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Abstract. This work1 presents a couple of algorithmic techniques appli-
ed to the Russian Cards Problem. This problem represent an idealized
scenario where Dynamic Epistemic Logic [4, 5, 8] plays an important role
in secure communications analysis. This logic is in a lower layer below
the protocol desing tasks acting as a specification and verification formal
tool. This work focusses not on the logical aspects but rather on the pro-
tocol design/searching problem. It is important to have present the epis-
temic formal notions of that logic to fully understand the epistemic func-
tions developed here. Secure protocols found in this card game scenario
may be a good starting point for developing some aspects towards uncon-
ditional information security. Hill-Climbing and Genetic Algorithms are
studied as searching techniques aimed to find optimal announcements
that can be part of a secure communication protocol. Some problems as
the dimension and complexity of the search space are pointed out.

Keywords: Evolutionary computing, genetic algorithm, epistemic pro-
tocols, information security.

1 Introduction

We present an algorithmic approach to search unconditionally secure protocols of com-
municating agents within the well-known Russian Cards Problem scenario. In pub-
lic/private key approaches as AES (Advanced Encription Standard), RSA (Rivest,
Shamir, Adleman technique), DSA (Digital Signature Algorithm) or ECC (Elliptic
Curve Cryptography), secret information if safeguarded because of the high complex-
ity of computational operations to decrypt the message, for instance, RSA uses the IFD,
the Integer Factorization Problem [10, 11]. Instead of the computational hardness for
security assurance, we focus on an information-based approach to protocol design in
this work. We model the communicating agents as cards players and the communi-
cating secret is the ownership of the cards in the game. In this scenario it is possible
to define good protocols regardless of the computational complexity of cryptographic
techniques [4, 5, 7].

1This work shares some content with [9] but add the Hill-Climber section and some
conlusion remarks important to understand the nature of the search and the solution
space.

R.K. Rendsvig and S. Katrenko (Eds.): ESSLLI 2012 Student Session Proceedings, CEUR Work-
shop Proceedings vol.: see http://ceur-ws.org/, 2012, pp. 43–53.
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We just study the security aspects of communication in order to avoid eavesdrop-
ping; other models of attacker are intentionally ommited here, we are aware of the
importance of considering them for future works in order to gain robustness though.
We study how to guarantee the privacy of the message which should only be shared
by those principal agents we legitimated. This will occur regardless of other agents
listening passively to the information passed. There is a logical approach where this
problem is formalized using dynamic epistemic logic [4, 5].

We employ genetic algorithms to search for card deal protocols [12, 16, 17]. Genetic
algorithms are a bio-inspired family of computational techniques which have natural
evolution as a model for encoding some critical aspects of solutions as chromosomes-
like data structures [3, 15]. An initial population is transformed by genetically inspired
operations in order to produce new generations. The most important ones are selection
(of the fittest), crossing-over, and mutation, the latter ones add variety to the search
producing the exploration of the solution space. We use JAVA to specify the russian
cards problem and a genetic engine called jgap to search for protocols. For further
details on the genetic engine see http://jgap.sourceforge.net/.

2 The Russian Cards Problem

From a pack of seven known cards (for instance 0-6) two players (a, b) each
draw three cards and a third player (c) gets the remaining card. How can the
two first players (those with three cards) openly (publicly) inform each other
about their cards without cyphering the messages and without the third player
learning from any of their cards who holds it?

Although this presentation of the problem has 7 cards in the stack and the deal
distribution is 3.3.1 (agent a draws three cards, b draws three and c draws just one),
one may consider other scenarios, e.g., a 10-cards stack with a 4.4.2 deal. To become
familiar with a basic game scenario, let us call agents a, b and c. The cards are named
0, ..., 6. Deals distributions (size) are noted as integer strings, for instance 3.3.1. Legit-
imated principals are a and b while c is the eavesdropper. We suppose the actual deal
is 012.345.6 w.l.o.g. Communication is done by truthful and public announcements,
see [13, 14]. A public announcement for an agent a is a set of a’s possible set of hands
(we use a simplified notation to denote set of hands, e.g., {012, 125, 156} instead of
{{0, 1, 2}, {1, 2, 5}, {1, 5, 6}}).

A secure announcement in this scenario should keep c ignorant throughout the
entire communication and guarantee common knowledge of this agent’s ignorance.
According to that approach, a good protocol comprises an announcement sequence
that verifies that:

Informativeness 1: Principals a and b know each other cards.
Informativeness 2: It is common knowledge, at least for the principals, that they

do know each other’s cards.
Security 1: The intruder, c, remains ignorant always.
Security 2: It is common knowledge for all agents that the intruder remains ignorant.
Knowledge-based: Protocol steps are modelled as public announcements.

The reason we split the informativeness and security requirements into two parts
can be found in [5]. A protocol is then a finite sequence of instructions determining
sequences of announcements. Each agent chooses an announcement conditional on that
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agent’s knowledge. The protocol is assumed to be common knowledge among all agents
following Kerckhoff’s principle.

One knowledge-based protocol that consitutes a solution for the riddle is as follows.
Suppose that the actual deal of cards is that agent a has {0, 1, 2}, b has {3, 4, 5} and c

has {6}.

– a says: My hand is one of {012, 046, 136, 145, 235}.
– Then, b says: c’s card is 6.

After this, it is common knowledge to the three agents that a knows the hand of b,
that b knows the hand of a, and that c is ignorant of the ownership of any card not
held by itself. For further details on the notion of common knowledge see [6].

We can also see these two sequences as the execution of a knowledge-based protocol.
Given a’s hand of cards, there is a (non-deterministic) way to produce her announce-
ment, to which b responds by announcing c’s card. The protocol is knowledge-based,
because the agents initially only know their own hand of cards, and have public knowl-
edge of the deck of cards and how many cards each agent has drawn from the pack.
It can be viewed as an unconditionally secure protocol, as c cannot learn any of the
cards of a and b, no matter their computational resources. The security is therefore
not conditional on the high complexity of some computation.

3 Russian Hill-Climbers

Let’s begin with a simple metaheuristic technique called Hill-Climbing. It is a very
simple algorithm that give us the oportunity to study the primitive behaviour of the
problem representation and the nature of the search space. The Genetic Algorithms can
be partially viewed as a sophistication of hill-climbing as optimization technique. The
latter constitutes a point of reference because, being simpler, it can give clues about
the need of using more sophisticated (hence, more resource-consuming) algorithms.
Hill-Climbing is related to gradient ascent, but it does not require you to know the
strength of the gradient or even its direction: you just iteratively test new candidate
solutions in the region of your current candidate and adopt the new ones if they are
better. This enables you to climb up the hill until you reach a local optimum. To have
a first flavor about how this technique would work on the russian card problem, we
implemented a specific Hill-Climber (see Algorithm 1) with the next parameters:
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– 100 executions over 3.3.1.
– 100000 evaluations allowed

Algorithm 1 Russian Hill-Climber 1 (RHC1)

1: ANN ← All-hand-in initialization
2: repeat

3: ANN ′ ← BFM1(ANN)
4: if Quality(ANN ’) > Quality(ANN) then
5: ANN ← ANN ′

6: end if

7: until 100000 generations or good protocol found
8: return x

Algorithm 2 Single Bit Flip Mutator (BFM1)

1: h← Random(PossibleHandsForANN)
2: if h ∈ ANN then

3: ANN ′ ← Remove h from ANN

4: else

5: ANN ′ ← Include h in ANN

6: end if

7: return ANN ′

The initialization chosen for RHC1 produces an announcement with all hands in
and a single Bit Flip Mutator BFP1 described in Algorithm 2. A random hand from
all possible hand to be included into the announcement is selected to proceed as the
if conditional states removing it if present or including it otherwise.

After 100 executions for 3.3.1 we obtained the next results: the average number of
protocol evaluations (in red) was 39288.16 with a minimum of 1716 and a maximum of
130321. Find attached the whole experiment graphics in Figure 1, see in the horizontal
axis the excution number and in the vertical one the generation where the RHC1 found
a global optimal solution.

4 Modelling cards protocols with Genetic Algo-

rithms

The final objective of modelling cards protocols with genetic algorithms is to find
protocols for card deal sizes where an analytic solution is lacking. We reinvestigate
protocols for 3.3.1 with genetic algorithms in order to study the behaviour of the
relationship between the problem representation and the fitness function used. This
way we will be able to polish them for more complex scenarios. The use of genetic
algorithms requires to satisfy two conditions: possible solutions can be represented by
chromosomes and an evaluation function can be defined in order to assign a value
to each chromosome. Regarding this encoding representation we observe that the set
of possible hands of an agent can be arranged in lexicographic order, e.g., for Russian
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Fig. 1. 100 runs of RHC1 over 3.3.1; BFM1

Cards, the 35 hands are listed as 012, 013, . . . , 456. Then we assign a binary gene to each
possible hand. An announcement is then represented by a 35-bitstring. To illustrate
a mapping like this see Figure 2 (a), we can encode several announcements into one
chromosome as in Figure 2 (b) representing this way an composite protocol. In the 3.3.1
case as it is proved that there is a minimal protocol where just one announcement is
needed, we restrict the encoding representation to just agent a announcement, but if
several announcements are required, this representation is flexible enough to be adapted
to it.

Algorithm 3 Genetic algorithm schema
1: t← 0
2: Population initialization P (0) : {p1(0), . . . pk(0)}
3: Evaluation of P (0): Φ(p1(0)), . . . , Φ(pk(0))
4: while θ(P (t) 6= true) do
5: Recombination P ′(t)← r(P (t))
6: Mutation P ′(t)← m(P ′(t))
7: Evaluation P ′(t) : Φ(p′1(0)), . . . , Φ(p

′

m(0))
8: Selection P (t+ 1)← s(P ′(t))
9: end while

10: return P (t+ s)
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(a) Mapping announcements

(b) Allele decoding

Fig. 2. Chromosome general structure

To evolve the population a fitness function assigns to each announcement a value.
As the protocols are knowledge-based, this function needs some epistemic aspects to
be considered (implemented). As we are looking for a two-step protocol [2], we only
need one announcement. The fitness function evaluates possible announcements. Note
that if D is the set of cards, these announcements are elements of P(P(D)) with certain
properties.

The first epistemic function is compCardsGivenAnnounce(Ann,Hand) which re-
turns, for a given announcement Ann, the set of possible hands that an agent having
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Hand considers for the agent making the announcement:

compCardsGivenAnnounce : P(P(D))× P(D) 7→ P(P(D))
compCardsGivenAnnounce(Ann,Hand) = {h ∈ Ann | h ∩Hand = ∅}

Now we define whatAgentLearnsFromAnnounce(Ann,Hand) that returns the set
of cards that an agent having Hand learns from the agent. The function is defined as:

whatAgentLearnsFromAnnounce : P(P(D))× P(D) 7→ P(D)
whatAgentLearnsFromAnnounce(Ann,Hand) =⋂

compCardsGivenAnnounce(Ann,Hand)

As an example, consider that, in the 3.3.1 setting with deal 012.345.6, a announces
that her hand is one of {012, 016, 234}. Then, a’s compatible hands for b are {012, 016}
and b learns that a has {0, 1} in this case. However an agent may learn cards not only
from the agent making the announcement, but also from the remaining one. In our
example, as c’s hand is {6}, c can also apply the previous function to learn that a

holds card 2. But not that a’s compatible hands for c are {012, 234}, so c learns that
b holds cards 5. So c learns two cards, one from a and the other from b. The following
function calculates this:

howManyAgentLearnsFromDeal : P(P(D))× P(D) 7→ N

howManyAgentLearnsFromDeal(Ann,Hand) =
|whatAgentLearnsFromAnnounce(Ann,Hand)|+

|D| − |Hand| − |
⋃

compCardsGivenAnnounce(Ann,Hand)|

In the fitness function we have to consider not only one deal (as that in our exam-
ple) but all possible deals, in order to ensure that the announcement is unconditionally
secure. The following function calculates, for a given announcement Ann and an agent
having x cards, the minimum number of cards that the agent learns from the deal, by
considering all possible agent’s hands consistent with Ann:

minLearn : P(P(D))× N 7→ N

minLearn(Ann, x) = min({howManyAgentLearnsFromDeal(Ann,H) |
H ⊆ D, |H| = x, compCardsGivenAnnounce(Ann,H) 6= ∅})

In the same way, we can define a function maxLearn to calculate the maximum
number of cards that an agent may learn. Then, the fitness function, given that the
size of the deal is n.m.k, is defined as:

fitness : P(P(D))× N× N 7→ Z

fitness(Ann,wI, wS) = wI ·minLearn(Ann,m)− wS ·maxLearn(Ann, k)

The two values wI and wS are two natural numbers which measure the relevance
of b’s knowledge and c’s ignorance, respectively. Obviously, the maximum value of the
fitness function is obtained when b learns n+k cards (all a’s and c’s cards) and c learns
nothing. Then, the value of the fitness function is wI(n + k). The minimum value is
−wS(n+m).

In the Java implementation we work with jgap’s chromosomes, that are sequences of
binary values. Prior to apply the fitness function we need to decode the binary sequence
into an announcement, as explained above. As the fitness function is only allowed to
return non-negative values, S(n+m) is added to every result of our previous fitness

function.
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5 Weighing informativeness and ignorance

It seems reasonable to suppose that there is a correspondence between weighing infor-
mativeness and security, on the one hand, and the efficiency in time of the search, on
the other hand. In this section we demonstrate by statistical analysis that this is not
the case.

Weighing the fitness function with wI and wS we can influence the search, pri-
oritizing one aspect or the other. If we consider informativeness more important than
security, the algorithm lets survise to the next generation announcements where c could
learn some cards. But if we focus on security and wish to avoid that situation, we will
prioritize the security weight in order to devaluate the announcement where c can learn.

Apart from the number of experiments, the size of the populations, and the number
of generations set in the algorithm, the different weight combinations also allow us to
create different scenarios and configurations. Those will be useful to collect data for
statistical analysis. We wish to determine if there is a combination of weights that
makes the search go faster.

The results of the algorithm search are stored and a statistic data analyzer goes
through them in order to find relevant information. Figure 3 shows an 3.3.1-case sample
summary of the output of this analysis.

Best weighing MEAN preformance: 7,1

minTime sPR TimeOfSearching 465,

announcement: [[0, 2, 5], [0, 4, 6], [1, 3, 4], [1, 5, 6], [2, 3, 6]],

wInformativeness: 9,

wSecurity: 9,

Deal: 3.3.1

maxTime sPR TimeOfSearching 48875,

announcement: [[0, 1, 2], [0, 3, 4], [0, 3, 6], [1, 2, 6], [1, 3, 5],

[1, 3, 6], [2, 3, 4], [2, 3, 5], [4, 5, 6]],

wInformativeness: 6,

wSecurity: 7,

Deal: 3.3.1

(max-min) range time sPR 48410.0

Whole experiment mean timeOfSearching: 4031.433

Data analyzer timing: 915

Fig. 3. Stats analyzer output for 30-runs experiment wI,wS = [1..10]

The first line of Figure 3 represents the weights that have the best mean search
time. Those weights could be good candidates to weigh other card deals (than 3.3.1),
in order to investigate if there is a relation between weighing and search time. Ex-
pression minTime sPR TimeOfSearching 465 denotes the lowest time, in millis, (the
fastest protocol found) in the experiment that is associated to the announcement [[0,
2, 5], [0, 4, 6], [1, 3, 4], [1, 5, 6], [2, 3, 6]] that has the weight wI =
wInformativeness: 9, wS = wSecurity: 9. We also see similar parameters for the
protocol with the highest search time. At the end, the search time range and mean of
the entire experiment.
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There are also other 7-cards distributions where the genetic approach can search
for protocols. Considering the constraints among a, b, c cards presented in [1], we obtain
just two 7-cards scenarios where there exist protocols to search, namely: 3.3.1 and 4.2.1.
Another case is 2.4.1. Then, there is no protocol where first a makes the announcement.
But swapping the roles of a and b we can apply a 4.2.1 protocol.

The first experiment we did was a 30-runs from 1 to 10 different combinations of
weights. We can represent that as (SC 30, 500, 200, wI, wS, 3, 3, 1) where:

– SC stands for scenario configuration
– 500 is the maximun number of generations allowed to evolve
– 200 is the initial population size
– 30 means thirty runs of the algorithm
– wI is the weight for informativeness
– wS is the weight for security
– 3, 3, 1 is the deal distribution

Notice that wI and wS will vary from 1 to 10, generating different scenarios con-
figurations in order to search for weight with the fastest result. The first three results
from a 30-run sample experiments with wI = 4 and wS = 7 are depicted in Figure 4.

[[0, 2, 5], [0, 3, 4], [1, 3, 5], [1, 4, 6], [2, 3, 6]]:

58.0, 58.0, 73, 6464, 4, 0, 500, 200

[[0, 1, 6], [0, 2, 3], [1, 2, 4], [2, 5, 6], [3, 4, 5]]:

58.0, 58.0, 24, 2587, 4, 0, 500, 200

[[0, 1, 5], [0, 3, 4], [1, 2, 6], [2, 4, 5], [3, 5, 6]]:

58.0, 58.0, 48, 4478, 4, 0, 500, 200

. . .

Fig. 4. Partial output of SC 30, 500, 200, 4, 7, 3, 3, 1

Each two lines represent the execution of the serach for a 3.3.1 scenario. For exam-
ple, considering the first protocol result, those figures mean:

– [[0, 2, 5], [0, 3, 4], [1, 3, 5], [1, 4, 6], [2, 3, 6]] is the announce-
ment sequence. So a annouces {025, 034, 135, 146, 236}.

– 58.0 means the value the fitness functions assigned to that protocol.
– 58.0 (the second occurrence) represents the maximum fitness value that can be

reached for any protocol.
– 73 is the generation where this protocol was found.
– 6464 is the time of searching in milliseconds.
– 4 means the minimum number of cards b can learn using this protocol.
– 0 is the maximum number of cards c can learn.
– 500 is the maximun number of generations allowed to evolve.
– 200 is the initial population size.

We executed a 30-runs experiment varying both weights from 1 to 10 generating a
total of 30 × 10 × 10 = 3000 protocol results. Figure 5 depicts information about the
runtime for different weights for 3.3.1: on the left, the relation between the differents
weights assignments and the search mean time of those; on the right, the standard
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deviation extracted from the first. At first sight one can infer there is not a regular
relation among those parameters. Hence we think there is no use in extracting the best
weights for ignorance and informativeness from this experiment and scale them up to
larger deals.

(a) weighing and mean time (b) weighing and deviation time

Fig. 5. 3.3.1 weighing and mean stats graphics

6 Conclusions and future work

We confirmed the possibiliy of modelling unconditionally secure protocols search using
Genetic Algorithms. The statistical analyzer showed the non-regular relation between
weighing protocol (main) requirements and the mean time of searching. Althouth the
genetic engine has been used for small deals, it has now been studied in order to improve
the time/memory efficiency to use it for larger deals where several announcements com-
prise a protocol and a huge number of operations is presumed to be executed. In fact
considering the exponential nature of the search space based on the cards distribution,
our actual concern is focussed on a possible future guidance of the fitness function and
the other variation operators i.e: think that a 5.5.1 scenario with a binary announce-
ment representation has a search space cardinality around 2462. Using the RHC1 we
can observe the epistatic nature of the search space where a slight modification of the
chromosome leads to a huge penalty on the solution fitness assignment. We project
new features regarding not just the statistical analysis over the protocols found but
the search for symmetry properties in protocols, features like a non-exhaustive fitness
function and alternative protocol representation that can give a clue about a possible
analytic solution for larger and more complex deals.
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