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Abstract. Measures of interestingness play a crucial role in association
rule mining. An important methodological problem is to provide a rea-
sonable classification of the measures. Several papers appeared on this
topic. In this paper, we explore Boolean factor analysis, which uses formal
concepts corresponding to classes of measures as factors, for the purpose
of classification and compare the results to the previous approaches.

1 Introduction

An important problem in extracting association rules, well known since the early
stage of association rule mining [32], is the possibly huge number of rules ex-
tracted from data. A general way of dealing with this problem is to define the
concept of rule interestingness: only association rules that are considered inter-
esting according to some measure are presented to the user. The most widely
used measures of interestingness are based on the concept of support and con-
fidence. However, the suitability of these measures to extract interesting rules
was challenged by several studies, see e.g. [34]. Consequently, several other in-
terestingness measures of association rules were proposed, see e.g. [35], [23], [12],
[38]. With the many existing measures of interestingness arises the problem of
selecting an appropriate one.
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To understand better the behavior of various measures, several studies of
the properties of measures of interestingness appeared, see e.g. [12], [27], [23],
[16]. Those studies explore various properties of the measures that are considered
important. For example, Vaillant et al. [37] evaluated twenty interestingness mea-
sures according to eight properties. To facilitate the choice of the user-adapted
interestingness measure, the authors applied the clustering methods on the de-
cision matrix and obtained five clusters. Tan et al. [35] studied twenty-one in-
terestingness measures through eight properties and showed that no measure is
adapted to all cases. To select the best interestingness measure, they use both a
support-based pruning and standardization methods. By applying a new cluster-
ing approach, Huynh et al. [21] classifyed thirty-four interestingness measures
with a correlation analysis. Geng and Hamilton [12] made a survey of thirty-
eight interestingness measures for rules and summaries with eleven properties
and gived strategies to select the appropriate measures. D. R. Feno [10] evalu-
ated fifteen interestingness measures with thirteen properties to describe their
behaviour. Delgato et al. [9] provided a new study of the interestingness measures
by means of the logical model. In addition, the authors proposed and justified
the addition of two new principles to the three proposed by Piatetsky-Shapiro
[32]. Finally, Heravi and Zaiane [22] studied fifty-three objective measures for
associative classification rules according to sixteen properties and explained that
no single measure can be introduced as an obvious winner.

The assessment of measures according to their properties results in a measure-
property binary matrix. Two studies of this matrix were conducted. Namely, [17]
describes how FCA can highlight interestingness measures with similar behav-
ior in order to help the user during his choice. [16] and [14] attempted to find
natural clusters of measures using widely used clustering methods, the agglomer-
ative hierarchical method (AHC) and the K-means method. A common feature
of these methods is that they only produce disjoint clusters of measures. On
the other hand, one could naturally expect overlapping clusters. The aim of this
paper is to explore the possibility of obtaining overlapping clusters of measures
using factor analysis of binary data and to compare the results with the results
of other studies. In particular, we use the recently developed method from [3]
and take the discovered factors for clusters. The method uses formal concepts
as factors that makes it possible to interpret the factors easily.

2 Preliminaries

2.1 Binary (Boolean) data

Let X be a set of objects (such as a set of customers, a set of functions or the
like) and Y be a set of attributes (such as a set of products that customers may
buy, a set of properties of functions). The information about which objects have
which attributes may formally be represented by a binary relation I between
X and Y , i.e. I ⊆ X × Y , and may be visualized by a table (matrix) that
contains 1s and 0s, according to whether the object corresponding to a row has
the attribute corresponding to a column (for this we suppose some orders of



objects and attributes are fixed). We denote the entries of such matrix by Ixy.
A data of this type is called binary data (or Boolean data). The triplet 〈X,Y, I〉
is called a formal context in FCA but other terms are used in other areas.

Such type of data appears in two roles in our paper. First, association rules,
whose interestingness measures we analyze, are certain dependencies over the
binary data. Second, the information we have about the interestingness measures
of association rules is in the form of binary data: the objects are interestingness
measures and the attributes are their properties.

2.2 Association rules

An association rule [36] over a set Y of attributes is a formula

A⇒ B (1)

where A and B are sets of attributes from Y , i.e. A,B ⊆ Y . Let 〈X,Y, I〉 be
a formal context. A natural measure of interestingness of association rules is
based on the notions of confidence and support. The confidence and support of
an association rule A⇒ B in 〈X,Y, I〉 is defined by

conf(A⇒ B) =
|A↓ ∩B↓|
|A↓|

and supp(A⇒ B) =
|A↓ ∩B↓|
|X|

,

where C↓ for C ⊆ Y is defined by C↓ = {x ∈ X | for each y ∈ C : 〈x, y〉 ∈ I}.
An association rule is considered interesting if its confidence and support ex-
ceed some user-specified thresholds. However, the support-confidence approach
reveals some weaknesses. Often, this approach as well as algorithms based on it
lead to the extraction of an exponential number of rules. Therefore, it is impos-
sible to validate it by an expert. In addition, the disadvantage of the support is
that sometimes many rules that are potentially interesting, have a lower support
value and therefore can be eliminated by the pruning threshold minsupp. To ad-
dress this problem, many other measures of interestingness have been proposed
in the literature [13], mainly because they are effective for mining potentially
interesting rules and capture some aspects of user interest. The most important
of those measures are subject to our analysis and are surveyed in Section 3.1.
Note that association rules are attributed to [1]. However, the concept of associ-
ation rule itself as well as various measures of interestingness are particular cases
of what is investigated in depth in [18], a book that develops logico-statistical
foundations of the GUHA method [19].

2.3 Factor analysis of binary (Boolean) data

Let I be an n×m binary matrix. The aim in Boolean factor analysis is to find
a decomposition

I = A ◦B (2)



of I into an n×k binary matrix A and a k×m binary matrix B with ◦ denoting
the Boolean product of matrices, i.e.

(A ◦B)ij =
k

max
l=1

min(Ail, Blj).

The inner dimension, k, in the decomposition may be interpreted as the number
of factors that may be used to describe the original data. Namely, Ail = 1 if
and only if the lth factor applies to the ith object and Blj = 1 if and only if
the jth attribute is one of the manifestations of the lth factor. The factor model
behind (2) has therefore the following meaning: The object i has the attribute j
if and only if there exists a factor l that applies to i and for which j is one of its
particular manifestations. We refer to [3] for further information and references
to papers that deal with the problem of factor analysis and decompositions of
binary matrices.

In [3], the following method for finding decompositions (2) with the number
k of factors as small as possible has been presented. The method utilizes formal
concepts of the formal context 〈X,Y, I〉 as factors, where X = {1, . . . , n}, Y =
{1, . . . ,m} (objects and attributes correspond to the rows and columns of I).
Let

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉}

be a set of formal concepts of 〈X,Y, I〉, i.e. 〈Cl, Dl〉 are elements of the concept
lattice B(X,Y, I) [11]. Consider the n× k binary matrix AF and a k×m binary
matrix BF defined by

(AF )il = 1 iff i ∈ Cl and (BF )lj = 1 iff j ∈ Dl. (3)

Denote by ρ(I) the smallest number k, so-called Schein rank of I, such that a
decomposition of I exists with k factors. The following theorem shows that using
formal concepts as factors as in (3) enables us to reach the Schein rank, i.e. is
optimal [3]:

Theorem 1. For every binary matrix I, there exists F ⊆ B(X,Y, I) such that
I = AF ◦BF and |F| = ρ(I).

As has been demonstrated in [3], a useful feature of using formal concepts as
factors is the fact that formal concepts may easily be interpreted. Namely, every
factor, i.e. a formal concept 〈Cl, Dl〉, consists of a set Cl of objects (objects are
measures of interestingness in our case) and a set Dl of attributes (properties of
measures in our case). Cl contains just the objects to which all the attributes
from Dl apply and Dl contains all attributes shared by all objects from Cl. From
a clustering point of view, the factors 〈Cl, Dl〉 may thus be seen as clusters Cl

with their descriptions by attributes from Dl. The factors thus have a natural,
easy to understand meaning. Since the problem of computing the smallest set
of factors is NP-hard, a greedy approximation algorithm was proposed in [3,
Algorithm 2]. This algorithm is utilized below in our paper.



3 Clustering interestingness measures using Boolean
factors

3.1 Measures of interestingness

In the following, we present the interestingness measures reported in the litera-
ture and recall nineteen of their most important properties that were proposed
in the literature.

To identify interesting association rules and to enable the user to focus on
what is interesting for him, about sixty interestingness measures [20], [35], [10]
were proposed in the literature. All of them are defined using the following
parameters: p(XY ), p(X̄Y ), p(XȲ ) and p(X̄Ȳ ), where p(XY ) = nXY

n represents
the number of objects satisfying XY (the intersection of X and Y ), and X̄ is the
negation ofX. The following are important examples of interestingness measures:

Lift [6]: Given a rule X → Y , lift is the ratio of the probability that X and Y
occur together to the multiple of the two individual probabilities for X and Y ,
i.e.,

Lift(X → Y ) = p(XY )
p(X)×p(Y ) .

If this value is 1, then X and Y are independent. The higher this value, the
more likely that the existence of X and Y together in a transaction is not just
a random occurrence, but because of some relationship between them.

Correlation coefficient [31]: Correlation is a symmetric measure evaluating
the strength of the itemsets’ connection. It is defined by

Correlation = p(XY )−p(X)p(Y )√
p(X)p(Y )p(X̄)p(Ȳ )

.

A correlation around 0 indicates that X and Y are not correlated. The lower is
its value, the more negatively correlated X and Y are. The higher is its value,
the more positively correlated they are.

Conviction [6]: Conviction is one of the measures that favor counter-examples.
It is defined by

Conviction = p(X)p(Ȳ )
p(XȲ )

Conviction which is not a symmetric measure, is used to quatify the deviation
from independence. If its value is 1, then X and Y are independent.



MGK [15]: MGK is an interesting measure, which allows the extraction of neg-
ative rules.

MGK = p(Y/X)−p(Y )
1−p(Y ) , if X favorise Y

MGK = p(Y/X)−p(Y )
p(Y ) , if X defavorise Y

It takes into account several situations of references: in the case where the rule
is situated in the attractive zone (i.e. p(Y/X) > p(Y )), this measure evaluates
the distance between independence and logical implication. Thus, the higher the
value of MGK is close to 1, the more the rule is close to the logical implication
and the higher the value of MGK is close to 0, the more the rule is close to the
independence. In the case where the rule is located in the repulsive zone (i.e.
p(Y/X) < p(Y )), MGK evaluates this time a distance between the independence
and the incompatibility. Thus, the closer the value of MGK is to −1, the more
similar to incompatibility the rule is; and the closer the value of MGK is to 0,
the closer to the independence the rule is.

As was mentioned above, several studies [35], [23], [25], [13] were reported
in the literature on the various properties of interestingess measures to be able
to characterize and evaluate the interestingness measures. The main goal of
researchers in the domain is then to provide a user assistance in choosing the
best interestingness measure meeting his needs. For that, formal properties have
been developed [32], [24], [35], [12], [4] in order to evaluate the interestingness
measures and to help users understanding their behavior. In the following, we
present nineteen properties reported in the literature.

3.2 Properties of the measures

Figure 1 lists 19 properties of interestingness measures. The properties are de-
scribed in detail in [16]; we omit details due to lack of space.

The authors in [14] proposed an evaluation of 61 interestingness measures
according to the 19 properties (P3 to P21). Properties P1 and P2 were not taken
into account in this study because of their subjective character. The measures
and their properties result in a binary measure-property matrix that is used for
clustering the measures according to their properties. The clustering performed
in [14] using the agglomerative hierarchical method and the K-means method
revealed 7 clusters of measures which will be used in the next section in a com-
parison with the results obtained by Boolean factor analysis applied on the same
measure-property matrix.

3.3 Clustering using Boolean factors

The measure-property matrix describing interestingness measures by their prop-
erties is depicted in Figure 2. It consists of 62 measures (61 measures from [14]
plus one more that has been studied recently) described by 21 properties be-
cause the three-valued property P14 is represented by three yes-no properties



No. Property Ref.
P1 Intelligibility or comprehensibility of measure [25]
P2 Easiness to fix a threshold to the rule [23]
P3 Asymmetric measure. [35], [23]
P4 Asymmetric measure in the sense of the conclusion negation. [23], [35]
P5 Measure assessing in the same way X → Y and Ȳ → X̄ in the logical

implication case.
[23]

P6 Measure increasing function the number of examples or decreasing func-
tion the number of counter-examples.

[32], [23]

P7 Measure increasing function the data size. [12], [35]
P8 Measure decreasing function the consequent/antecedent size. [23], [32]
P9 Fixed value a in the independence case. [23], [32]
P10 Fixed value b in the logical implication case. [23]
P11 Fixed value c in the equilibrium case. [5]
P12 Identified values in the attraction case between X and Y . [32]
P13 Identified values in the repulsion case between X and Y . [32]
P14 Tolerance to the first counter-example. [23], [38]
P15 Invariance in case of expansion of certain quantities. [35]
P16 Desired relationship between X → Y and X̄ → Y rules. [35]
P17 Desired relationship between X → Y and X → Ȳ antinomic rules. [35]
P18 Desired relationship between X → Y and X̄ → Ȳ rules. [35]
P19 Antecedent size is fixed or random. [23]
P20 Descriptive or statistical measure. [23]
P21 Discriminant measure. [23]

Fig. 1. Interestingness measures properties.

P14.1, P14.2, and P14.3. We computed the decomposition of the matrix using Al-
gorithm 2 from [3] and obtained 28 factors (as in the case below, several of them
may be disregarded as not very important; we leave the details for a full version
of this paper). In addition, we extended the original 62 × 21 binary matrix by
adding for every property its negation, and obtained a 62×42 binary matrix. The
reason for adding negated properties is due to our goal to compare the results
with the two clustering methods mentioned above and the particular role of the
properties and their negations in these clustering methods. From the 62 × 42
matrix, we obtained 38 factors, denoted F1, . . . , F38. The factors are presented
in Figures 3 and 4. Figure 3 depicts the object-factor matrix describing the in-
terestingness measures by factors, Figure 4 depicts the factor-property matrix
explaining factors by properties of measures. Factors are sorted from the most
important to the least important, where the importance is determined by the
number of 1s in the input measure-property matrix covered by the factor [3].
The first factors cover a large part of the matrix, while the last ones cover only
a small part and may thus be omitted [3], see the graph of cumulative cover of
the matrix by the factors in Figure 5.

4 Interpretation and comparison to other approaches

The aim of this section is to provide an interpretation of the results described
in the previous section and compare them to the results already reported in the
literature, focusing mainly on [14]. As was described in the previous section, 38
factors were obtained. The first 21 of them cover 94 % of the input measure-
property matrix (1s in the matrix), the first nine cover 72 %, and the first five
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Jaccard 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Jmeasure 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1
Klosgen 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1
Laplace 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

Mgk 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 0
least contradiction 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

Pearl 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0
Piatetsky-Shapiro 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0

precision 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0
prevalence 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

YuleQ 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0
recall 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Gini 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

relative risk 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1
Sebag 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1

support 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
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YuleY 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 1
Zhang 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0

causal confirmed confidence 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
Czekanowski 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

negative reliability 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
mutual information 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Kulczynski 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Leverage 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

novelty 0 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0
odds ratio 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1
specificity 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

causal support 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

Fig. 2. Input binary matrix describing interestingness measures by their properties.
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Klosgen 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
Laplace 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Mgk 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
least contradiction 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Pearl 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0
Piatetsky-Shapiro 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0

precision 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
prevalence 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

YuleQ 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1
recall 0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Gini 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

relative risk 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
Sebag 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

support 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
one way support 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
two way support 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1

examples and counter-examples rate 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1
VT100 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1 0

variation support 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1
YuleY 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
Zhang 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

causal confirmed confidence 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
Czekanowski 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

negative reliability 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
mutual information 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Kulczynski 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Leverage 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

novelty 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
odds ratio 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1
specificity 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

causal support 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

Fig. 3. Interestingness measures described by factors obtained by decomposition of the
input matrix from Figure 2 extended by negated properties.
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F1 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0
F2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1
F3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0
F4 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0
F5 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 0
F6 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
F7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0
F8 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1
F9 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

F10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1
F11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0
F12 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
F13 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
F14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0
F15 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0
F16 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
F17 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0
F18 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
F19 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
F20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0
F21 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
F22 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1
F23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0
F24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0
F25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1
F26 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
F27 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1
F28 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 0 0
F29 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1
F30 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0
F31 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1
F32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1
F33 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0
F34 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
F35 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
F36 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
F37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
F38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

Fig. 4. Factors obtained by decomposition of the input matrix from Figure 2 extended
by negated properties. The factors are described in terms of the original and negated
properties.
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Fig. 5. Cumulative cover of input matrix from Figure 2 extended by negated properties
by factors obtained by decomposition of the matrix.

Fig. 6. Venn diagram of the first five factors (plus the eighth and part of the sixth
and tenth to cover the whole set of measures) obtained by decomposition of the input
matrix from Figure 2 extended by negated properties.



cover 52.4 %. Another remark is that the first ten factors cover the whole set of
measures.

Note first that the Boolean factors represent overlapping clusters, contrary
to the clustering using the agglomerative hierarchical method and the K-means
method performed in [14]. Namely, the clusterings are depicted in Figure 6 de-
scribing the Venn diagram of the first five Boolean factors (plus the eighth and
part of the sixth and tenth to cover the whole set of measures) and Figure 7,
which is borrowed from [14], describing the consensus on the classification ob-
tained by the hierarchical and K-means clusterings. This consensus refunds the
classes C1 to C7 of the extracted measures, which are common to both tech-
niques.

Fig. 7. Classes of measures obtained by the hierarchical and K-means clusterings.

Due to lack of space, we focus on the first four factors since they cover nearly
half of the matrix (45.1 %), and also because most of the measures appear at
least once in the four factors.

Factor 1. The first factor F1 applies to 20 measures, see Figure 3, namely:
correlation, Cohen, Pavillon, conviction, Bayes factor, Loevinger, collective strength,
information gain, Goodman, interest, Klosgen, Mgk, YuleQ, relative risk, one



way support, two way support, YuleY, Zhang, novelty, and odds ratio. These
measures share the following 9 properties: P4, P7, P9, not P11, P12, P13, not
P19, not P20, P21, see Figure 4.

Interpretation. The factor applies to measures whose evolutionary curve in-
creases w.r.t the number of examples and have a fixed point in the case of
independence (this allows to identify the attractive and repulsive area of a rule).
The factor also applies only to descriptive and discriminant measures that are
not based on a probabilistic model.

Comparison. When looking at the classification results reported in [14], F1

covers two classes from [14]: C6 and C7, which together contain 15 measures.
Those classes are closely related within the dendrogram obtained with the ag-
glomerative hierarchical clustering method used in [14]. The 5 missing measures
form a class obtained with K-means method in [14] with Euclidian distance.

Factor 2. F2 applies to 18 measures, namely: confidence, causal confidence,
Ganascia, causal confirmation, descriptive confirmation, cosine, causal depen-
dency, Laplace, least contradiction, precision, recall, support, causal confirmed
confidence, Czekanowski, negative reliability, Leverage, specificity, and causal
support. These measures share the following 11 properties: P4, P6, not P9, not
P12, not P13, P14.2, not P15, not P16, not P19, not P20, P21.

Interpretation. The factor applies to measures whose evolutionary curve in-
creases w.r.t. the number of examples and has a variable point in the case of
independence, which implies that the attractive and repulsive areas of a rule
are not identifiable. The factor also applies only to measures that are not dis-
criminant, are indifferent to the first counter-examples, and are not based on a
probabilistic model.

Comparison. F2 corresponds to two classes, C4 and C5 reported in [14].
C4 ∪ C5 contains 22 measures. The missing measures are: Jaccard, Kulczyn-
ski, examples and counter-examples rate and Sebag. Those measures are not
covered by F2 since they are not indifferent to the first counter-examples.

Factor 3. F3 applies to 10 measures, namely: coverage, dependency, weighted
dependency, implication index, Jmeasure, Pearl, prevalence, Gini, variation sup-
port, and mutual information. These measures share the following 10 properties:
not P6, not P8, not P10, not P11, not P13, not P14.1, not P15, not P16, not
P17, not P19.

Interpretation. The factor applies to measures whose evolutionary curve does
not increase w.r.t. the number of examples.

Comparison. F3 corresponds to class C3 reported in [14], which contains
8 measures. The two missing measures, variation support and Pearl, belong
to the same classes obtained by both K-means and the hierarchical method.
Moreover, these two missing measures are similar to those from C3 obtained
by the hierarchical method since they merge with the measures in C3 at the
next level of the generated dendrogram. Here, there is a strong correspondence
between results obtained using Boolean factors and the ones reported in [14].

Factor 4. F4 applies to 9 measures, namely: confidence, Ganascia, descriptive
confirmation, IPEE, IP3E, Laplace, least contradiction, Sebag, and examples and



counter-examples rate. These measures share the following 12 properties: P3, P4,
P6, P11, not P7, not P8, not P9, not P12, not P13, not P15, not P16, not P18.

Interpretation. The factor applies to measures whose evolutionary curve in-
creases w.r.t. the number of examples and has a fixed value in the equilibrium
case. As there is no fixed value in the independence case, we can not get an
identifiable area in the case of attraction or repulsion.

Comparison. F4 mainly applies to measures of class C5 obtained in [14]. The
two missing measures, IPEE et IP3E, belong to a different class.

5 Conclusions and further issues

We demonstrated that Boolean factors provide us with clearly interpretable
meaningful clusters of measures among which the first ones are highly similar
to other clusters of measures reported in the literature. Contrary to other clus-
tering methods, Boolean factors represent overlapping clusters. We consider this
an advantage because overlapping clusters are a natural phenomenon in human
classification. We presented preliminary results on clustering the measures using
Boolean factors. Due to limited scope, we presented only parts of the results
obtained and leave other results for a full version of this paper.

An interesting feature of the presented method, to be explored in the future,
is that the method need not start from scratch. Rather, one or more clusters,
that are considered important classes of measures, may be supplied at the start
and the method may be asked to complete the clustering. Another issue left
for future research is the benefit of the clustering of measures for a user who
is interested in selecting a type of measure, rather than a particular measure
of interestingness of association rules. In the intended scenario, a user may use
various interestingness measures that belong to different classes of measures.
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