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Abstract. We discuss how to randomly generate extents of a given formal context. Our
basic method involves counting the generating sets of an extent, and we show how this
can be done using the Möbius function. We then show how to generate closure systems
on seven elements uniformly at random.

1 Introduction

Let Random(0,1] denote an operator that generates a random number between
0 and 1 with equal probability. From such a (memoryless) random number gen-
erator an operator Random_subset(S) can be derived that produces, upon
each invocation, a random subset of a given �nite set S, such that all subsets are
equally likely (see, e.g., [6]).

Building on this we derive in this article an operator that randomly selects a
closed set from a given closure system1 on a �nite set.

Note that this is a trivial task for moderately sized systems of which you can
label the closed sets by numbers 1, . . . , n. For such you could simply randomly
pick a number between 1 and n and select the closed set labeled by this number.
Since the size of a closure system is at most exponential in the size of its carrier,
this trivial algorithm clearly requires polynomial time. However, a potentially
exponential list of closed sets must be pre-computed and stored.

For example we aim at generating closure systems at random2. But there
are many closure systems, even for small carrier sets. On seven elements the
number was recently computed by Colomb, Irlande, and Raynaud [3] to be
14 087 648 235 707 352 472. Maintaining a list of this size is not an inviting
idea, and thus the trivial approach is not very realistic.

Our motivation comes from recent experimental computer investigations by
D. Borchmann that yielded surprising results. Borchmann raised the question if
these were artefacts caused by the non-uniform choice of the random input data.

Have a look at Figure 1. It shows �ve diagrams, each with 27 rows and 13
columns, corresponding to the possible number of meet reducible and irreducible
closed sets in a closure system on a �ve element set (the trivial system with zero
irreducibles is omitted). A system with r reducibles and i irreducibles corresponds

1 That is, from an intersection-closed familiy of sets. Such families are also called Moore families.
2 The family of all closure systems on a �xed set is itself a closure system.
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Fig. 1. Closure systems on �ve elements by their number of meet-irreducible (horizontal) and reducible
closed sets (vertical). Tile a shows the possible values, tile b the true relative frequencies, tile c and d
come from �random contexts� and tile e from picking systems uniformly at random.

to the cell in the r-th row from the bottom and the i-th column from the left. The
�rst diagram depicts which combinations of r and i are possible, while the other
four display relative frequencies (the darker, the higher). The second diagram
shows the true frequencies, counted over all 1 385 552 closure systems on �ve
elements. The other three show frequencies of randomly chosen closure systems
(1 000 000 samples each). For the diagram in the middle, the systems were made
by putting �random crosses� in a 5×13�context. The fourth diagram was obtained
by putting �random crosses� with random density in a formal context with a
random number of columns. The �fth diagram shows the distribution of a sample
picked with uniform distribution.

We use the language of Formal Concept Analysis [4] and, in particular, that
every closure system is the set Ext(G,M, I) of all extents of some formal context
(G,M, I). We construct an operator Random_extent(G,M, I) which selects,
upon each invocation, randomly an extent of (G,M, I), with equal probability
for all extents.

The closure operator for the extents will be denoted by

X 7→ X ′′.

If X = Y ′′, then Y is called a generating set of the extent X (not necessarily a
minimal one). The number of generating sets of an extent E shall be denoted by
egen(E). We extend this de�nition to arbitrary subsets so that

egen(Y ) := |{X ⊆ G | X ′′ = Y ′′}|

gives the number of generating sets of the extent generated by Y . Of course then,
egen(Y ) = egen(Y ′′). Therefore if E is an extent then obviously∑

{Y |Y ′′=E}

1

egen(Y )
= 1.



Computing the function egen() is a nontrivial task. We shall discuss this below.
Our method could theoretically be applied to many instances, such as generat-

ing random partitions, random subgroups, etc. However, its runtime performance
is very bad. For most such situations algorithms are known that are much more
e�cient than what we suggest. Indeed, we do not believe that our method will
be very useful in practice. Our contribution is meant as a challenge to come up
with a more e�cient approach.

We are grateful to the referees for several useful hints. We were unaware
of the paper by Boley, Gärtner, and Grosskreutz [2], which addresses the same
problem, but with a di�erent and more general approach. It may well be that their
algorithm yields better results even for generating random closure systems. We
have also learnt that the problem of generating random extents is known to belong
to a (di�cult) complexity class: it is equivalent to the #RHΠ1-hard problem
of counting formal concepts (again, see [2] and the references given there). We
already knew (because our colleagues of the stochastics group told us so and
recommended the book by Asmussen and Glynn [1] as a standard reference) that
our approach is an instance of the so-called acceptance-rejection method.

2 Random Extent

Our innocent looking algorithm for generating a random extent of a given formal
context (G,M, I) goes like this:

Algorithm 1 Random_extent: Generating a random extent

Input: A formal context (G,M, I).
Output: A random extent of (G,M, I)
repeat

S := Random_subset(G)

until Random(0,1] ≤ 1
egen(S)

return S ′′.

What the algorithm does essentially is to pick a random subset and output
its closure with probability one over the number of generating sets3. It is quite
elementary to prove that it does what it is supposed to do:

Proposition 1 The algorithm Random_extent generates extents of (G,M, I)
with equal probability.

The proposition is an instance of the following lemma from elementary stochas-
tics, for which we provide a proof. To obtain the proposition from the lemma, let

3 One of the referees pointed out that a much simpler algorithm with the same number of expected
iterations is obtained by replacing the �until� statement by �until S is closed�. We see however no
straightforward way to a recursive version of this algorithm.



A be the set of all subsets of G, let B be the set of all extents, and let f be the
map that associates a subset to the extent it generates.

Lemma 1 Let f : A → B be a surjective (i.e., onto) map between �nite sets A
and B and let Random(A) be an operator that picks elements from A with equal
probability. Then Algorithm 2 outputs elements of B with equal probability.

Algorithm 2 Random image: Random image of a mapping

Input: An onto map f : A→ B and an operator Random(A)
Output: A random element of B
repeat

a := Random(A)
r := Random(0,1]
b := f(a);

until r ≤ 1
|f−1(b)|

return b.

Proof It is obvious that the algorithm produces elements of B. In order that a
given element b is produced in one iteration of the loop, the element amust belong
to f−1(b) and, independently, r ≤ 1

|f−1(b)| . The probability that this happens is

|f−1(b)|
|A|

· 1

|f−1(b)|
=

1

|A|
,

independently of b. The probability that some element is selected after one step
thus is |B||A| . The probability that the element b is produced after k steps is(

1− |B|
|A|

)k−1
· 1

|A|
.

The probability that b is produced is

∞∑
k=1

(
1− |B|
|A|

)k−1
· 1

|A|
=
|A|
|B|
· 1

|A|
=

1

|B|
,

as claimed. �

The expected number of iterations until success is

|A|
|B|

=
#subsets

#extents
.

The algorithm may therefore need quite some time. For example, would this algo-
rithm be applied to the standard context of closure systems to generate a random



closure system on a 6-element set, it requires, on average, 121 402 088 iterations
of the loop, since that context has 26−1 objects and 75 973 751 474 extents ([5]).
For closure systems on a seven-element set the average number of loop iterations
for obtaining a single random closure system would be 12 077 330 482 260 320 447.
As already mentioned we shall develop a better method for this case below. Before
we do so, we study the problem of computing the value of egen(A).

3 Counting generating sets and hitting sets

The algorithm in the previous section uses the number egen(A) of a given extent
A, and that by itself is not easy. Of course, each such generating set must be a
subset of A. On the other hand, a subset S ⊆ A is a generating set of A i� it is
not contained in a lower neighbor of A. It is worthwhile to consider the formal
context

(A,N ,∈),

where N is the family of lower neighbor extents of A. For this context, the
elements ofN are precisely the maximal extents below A, and thus the generating
sets of A are the same as before. Counting generating sets thereby has been
reduced to counting generating sets of the unit element in a co-atomistic lattice.

Every subset of A is generating set of exactly one extent of (A,N ,∈). The
total number of generating sets thus is 2|A|. Indeed, for every extent B we obtain∑

E≤B

egen(E) = 2|B|,

where E runs over extents. By Möbius inversion we obtain

egen(A) =
∑
E≤A

µ(E,A) · 2|E|,

where µ is the Möbius function of the lattice B(A,N ,∈).
The evaluation of this formula poses no algorithmic di�culties. Using the

standard Next_intent algorithm ([4]) to generate the extents in descending
order, and using, for every constructed extent E, the same algorithm again for
producing all extents F between E and A, su�ces to compute the Möbius function
by the well known recursion

µ(E,A) = −
∑

E<F≤A

µ(F,A).

Note that this also counts the hitting sets of any �nite hypergraph. A hitting
set of a family H ⊆ P(A) of subsets of A is a set T ⊆ A that has nonempty
intersection with each H ∈ H (such sets are also called (weak) transversals).



Obviously, T is a hitting set i� T is not a subset of a complement of some H ∈ H,
that is, i� T is a generating set of the extent A in the formal context

(A,Hc,∈),

where

Hc := {A \H | H ∈ H}.

The algorithm given above therefore applies. However, using the Möbius function
for counting generating sets is costly. Fortunately, it is unnecessary in many cases,
as we shall explain in the next section.

4 Splitting the loop

The algorithm poses no conditions on how the random set and the random num-
ber are generated, and in which order. A huge number of iterations is necessary
when we �rst generate the extent and then perform a random experiment with
very low success probability. A better strategy is to perform the random exper-
iment in several steps and interrupt the loop at an early stage, if necessary. For
given 0 ≤ p < 1 and p ≤ α < 1 we may replace the experiment

pick a random number r = Random(0,1] and test if r ≤ p

by

pick two random numbers r = Random(0,1] and s = Random(0,1]
and test if s ≤ α and r ≤ p

α
,

because they have the same success probability. This is the key to the following
lemma.

Lemma 2 Let f : A → B and g : B → C be surjective mappings between �nite
sets and let Random(B) be an operator that picks elements from B with equal
probability. Then Algorithm 3 outputs elements of C with equal probability.

Proof Suppose that we start with a random choice a ∈ A and apply Algorithm 3
to the mapping g ◦ f . We would draw a random number r := Random(0,1] and
output c := g(f(a)) if

r ≤ p :=
1

|f−1(g−1(c))|
.

Equivalently we may split the drawing of r as described above. We �rst compute
b := f(a) and α := 1

f−1(b)
, draw a random number s = Random(0,1] and

continue only if

s ≤ α :=
1

|f−1(b)|
.



Algorithm 3 Random image 2: Random image of a composed mapping

Input: Two onto maps f : A→ B and g : B → C and an operator Random(B)
that randomly outputs elements of B

Output: A random element of C
repeat

b := Random(B)
r := Random(0,1]
c := g(b);

until r ≤ |f−1(b)|
|f−1(g−1(c))|

return c.

We then draw another random number r and output c if

r ≤ p

α
=

|f−1(b)|
|f−1(g−1(c))|

.

According to Lemma 1 the �rst part of this process generates the elements of
B with equal probability. The �rst part therefore may be replaced by a random
choice of elements of B, as stated in the lemma. �

Lemma 2 can be applied in several ways to the random extent problem. Typically,
A is the set of all subsets of G and C is the set of all extents, while B is a selected
family of generating sets. For example we may take some subset G0 ⊆ G and
let B consists of all sets of the form E ∪ R, where E is an extent of the formal
context K0 := (G0,M, I ∩ (G0 ×M)) and R ∩G0 = ∅. This yields Algorithm 4.

Algorithm 4 Recursive random extent

Input: A formal context K and an operator Random_extent(K0) producing
random extents of a subcontext K0 ≤ K

Output: A random extent of K.
repeat

E := Random_extent(K0)
A := E ∪Random_subset(G \G0)
r := Random(0,1];

until r ≤ egen(E,K0)

egen(A)

return A′′.

5 Random Moore family

Our original motivation was generating closure systems (also called Moore fam-
ilies) at random. The number of generating sets of a closure system is easy to



determine without using the Möbius function. Every closure system has a unique
minimal generating set, consisting of all meet-irreducible elements. The total
number of generating sets therefore is 2 to the power s, where s is the number of
reducible closed sets.

The natural formal context for the closure systems on a set S is given by

(P(S), Imp(S), |=),

where

Imp(S) := {A→ b | A ⊆ S, b ∈ S \ A}

is the set of all implications with singleton conclusion over S and

X |= A→ b :⇐⇒ A 6⊆ X or b ∈ X.

It is well known and easy to see that the extents of this formal context are
precisely the closure systems on S. However, this context contains a reducible
object, which is S. The standard context therefore is

(P(S) \ {S}, Imp(S), |=).

The case we are interested in is S := {0, 1, . . . , n − 1}. The object set G of
the context then consists of all proper subsets of S. We choose

G0 := {X ⊆ S | n− 1 /∈ X}
G1 := {X ⊂ S | n− 1 ∈ X}.

The extents of (G1, Imp(S), |=) are (when S is added) precisely those closure
systems on S that contain n − 1 in every closed set. These are in an obvious
bijection to the closure systems on S \ {n− 1}.

The context (G0, Imp(S), |=) has precisely twice as many extents as there are
closure systems on {0, . . . , n− 2}: Each closure system C on {0, . . . , n− 2} is an
extent, but also C \ {S} is.

Let S := {0, . . . , n − 1}. For applying Lemma 2 we let A be the set of all
subsets of P(S) \{S}, C be the family of all closure systems on S, let G0 and G1

be as above and B consist of those set families F ⊆ P(S) \ {S} for which F ∩G0

and F ∩ G1 are extents of the respective subcontexts. Every closure system C
on S is in B, but not conversely. The closure system generated by a family F
from B may contain additional sets, obtained as intersections of a set in G0 and
a set in G1. However, such new sets can only be contained in G0, since a set
containing the element n− 1 cannot be obtained as an intersection involving one
not containing n− 1.

Algorithm 5 encodes the subsets of S := {0, . . . , n− 1} in the natural manner
as the integers from 0 to 2n− 1, using the bitwise and-operation for intersecting



sets. A closure system on S is represented by an array F [0 . . 2n − 2] with

F [i] :=


0 if i is not closed
1 if i is closed and reducible
2 if i is closed and irrreducible.

The algorithm starts with two closure systems on {0, . . . , n − 2} and concate-
nates them. In addition, a random decision is made if the set {0, . . . , n − 2} is
to be counted as a closed set. The result is not necessarily a closure system and
needs to be made intersection closed. This is done in the second part of the al-
gorithm (beginning with �success:= true�). Whenever a new reducible element
is encountered, the generation process is abandoned with probability 0.5 and is
started over. Only if this never happens, a closure system on {0, .., n − 1} is
achieved for output.

Algorithm 5 Random_Moore(n): Random Moore family.

Input: An operatorRandom_Moore(n−1) generating randomMoore families
on {0, . . . , n− 2}.

Output: A random Moore family on {0, . . . , n− 1}.
repeat

F0 := Random_Moore(n− 1)
F [0 . . 2n−1 − 2] := F0[0 . . 2n−1 − 2]

F [2n−1 − 1] :=

{
0 if Random(0,1] < 0.5
1 else.

F1 := Random_Moore(n− 1)
F [2n−1 . . 2n − 2] := F1[0 . . 2n−1 − 2]
i := 2n − 1
success := true
while success and (i > 2n−1) do

if F [i] = 2 then
j := 2n−1 − 1
while success and (j > 0) do

meet := i and j
if (j 6= meet) and (F [meet] 6= 1) then

success := (Random(0,1] < 0.5)
F [meet] := 1

j := j − 1
i := i− 1

until success
return F .



We have implemented Algorithm 5 for n = 7 and present �rst experimental
results. Note that the number of random samples produced by this experiment
is small compared to the number of closure systems: we have generated less than
0.000 000 000 000 4% of all closure systems on seven points.
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Fig. 2. A random sample of 50 000 closure systems on a seven element set, plotted according to their
number of irreducible closed sets (horizontal) and reducible closed sets (vertical). The left image shows
which sizes occurred at least once. The right image expresses higher frequencies by darker shadings.

The computation took one night on a 1.4 GHz PC. We did not even attempt
to generate random closure systems on eight elements using Algorithm 5. We
believe that a substantially better idea is needed for that case and beyond.
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