
Towards Hybrid Techniques for
Efficient Declarative Configuration

Ingo Feinerer1

Abstract. During the last decades configuration has been ex-
tensively employed in a wide range of application domains, im-
plemented by a multitude of techniques like logics, procedural,
object-oriented, or resourced-driven approaches. Especially declara-
tive methods provide the foundation for precise and well-understood
semantics for reasoning tasks and allow for a succinct representa-
tion of the underlying knowledge base. However, a drawback in us-
ing such powerful declarative techniques lies in their computational
complexity. In this paper we present a simple declarative framework
for configuration in Prolog in order to show the advantages of logic-
based techniques but also to identify some challenges for such for-
malisms. We argue for hybrid systems which combine and utilize ef-
ficient techniques from different configuration methodologies under
a unified declarative interface.

1 INTRODUCTION
In the history of configuration research multiple high-level ap-
proaches for the design and solution of configuration tasks have been
presented. Declarative systems have had strong proponents due to
their expressive semantics based on well investigated and understood
logics. Unfortunately the expressive power limits the applicability
due to high computational costs, observable for a broad class of im-
plementations [3]. Related topics like reconfiguration unveil further
interesting but often computational hard topics [6, 2] for declara-
tive formalisms. In this paper we identify some typical challenges
for declarative frameworks and propose a combined hybrid approach
which utilizes techniques from other fields, like integer linear pro-
gramming (ILP), to overcome these. Section 2 presents a simple
declarative framework in order to demonstrate the benefits but also
the challenges (Section 3) of such a system. Section 4 shows three
strategies to deal with the discussed challenges.

2 DECLARATIVE FORMULATION
Object-oriented modeling languages provide a natural formalism for
the design of configuration systems. Historically entity-relationship
diagrams had a strong toehold but during the recent decade class
diagrams in the Unified Modeling Language [8] (UML) have seen
a substantial growth as a domain-specific language for configura-
tion. [5, 1] Consequently we use UML class diagrams as our starting
point and propose a declarative formulation translating its key fea-
tures into a declarative framework. We chose Prolog for this task as
it has an established and well-known semantics and provides several
efficient implementations. The main ideas can be easily transfered to

1 Vienna University of Technology, Austria,
email: Ingo.Feinerer@tuwien.ac.at

other declarative formalisms (e.g. logics or answer-set programming)
as well. The following framework was implemented and tested with
SWI-Prolog but should work equally well in any other dialect with
minor modifications.

C DM1..M2

a1

N1..N2

Figure 1: Specification with two classes, an association with
multiplicities, and the OCL constraint context C inv:
C.allInstances()->size() >= L.

Figure 1 depicts a minimal UML class diagrams as typically
used for configuration purposes. It shows a specification with two
classes C and D and one association a1 relating them. The multi-
plicities restrict the number of valid links; each object of class C
must be connected with at least N1 and with at most N2 objects
of class D. Analogously, each object of class D must have links to
M1..M2 objects of class C. The small arrow at the end of the associ-
ation shows the direction (and not a hierarchy). The constraint in the
Object Constraint Language [9] (OCL) for class C states that C must
be instantiated with at least L objects to obtain a valid configuration.

The concepts of a class and of an association can be directly trans-
lated to

class(CN-L) :- atom(CN), L >= 0.

assoc(CNs, AN-(C,I)>>(D,J)) :-
atom(AN), member(C, CNs), member(D, CNs),
mult(I), mult(J).

where each class has a name (CN) and a lower bound (L). Each as-
sociation has a name (AN) and includes information on the related
classes (C, D) and the multiplicities (I, J). Further the class names
are checked for validity against a predefined list of names (CNs).

Now we can define a specification as a tuple (Cs, As) of
classes Cs and associations As

spec((Cs, As)) :-
maplist(class, Cs), pairs_keys(Cs, CNs),
maplist(assoc(CNs), As).

where maplist() applies a predicate to all arguments of a list and
pairs_keys() provides access to the subterms of Pair-Key struc-
tures.

E.g., instantiating the multiplicities of a1 in Figure 1 with M1 = 1,
M2 = 2, N1 = 3, and N2 = 4 and enforcing a lower bound L of 1
for the number of objects of class C this yields

:- spec(([c-1,d-0], [a1-(c,1..2)>>(d,3..4)]))

A configuration can be modeled as a tuple (Os, Ls) consist-
ing of objects Os and of links Ls. Each object is identified by its
name O and its corresponding class C. Each link has a name L and
stores information on the corresponding association A and on the ob-
jects [O,P] it consists of.

is_object(CNs, O-C) :-
atom(O), member(C, CNs).

is_link(As, Os, L-(A,[O,P])) :-
atom(L), member(A-(C,_)>>(D,_), As),
member(O-C, Os), member(P-D, Os).

We call a configuration an instance of a specification if all the
objects and links have a corresponding class and association, respec-
tively.

instance((Os, Ls), (Cs, As)) :-
pairs_keys(Cs, CNs),
maplist(is_object(CNs), Os),
maplist(is_link(As, Os), Ls).

For each object we check its class and for each link we identify a
matching association with compatible participating classes.

In order to handle multiplicities as defined by the UML standard,
we define a predicate gamma() which counts for each association
and a given object the number of different partner objects induced by
the links of a configuration [4]

gamma(I, P, A, N, Ls) :-
reduct(I, Os, P),
findall(Os, member(_-(A,Os), Ls), Bag),
list_to_set(Bag, Set), length(Set, N).

where I denotes the “position” (index) of the partner objects to be
counted for within the given binary or multiary association A, the list
P contains the single object to be fixed (in general this could be any
partial link), and Ls is a list of links to be considered. The result
(count) is unified with N. The reduct() predicate generates a list
of objects (to be used as partial links) such that P is the projection
on all but the I-th component, and findall() collects all such
objects forming a link in Ls. For example

:- gamma(2, [c1], a1, 3,
[l1-(a1, [c1, d1]), l2-(a1, [c1, d2]),
l3-(a1, [c1, d3])]).

fixes a single object c1 (of class C) and counts how many different
objects (of class D corresponding to index 2) can be reached over
association a1 when considering the provided links: three.

Now we have all parts to define the notion of a valid configuration.
We say a configuration satisfies a specification if it is an instance and
both the lower bounds for each class and the multiplicities of each
association are respected.

satisfies((Os, Ls), (Cs, As)) :-
forall(member(C-LB, Cs),

(findall(ON, member(ON-C, Os), ONs),
length(ONs, N), N >= LB)),

forall((member(O-C, Os),
(member(AN-(C,_)>>(_,L..U),As),I=2
;member(AN-(_,L..U)>>(C,_),As),I=1)),

(gamma(I, [O], AN, N, Ls),
between(L, U, N))).

The predicate satisfies() checks whether (Os, Ls) is a valid
configuration for the specification (Cs, As). The first forall()
checks the number of objects for each class against the correspond-
ing lower bound whereas the second forall() checks that each
object O of the configuration is linked to the right number of part-
ner objects as constrained by all participating associations and their
multiplicities. E.g.

:- satisfies(([c1-c, d1-d, d2-d, d3-d],
[l1-(a1,[c1,d1]),l2-(a1,[c1,d2]),
l1-(a1,[c1,d3])]),

([c-1,d-0], [a1-(c,1..2)>>(d,3..4)])).

Although simplistic and minimal this framework allow us to
model reasonable configurations and will serve the purpose of pre-
senting the advantages but also challenges for such a declarative
framework. It can be easily extended to cover multiple aspects which
are necessary for a more complete handling of configurations in
real-world applications (and in fact many features are already im-
plemented in a prototype).

A central advantage we observe in the design phase is the clear and
straightforward formulation of the underlying terminology. Specifi-
cations, configurations, and the notions of instance, validity and sat-
isfiability can be defined with just a few lines of code in parallel
to the formal definitions of the underlying concepts. Prototyping is
rapid and succinct; the visualization of graph structures and configu-
rations is straightforward. For the computation of configurations one
of the main advantages of this declarative formulation is the semi-
automatic search for solutions. Prolog provides efficient algorithms
to explore and backtrack within the search space; further it has opti-
mizations for tail recursion. E.g., with trivial strategies for object and
link creation

:- gen_objects([c-2, d-3],
[c_0-c, c_1-c, d_0-d, d_1-d, d_2-d]).

:- gen_links([a1-1, a2-2],
[a1_0-(a1,_), a2_0-(a2,_), a2_1-(a2,_)]).

we can generate configurations on the fly (we implement the predi-
cate gen_instance() for this purpose) and check if they satisfy
a given specification

gen_model(C, S) :-
gen_instance(C, S), satisfies(C, S).

For a small number of classes and associations this strategy works
very well, is intuitive, and allow us to explore the whole search space
without extra programming.

3 CHALLENGES
For a declarative framework as presented in the previous section chal-
lenges typically arise when the search space is large and/or back-
tracking is expensive. The former is not a drawback of declarative
formulations per se; other formalisms which need to deal with prob-
lem instances with a large solution space will suffer from the same
performance penalties. However, when backtracking is expensive,
i.e., when it takes some computational effort to find out that the cur-
rent unification state will never lead to a valid configuration, there
is often room for improvement. First of all, it depends whether the
computational complexity is inherent to the problem or just induced
by the use of expressive logics or other declarative formalisms. Sec-
ond, there exists a plethora of methods and algorithms in computer
science which are tailored to specific problem classes.

3.1 Equations over association chains

C D E1
a1

1..2 2..1
a2

1

1
a3

1

Figure 2: Specification with three classes and the OCL constraint
context C inv: C.allInstances()->size() >= 2.

Consider the specification depicted in Figure 2. There are three
classes C, D, and E, where C has a lower bound of two on the num-
ber of instantiated objects. Each object of class C should be con-
nected via association a1 to one or two objects of class D which in
turn are uniquely associated with an object of class E via a2. Finally
association a3 enforces a one-to-one relationship between objects of
class C and objects of class E.

This poses no severe problem for our declarative implementation
yet. We can find a valid configuration by stepwise incrementing the
number of instantiated objects and the number of desired links and
the satisfies() predicate will filter out all invalid combinations.
However, the situation gets interesting if we add some constraints;
the specification in Figure 2 probably tells not the full story of the
intended semantics. We might want to ensure that each object of
class E which can be reached from an object of class C over inter-
mediary objects of class D via associations a1 and a2 is in fact the
same as linked by a3. This models the concept of a modular com-
pound unit which consists of a set of interconnected subcomponents.

We can formalize such constraints by introducing equations on
association chains. They restrict the links of valid configurations by
imposing limits on valid objects involved. Association chains can be
modeled by classical tuple composition, similar to a join in database
theory. E.g., for Figure 2 we would add the equation a1 ◦ a2 = a3 to
achieve the semantics mentioned before.

c1 d1

d2

e1

c2 d3

d4

e2

(a) A configuration
consisting of two dis-
joint partitions sat-
isfying the equation
a1 ◦ a2 = a3.

c1

d1

d2 e1

c2 d3

d4

e2

(b) A configuration
violating the con-
straint a1 ◦ a2 = a3.

Figure 3: Two satisfying configurations for the specification in Fig-
ure 2, but only the left one adheres to the constraint a1 ◦ a2 = a3.

Figures 3a and 3b both show valid configurations for the specifi-
cation 2 before adding the new constraint on the association chain.
Once we enforce the constraint a1 ◦ a2 = a3 only Figure 3a remains
a satisfying instance; Figure 3b is not valid anymore as the configura-
tion violates the equation since there is a connection from c1 over d4
to e2 which is not reachable via a link of association a3.

This subtle change makes a significant difference in runtime and
backtrack behavior for our declarative formulation. Although the
number of objects and links to be considered is still rather small
(8 and 10, respectively) the number of combinations to be explored
before the equation can be checked is exponential. Backtracking is
therefore very expensive as basically a full configuration needs to be
built before the equation can be checked. We see a major increase in
the runtime (and stopped measuring after 3600 seconds).

3.2 Partial configurations
We would like to use our framework not only for configuration but
also for reconfiguration in order to repair existing configurations. A
main challenge is a fast way to identify parts of an input configura-
tion which cannot be taken as a subcomponent of the overall solution.
This is important to avoid late backtracking where a lot of computa-
tion time has been used for building a variety of alternations which
can never lead to a valid configuration. Clearly, for arbitrary com-
plex input configurations this problem is NP-hard, however for many
basic tasks it is not (e.g., checking whether some links will violate
certain sets of constraints later on).

3.3 Cost functions
Another limiting factor of logic-based formalisms is finite domain
reasoning, especially notable when working with numbers in an in-
teger domain. Configuration tasks often need ways to express how
expensive certain components or connections are. A natural imple-
mentation is to use cost functions which assign costs or other integer
numbers to individual objects in a configuration. The aim is now to
minimize an objective function which takes into account all compo-
nents and their corresponding costs.

4 TOWARDS A HYBRID APPROACH
In the previous section we saw some typical challenges for declara-
tive frameworks. These are by far not the only ones but give a sam-
ple of relevant problems of various kinds. Fortunately, there has been
tremendous progress in configuration research and artificial intelli-
gence in general which triggered specialized algorithms and strate-
gies for specific problems. In order to tackle the outlined challenges
we propose to use specialized algorithms from other formalisms and
to include them in a unified declarative framework. Such a hybrid ap-
proach, taking the best from multiple worlds and combining them in
a consolidated interface, allows us to attack the previously described
challenges towards efficient declarative configuration.

4.1 Integer linear programming
We start out with the observation that backtracking can be very ex-
pensive if the domain of variables is not restricted or bounded to a
specific range. Ideally we would like to compute the exact number
of needed components for a configuration and then our declarative
framework can concentrate on finding appropriate links to connect
the parts. Clearly, this approach cannot always work as some special
constraints on the interconnection of components may enforce addi-
tional objects which are not required by pure associations (and their
multiplicities) in the underlying UML class diagram.

For the computation of the needed number of objects for each class
we use a highly efficient technique based on integer linear program-
ming. [7, 4] The idea is to translate a UML class diagram to a system

of inequalities. Its solution indicates whether an instantiation into a
valid configuration is possible at all (satisfiability problem) but more
interestingly in our context gives also the number of objects for each
component. E.g., for the specification in Figure 1 with association a1

and the lower bound on C we obtain

M1 · |D| ≤ N2 · |C| |C| ≥M1 |C| ≥ L

N1 · |C| ≤M2 · |D| |D| ≥ N1

expressing constraints enforced by the multiplicities (left), con-
straints on the minimal number of objects due to the association se-
mantics (middle), and the lower bound constraint on C (right). This
translation is performed for all classes and associations involved in a
specification forming an integer linear program. The objective func-
tion is typically just the minimum over all classes involved.

SWI-Prolog provides support for integer linear programming via
its extension library “simplex” shipped with the standard installa-
tion. We added a set of DCG (definite clause grammar) rules which
generate ILP constraints out of each association:

assoc_constraint(
_AN-(C,M1..M2)>>(D,N1..N2)) -->

constraint([M1*D, -N2*C] =< 0),
constraint([N1*C, -M2*D] =< 0).

Further constraints like lower bounds or the objective function are
added separately forming the whole ILP program.

The native integration of ILP into our declarative framework al-
lows us to rule out a broad range of possibilities which do not need
to be explored any more. This has a significant effect on backtrack-
ing as it cuts the search space into more fine grained areas. With this
technique we can scale our framework to a greater number of objects
and links when dealing with the challenges “equations on association
chains” and “partial configurations”. Costs or weights are an integral
part of ILP and can thus easily be handled with this approach; this
addresses several aspects of the challenge “cost functions”.

4.2 Procedural link generation
So far we have only identified one possible way to efficiently com-
pute the number of necessary components. Still, it might take a long
time to find valid links between these objects (as motivated in the
challenge on association chains). Therefore it seems a promising ap-
proach to optimize the way links are generated. One strategy we
found useful for certain classes of configurations is to “balance” links
between objects as far as possible. This can be seen as a procedural
implementation to form a uniform distribution among the links be-
tween the participating classes of a given association:

seq(J, M, N, [X, Y]) :-
J >= 0, M > 0, N > 0,
X is J mod M,
lcm(M, N, LCM),
Y is (J + floor(J/LCM)) mod N.

The idea of the seq() predicate is to generate a sequence (with J as
the index into it) of tuples [X,Y] for M objects of the first class and
N objects of the second class (for a binary association) which can be
used as links and form a uniform distribution. E.g., for J = 0, . . . , 3
and M = 2 and N = 6 we obtain the tuples (0, 0), (1, 1), (0, 2),
and (1, 3). Consequently we would generate a link from object 0 of
class C to object 0 of class D, from object 1 of class C to object 1 of
class D, and so on.

Such a strategy is especially suited for finding an initial linking for
a whole configuration. This can be both the basis for further investi-
gation regarding the challenge “equations on association chains” or
provide initial solutions for a reconfiguration problem as necessary
for the challenge “partial configurations”.

4.3 Generate and test
Our final suggestion towards hybrid systems is a meta-strategy. Both
previous techniques also fall into this category as special cases.
Declarative systems have a strong standing with their efficient and
native backtracking as it is at the heart of their operation. This prop-
erty is extremely useful for configuration as exploring the solution
space is one of the fundamental aspects in a configuration task. The
main advantage is that almost arbitrary constraints can be added with
minimal changes to the declarative implementation. This allows us
fast prototyping and complex constraint checking. We therefore ar-
gue in favor of such systems and the simple but effective strategy of
“generate and test”. The generation step is either done by more so-
phisticated algorithms implemented by the user in Prolog (as shown
in the previous subsections) or by calls to external tools which are
specialized on a specific tasks. The declarative framework can then
take these parts and combine them into a configuration and test it for
validity.

5 CONCLUSION
Declarative formalisms provide a natural environment for the im-
plementation of configuration systems as it is easy to write succinct
and precise programs with integrated support to explore the solution
space with backtracking. We motivated this by a simple declarative
framework but showed challenges arising from their use. We argue
for hybrid systems which combine specialized techniques from other
fields into a unified declarative interface.

REFERENCES
[1] Andreas Falkner, Ingo Feinerer, Gernot Salzer, and Gottfried Schenner,

‘Computing product configurations via UML and integer linear program-
ming’, Int. Journal of Mass Customisation, 3(4), 351–367, (2010).

[2] Andreas Falkner, Gerhard Friedrich, Alois Haselböck, Anna Ryabokon,
Gottfried Schenner, and Herwig Schreiner, ‘(Re)configuration using an-
swer set programming’, in IJCAI 2011 Configuration Workshop, (2011).

[3] Andreas Falkner, Alois Haselböck, Gottfried Schenner, and Herwig
Schreiner, ‘Modeling and solving technical product configuration prob-
lems’, Artificial Intelligence for Engineering Design, Analysis and Man-
ufacturing, 25, 115–129, (2011).

[4] Ingo Feinerer and Gernot Salzer, ‘Consistency and minimality of UML
class specifications with multiplicities and uniqueness constraints’, in
Proceedings of the 1st IEEE/IFIP International Symposium on Theoret-
ical Aspects of Software Engineering, June 6–8, 2007, Shanghai, China,
pp. 411–420. IEEE Computer Society Press, (2007).

[5] Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach, ‘UML as
domain specific language for the construction of knowledge-based con-
figuration systems’, International Journal of Software Engineering and
Knowledge Engineering, 10(4), 449–469, (2000).

[6] Gerhard Friedrich, Anna Ryabokon, Andreas A. Falkner,
Alois Haselböck, Gottfried Schenner, and Herwig Schreiner,
‘(Re)configuration based on model generation’, in 2nd LoCoCo
Workshop, volume 65 of EPTCS, pp. 26–35, (2011).

[7] Maurizio Lenzerini and Paolo Nobili, ‘On the satisfiability of depen-
dency constraints in entity-relationship schemata’, Information Systems,
15(4), 453–461, (1990).

[8] Object Management Group, Unified Modeling Language 2.4.1, 2011.
[9] Object Management Group, Object Constraint Language 2.3.1, 2012.

