to 0.01 and 4.5 with β = 0.001;
the correctness is better too, with respectively a rate of 98.2% and 98.8%.

Table 6. Results.

Origin of sentences Number of sentences Success Rate

Main treebank 11,456 90.1%
Evaluation treebank 446 83.6%
Sequoia treebank 3,014 95.5%

Non transduced main treebank 892 62.5%
Non transduced evaluation treebank 98 52.0%
Non transduced Sequoia treebank 198 94.4%

Table 7. Summary of time spent, given the average number of types for a word. The
correctness of types is evaluated by the Supertagger.

Average number of types Correctness Execution time Analyzed sentences

1 (β = 1) 76.9% 0.31 sec 30.2%
1.8 (β = 0.1) 87.0% 0.78 sec 65.7%
2.4 (β = 0.05) 88.9% 1.22 sec 72.7%
4.5 (β = 0.01) 91.7% 4.27 sec 83.6%
10.6 (β = 0.001) 93.4% 20.18 sec 96.8%
19.2 (β = 0.0001) 93.8% 55.32 sec 98.0%

6 Conclusion and prospects

In this article, we have briefly introduced the G-transducer principle, that we used to
transform syntactic trees into derivation trees of an AB grammar. Then we explained

158 Sandillon-Rezer

how we extracted a PCFG and used it in the sentence analysis. The experimental
results of the CYK algorithm used with typed sentences enabled us to compare the
annotation from the transducer and the Supertagger.

However, the work is still ongoing, and opens many horizons. Of course, we want to
extend the coverage of the transducer to exceed 95% and simplify the types of words.
The main problem is that only complex cases remain, but we should be able to find
derivation trees, given that we can analyze a part of them with the CYK algorithm.
In order to improve parsing precision, we intend to integrate modern techniques such
as those of [3, 20] into our parser. Using the Charniak method [6], we would like to
transform our grammar into a highly lexicalized grammar.

Given that AB grammars may seem limiting in the case of a complex language, we
wish to transform our transducer into a tree to graph transducer. This way, we would
be able to use the whole Lambek calculus.

The XML version of the Treebank gives more informations on the words, like the
tense of verbs. A major evolution would be to reflect this information into our trans-
ducer, even if it implies many transformation for it.

Our work and programs are available on [21], under GNU General Public Licence.

References

1. Abeillé, A., Clément, L., Toussenel, F.: Building a treebank for French. Treebanks,
Kluwer, Dordrecht (2003).

2. Abeillé, A., Clément, L., Toussenel, F.: Annotation Morpho-syntaxique.
http://llf.linguist.jussieu.fr (2003).

3. Auli M. and Lopez A.: Efficient CCG Parsing: A* versus Adaptive Supertagging.
In Proceedings of the Association for Computational Linguistics (2011).

4. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data by
unification. Studia Logica (1990).

5. Candito M. and Seddah D.: Le corpusSequoia : annotation syntaxique et exploita-
tion pour l’adaptation d’analyseur par pont lexical TALN’2012 proceedings, Greno-
ble, France (2012).

6. Charniak E. A maximum-entropy-inspired parser. In Proceedings of the 1st Annual
Meeting of the North American Chapter of the ACL (NAACL), Seattle (2000).

7. Comon, H., Dauchet, M., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree
automata techniques and applications (1997).

8. Hockenmaier J.: Data and Models for Statistical Parsing with Combinatory Cate-
gorial Grammar. PhD thesis, 2003.

9. Hopcroft J.E. and Ullman J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley Publishing Company (1979).

10. Klein D. and Manning C.: Accurate Unlexicalized Parsing. In Proceedings of the
Association for Computational Linguistics (2003).

11. Knuth D.E.: The Art of Computer Programming Volume 2: Seminumerical Algo-
rithms (3rd ed.) Addison-Wesley Professional (1997).

12. Kanazawa, M.: Learnable Classes of Categorial Grammars. Center for the Study
of Language and Information (1998).

13. Lambek, J.: The Mathematics of Sentence Structure. (1958).

14. Levy R., Andrew G.: Tregex and Tsurgeon: tools for querying and manipulating
tree data structures. http://nlp.stanford.edu/software/tregex.shtml (2006).

PCFG Extraction and Sentence Analysis 159

15. Moot, R.: Automated extraction of type-logical supertags from the Spoken Dutch
Corpus. Complexity of Lexical Descriptions and its Relevance to Natural Language
Processing: A Supertagging Approach (2010).

16. Moot, R.: Semi-automated Extraction of a Wide-Coverage Type-Logical Grammar
For French. Proceedings TALN 2010, Montreal (2010).

17. Sandillon-Rezer, N.F.: Learning categorial grammar with tree transducers. ESSLLI
Student Session Proceedings (2011).

18. Sandillon-Rezer, N-F.: Extraction de PCFG et analyse de phrases pré-typées
Recital 2012, Grenoble (2012).

19. Younger D.H.: Context Free Grammar processing in n3. (1968).
20. Zang Y. and Clarck S.: Shift-Reduce CCG Parsing. In Proceedings of the Associ-
ation for Computational Linguistics (2011).

21. Sandillon-Rezer, N.F.: http://www.labri.fr/perso/nfsr/ (2012).

	PCFG Extraction and Sentence Analysis.

