
A closure algorithm using a recursive
decomposition of the set of Moore co-families

Pierre Colomb1, Alexis Irlande2, Olivier Raynaud1, Yoan Renaud3

1 Clermont Université, Université Blaise Pascal, Campus des Cézeaux
63173 Clermont-Ferrand, France

pierre@colomb.me, raynaud@isima.fr
2 Universidad Nacional de Colombia

Bogota, Colombia
irlande@lirmm.fr

3 INSA de Lyon, Bâtiment Blaise Pascal
Campus de la Doua, 69621 Villeurbanne, France

yoan.renaud@insa-lyon.fr

Abstract. Given a set Un = {1, ..., n}, a collectionM of subsets of Un

that is closed under intersection and contains Un is known as a Moore
family. The set of Moore families for a fixed n is in bijection with the
set of Moore co-families (union-closed families containing the empty set)
denoted itself Mn. This paper follows the work initiated in [8] and [9]
about the recursive decomposition of the lattice of Moore co-families.
We first show that each Moore co-family can be represented by a decom-
position tree and we use this principle to design an original algorithm
to close under union any given family. Then we discuss about the time
complexity and give some experimental results.

1 Introduction

The concept of collection of sets on a ground set Un closed under intersection
appears with different names depending of the scientific fields. The name ‘Moore
families’ was first used by Birkhoff in [4] referring to E.H. Moore’s researches.
But, very frequently, such a collection is called ‘closure spaces’ (or ‘closure sys-
tems’) or ‘convexity spaces’. This concept is applied in numerous fields in pure
or applied mathematics and computer science. For mathematical researches in
algebra and topology we can cite [7, 19, 20]. For researches in order and lattice
theory we have to cite [4, 10] for their works on closure operators. Formally a
closure operator is an extensive, isotone and idempotent function on 2Un , and a
closure system is then the sets of its fixed points. In particular it is shown that
any closure system is a complete lattice. From 1937 Birkhoff in [3] gave a com-
pact representation of ‘quasi ordinal spaces’ (in other words of collections closed
by intersection and union also called distributive lattices). More recently the col-
lection appears again as the main concept in computer science with researches in
relational databases ([11]), in data analysis and formal concept analysis ([13, 1,
15]). More precisely, Ganter and Wille define a mathematical framework for clas-
sification and Barbut and Monjardet used the Galois lattice for equivalent tasks.



In the same time, in 1985 ([12]) such collections are called ‘knowledge spaces’ by
Doignon et Falmagne. An important fact is that the collection of Moore families
on Un is itself a Moore family or a closure system. Indeed, the system composed
of Moore families contains one maximum element (2Un , all subsets of Un) and
the intersection of two Moore families is a Moore family itself. To get an over-
all view of the properties of this closure system, see the survey of Caspard and
Monjardet [6].

Previously in the introduction, we have defined a Moore family on Un as a
collection of sets containing Un and closed by intersection. But for reasons of legi-
bility of the results and simplification of expressions, this article deals with the set
of families closed by union and containing the empty set called Moore co-families
and denoted by Mn. Basically, the set of Moore families is in bijection with this
set. For a given Moore family, one only has to complement every set to obtain
a Moore co-family. For example, the Moore family {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
on U3 corresponds to the Moore co-family {∅, {2}, {3}, {2, 3}} and vice versa.

In [8], Colomb & al counted the exact number of Moore co-families for n = 7
and stated a recursive decomposition theorem of the lattice of Moore co-families
in [9]. In the same article authors state that the set Mn is endowed with the
quotient partition associated with the operator h (each class of the partition
contains all the families which have the same image by h) and prove that each
class has a distributive lattice structure. This operator h is the main concept
underlying the recursive description of Mn. More recently in [2] authors give a
complete characterization of the set h(M) \M.

In the present article we pursue investigations involving Moore co-families by
using the recursive decomposition theorem. In the third section we describe suc-
cinctly the theorem and we show that each Moore co-family can be represented
by a decomposition tree. In the fourth section we describe an original algorithm
to generate a Moore co-family from the set of its join-irreducible elements. Then
we discuss about the time complexity of the process. Some experimental results
are given in section five.

In the rest of the paper, we denote elements by numbers (1, 2, 3, . . . ). Sets
are denoted by capital letters (A,B,C, . . . ). Families of sets are denoted by
calligraphic letters (A,B, C, . . . ). Finally, we denote the sets of families of sets
by black board letters (A,B,C, . . . ).

2 Definitions and notations

For any integer n ≥ 1, let Un denote the set {1, . . . , n}. Let M be a family,
we note (M,⊆) the corresponding partial order. Two sets M,M ′ in M such
that neither M ⊆ M ′ and M ′ ⊆ M are said incomparable in (M,⊆). A family
where every pair of sets is incomparable is called an antichain. We say that M
is covered by M ′ in (M,⊆), denoted M ≺ M ′, if M ⊂ M ′ and there is not
M” ∈M such that M ⊂M” and M” ⊂M ′.



Given a familyM, a subfamily I ofM is an ideal ofM if it satisfies the following
implication for any pair M and M ′ inM,

M ⊆M ′ and M ′ ∈ I ⇒M ∈ I.

In other words, an ideal ofM is some antichain ofM and everything below it.
We shall use IM to denote the sets of ideals onM. Given a set X in a familyM,
there exists a unique ideal I ofM with X as a maximum set. Let IM(X) denote
this ideal. A set J ∈M is called a join-irreducible if J covers only one set. The
set of all join-irreducible sets ofM is denoted JM. LetM be a Moore co-family
and x an element, we denote Mx (resp. Mx̄) the restriction of M to its sets
containing x (resp. to its sets not containing x). The empty set is added toMx.
By extension, we denote by Jx (resp. Jx̄) the set of join-irreducible elements of
M which contain the element x (resp. which do not contain the element x).

3 Recursive decomposition of the Moore co-families
lattice

In previous work, Colomb & al. gave a recursive definition of the Moore co-
families on Un, for any n ≥ 1 (the only Moore co-family on U0 = ∅, is {∅}).

Definition 1. For any integer n such that n ≥ 1, we define

g1,n : Mn−1 −→Mn

M 7−→ {X ∈ 2Un | ∃M ∈M \ {∅}such that X = M ∪ {n}} ∪ {∅},
g2,n : Mn−1 −→Mn

M 7−→ {X ∈ 2Un | ∃M ∈M such that X = M ∪ {n}} ∪ {∅},
hn : Mn−1 −→Mn−1

M 7−→ {X ∈ 2Un−1 | ∀M ∈ g1,n(M) \ {∅}, X ∪M ∈ g1,n(M)}.

We may use h, g1 and g2 instead of hn, g1,n and g2,n when no confusion is
possible. Function g2 consists in adding element n to every set of a familyM in
Mn−1 (thus including the singleton {n}) plus the empty set. Function g1 behaves
similarly but removes the singleton {n}. With these functions defined, we can
state Theorem 1, giving a description of Mn with respect to Mn−1.

Theorem 1 (Colomb & al. [9]).
For any integer n such that n ≥ 1,

Mn =
⋃
M∈Mn−1

{g1(M) ∪M′ | M′ ∈ IMn−1(h(M))} ∪⋃
M∈Mn−1

{g2(M) ∪M′′ | M′′ ∈ IMn−1(M)}

In other words there exists a natural bi-partition of Mn. Families not con-
taining the singleton {n} under the form g1(M) ∪ M′ with M′ a sub-Moore
co-family of h(M) and families containing {n} under the form g2(M) ∪ M′′
withM′′ a sub-Moore co-family ofM.



3.1 Decomposition tree of a Moore co-family

Another interpretation is that for any element x in Un and any Moore co-family
M in Mn, M can be written Mx̄ ∪ gi,x(M′) with M′ such that gi,x(M′) cor-
responds toMx. By applying recursively this decomposition principle toM we
obtain a decomposition binary tree ofM (each leaf is an empty set which cannot
be further decomposed). Basically each leaf corresponds to a set of the initial
family M: to obtain the set corresponding to a leaf, one has only to apply it-
eratively the different functions g1,x or g2,x that can be found in the path from
the chosen leaf to the root of the tree. An example of decomposition of Moore
co-family is given in Figure 1.
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Fig. 1. Decomposition of a Moore co-family



4 A new algorithm to compute a union-closed family

In this section, we present an algorithm to generate a Moore co-familyM from
its set of join-irreducible elements denoted JM. This algorithm is based on the
theorem 1.

4.1 Closure under union algorithm

Problem of generation of closed-sets from a representative family has been well-
studied these last years. Most of existing algorithms are based on a decompo-
sition strategy [14, 5, 17, 16]. As previously stated, generation of closed-sets and
co-closed sets can be treated in the same way (i.e. one only have to complement
every sets of input and output families to obtain both closed and co-closed fam-
ilies). The question we ask here is, given a family of sets J , how to compute
its associated Moore co-family M, i.e. the smallest Moore co-family that con-
tains all sets of J . We choose to denote J the given set because the smallest
representative family for a Moore co-family is the family of its join-irreducible
sets.

We propose an algorithm based on the decomposition of a Moore co-family
that only uses families of join-irreducible sets. In other words, for each step
of the recursive decomposition, given a local set JM, we compute families of
join-irreducible sets JMx̄ and JM′ corresponding to Mx̄ and M′ such that
M =Mx̄ ∪ gi(M′). Leaves of the decomposition tree obtained after the whole
recursive decomposition correspond to the closure of the initial set M. In the
following, we describe how to compute JMx̄

and JM′ .

Proposition 1. Let M, M′ in Mn, x in Un and i in [1, 2] with M = Mx̄ ∪
gi,x(M′). Then

– JMx̄
= Jx̄.

– JM′ ⊆ {J\{x} | J ∈ Jx} ∪ {J1 ∪ J2 | J1 ∈ {J\{x} | J ∈ Jx}, J2 ∈ Jx̄}

Proof.

– JMx̄
= Jx̄

Any join-irreducible element ofM not containing x is also join-irreducible of
Mx̄. Indeed, every predecessors of each set inM not containing x, doesn’t
contain x itself. Similarly, there is no new join-irreducible element in JMx̄ .

– JM′ ⊆ {J\{x} | J ∈ Jx} ∪ {J1 ∪ J2 | J1 ∈ {J\{x} | J ∈ Jx}, J2 ∈ Jx̄}
Let us show that gi(JM′) ⊆ Jx ∪ {J1 ∪ J2 | J1 ∈ Jx, J2 ∈ Jx̄}.
By contradiction, let J be a set in gi,x(JM′) such that J 6∈ Jx∪{J1∪J2 | J1 ∈
Jx, J2 ∈ Jx̄}. So, we have x ∈ J , J 6∈ Jx and J 6∈ Jx̄. Hence, J 6∈ JM.
Let S = {s1, s2, ..., sn} (resp. S′ = {s′1, s′2, ..., s′m}) be the family of maximal
join-irreducible sets ofMx̄ (resp. ofMx) such that ∀i ∈ [1, n], si ⊂ J (resp.
∀j ∈ [1,m], s′j ⊆ J).



Since J 6∈ Jx ∪ {J1 ∪ J2 | J1 ∈ {J\{x} | J ∈ Jx}, J2 ∈ Jx̄} we have
6 ∃i ∈ [1, n] and 6 ∃j ∈ [1,m] such that si ∪ s′j = J or s′j = J . So, ∃i, j ∈ [1, n]
and ∃k, l ∈ [1,m] such that si∪s′k is incomparable with sj ∪s′l and such that
∀u ∈ [1, n] and ∀v ∈ [1,m], either su ∪ s′v ⊆ si ∪ s′k, or su ∪ s′v ⊆ sj ∪ s′l.
But, with J = si∪s′k∪sj∪s′l, we can say that J covers si∪s′k and sj∪s′l. Hence,
J is not a join-irreducible set ofMx, J \ {x} is not a join-irreducible set of
M′ and we conclude that J does not belongs to gi,x(JM′). Contradiction.

ut

Straightforward from proposition 1 we can design an algorithm to close any
given input family (see algorithm 1).

For the first step of algorithm Co-closure, P is initialized to Un that represents
all possible choices of an element for the next decomposition. S is initialized to
the empty set and allows to store element that would form a co-closed set. V erif
is initialized to true. An example of an execution is given in figure 2.

4.2 Discussion about the time complexity of algorithm Co-closure.

Basically, the decomposition tree obtained at the end of the whole process of
Algorithm 1 is a binary tree. Internal nodes have zero, one or two children. Only
the last case induces the algorithm to compute a direct product which create
a new path in the tree corresponding to a new closed set. For this reason we
can say that Algorithm 1 computes as many direct products as the number of
different closed sets of the final result. By this way, the most important part
of the whole time complexity, which corresponds to the computation of direct
products, can be dispatched on each internal node with two children. Locally, the
algorithm computes one direct product between two families whose the size is
variable. Let S be an hypothetic maximal size of a family involved in a product.
Then, treatment of an internal node is done with runtime of O(n.S2). But one
have to know that the size of the family resulting of the product is never superior
to the number of leaves of the sub tree rooted to this internal node. That means
that the local complexity is polynomially linked with the result.

We give in the last section the experimental results. They are far to be
favorable to our approach and one explication could be the following: we said
that the size of the direct product computed for each internal node is linked to
the number of families which have to be generated further, but the process to
compute this product is not linear with the size of the local result of this product.
This point give us a huge space to improve our global process. That means that
Algorithm 1 makes the link between computing a closure and computing a direct
product under constraints to be defined.



Algorithm 1: Co-closure(J , P , S, V erif)
Input: J a family of sets; P , S sets of elements; V erif a Boolean.
begin

if J 6= {∅} and J 6= {} then
Choose an element x ∈ P ; JMx̄ ← Jx̄;
Co-closure(JMx̄ ,

⋃
JMx̄ , S, V erif);

T ← {J\{x} | J ∈ Jx};
JM′ ← T ∪ {T ∪ J | T ∈ T , J ∈ JMx̄};
if {x} 6∈ J then

V erif ← false;
else

V erif ← true;

Co-closure(JM′ ,
⋃
JM′ , S ∪ {x}, V erif);

else
if V erif = true and J 6= {} then

return(S);

S ← {};

end
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Fig. 2. Decomposition tree corresponding to the execution of the algorithm on the
input family {{1}, {1, 2}, {3}, {2, 3}, {1, 3, 4}, {2, 4}}



5 Experimental results

5.1 Experimental design

In order to assess performances, the approach described previously has been
implemented in C. The executable file was generated with compiler GCC 4.6.
The experiments were performed on a Intel Core2 Q9300 processor with 2.2
GHz of speed and 8 Go of memory. Several well-known benchmark real-world
data-sets were chosen from [21]. The following table summarizes the data-sets
caracteristics.

Data-sets # Attributes # Sets # Attributes per set # Closed set
Mushroom 119 8124 23 238709

Chess 75 3196 37 930851336
Connect 129 67557 43 1415737994

To compare performances of Co-closure and previous approaches with respect
to the size of family, we implemented a version of Norris’s algorithm (see [18])
as well as a version of Ganter’s algorithm called Next-closure (see [14]). Note
that we have used the natural one to one mapping between Moore and co-Moore
families to compute closed sets using Co-Closure algorithm.

5.2 Results

We have compared execution time of these different algorithms on parts of bench-
mark data-sets. In that way, we have executed algorithms on the first m sets of
each benchmark data-sets by varying m. On figures 3, 4, and 5 we give numbers
of co-closed sets we obtained by execution of the three algorithms for each size of
the considered data-sets partition. In the last three rows we give the execution
time for each algorithm.

#sets # closed Ganter Norris Co-Closure
100 10867 20ms 10ms 160ms
200 73033 80ms 80ms 1s56
500 1051399 1s54 2s98 7s3
1000 38558373 2m04 2m48 31m52
1500 183655113 13m24 1h04 ?
2000 292107880 26m36 ? ?
2500 386235477 46m25 ? ?
3196 930851336 2h33 ? ?

Fig. 3. Chess



#sets # closed Ganter Norris Co-Closure
10 75 20ms 20ms 20ms
20 270 20ms 20ms 30ms
50 1208 30ms 20ms 40ms
100 3459 30ms 30ms 110ms
200 7086 30ms 3ms 380ms
500 17781 60ms 5ms 2s
1000 32513 210ms 100ms 6s
1500 48414 460ms 170ms 15s
2000 58982 750ms 250ms 30s
2500 72008 1s23 360ms 45s
3000 80901 1s75 480ms 79s
3500 94350 2s32 650ms 112s
4000 104104 2s99 810ms 137s
4500 122950 3s 1s21 194s
5000 136401 4s 1s47 237s
5500 150948 5s 1s78 304s
6000 156573 6s 1s92 348s
6500 195677 7s 2s80 517s
7000 214950 8s 3s30 593s
7500 230882 10s 3s73 718s
8000 237874 11s 3s94 815s
8124 238709 12s 3s96 818s

Fig. 4. Mushroom

#sets # closed Ganter Norris Co-Closure
100 13406 410ms 430ms 550ms
200 63360 470ms 440ms 2s92
500 445676 1s 1s48 2m09
1000 1069569 2s 8s 14m26
2000 4732622 22s 56s ?
5000 22543073 3m51 16m50 ?
10000 69916189 23m18 3h58 ?
20000 242644240 2h50 ? ?
67557 1415737994 4j ? ?

Fig. 5. Connect



6 Conclusion

In [8] authors have computed the exact size of |M7|. From this first challenge has
derived a recursive decomposition theorem which has been formalized in [9]. In
the present article we first show that each Moore co-family can be represented by
a decomposition tree and we use this principle to design an original algorithm to
close under union any given family. The process has been implemented and the
results on well-known benchmarks are given in the last section. Experimentations
state the correctness of the process but show that time complexity and space
complexity are not favorable. However, we think the process is interesting for
two main reasons. Firstly, the decomposition tree obtained by the process is
based on the recursive definition of the set of Moore co-families and corresponds
to a new approach. And secondly the computing of each closure is shown to be
linked to the computing of a direct product under constraints to be defined. It
will be interesting to use some better practices concerning the direct product to
improve the process. In that case the time complexity for each generated set will
correspond to the time complexity needed for the algorithmic treatment of an
internal node with two children. So, any new performance to compute the local
direct product should lead to a more efficient algorithm.
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