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Abstract. We propose an original way of enriching Description Logiggwab-

duction reasoning services by computing the best explamatf an observation
through mathematical morphology (using erosions) ovetiiecept Lattice of a
background theory. The intended application is scene staleting and spatial

reasoning.
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1 Introduction and notations

Scene interpretation can benefit from prior knowledge esqwé as ontologies and from
description logics (DL) endowed with spatial reasoningdas illustrated in our pre-
vious work [5, 6]. The challenge in this work was to derives@aing tools that are able
to handle in a unified way quantitative information suppligdthe image domain and
qualitative pieces of knowledge supplied by the ontologgleObject recognition and
interpretation are seen as the satisfiability of a currénfbn (spatial configuration)
encoded in the ABox of the DL and its TBox part. However, whenexpert knowledge
is not crisply consistent with the observations, which ismowon in image interpreta-
tion, then this approach does not apply or leads to incargisesults. Adapting DL
reasoning tools to such situations can be performed usidgaiion. Our aim is thus to
compute the “best explanation” to the observed phenomenaimsituations. Formally,
given a background theol§ representing the expert knowledge and a forndtileep-
resenting an observation on the problem domain, abduaisoning searches for an
explanation formulaD such thatD is satisfiable w.r.t'C and it holds thatl = D — C
(KUD [= C). We propose to add abductive reasoning tools to DL by assogiagre-
dients from mathematical morphology, DL and Formal Condemlysis (FCA), and
by computing the best explanations of an observation thraigebraic erosion over
the concept lattice of a background theory which is effitjecdnstructed using tools
from FCA. We show that the defined operators satisfy impomraionality postulates
of abductive reasoning.

Based on the TBog and the ABoxA parts of a knowledge bagé, we consider
ABox abduction [3]: if for every, € A itholds that [~ —a, an ABox Abduction Prob-
lem, denoted aéKC, A), consists in finding a set of assertionsuch thatC U v = A.
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The sety (consistent withK) is said to be an explanation ef. Explanatory reason-
ing is concerned with preferred explanations rather than jlain explanations. So,
explaining an observation requires that some formulas beisselected” as preferred
explanations.

We also rely on classical notions of (FCA), and denote a fbooatext byK =
(G, M, I), whereG is the set of objects) the set of attributes anfl C G x M a
relation between the objects and attributes. KoilC G andY C M, the derivation
operators are denoted layand g, with a(X) = {m € M | Vg € X,(g,m) € I},
andg(Y) ={g € G | Ym € Y, (g,m) € I}. The concept lattice is defined from the
classical partial orderingX;,Y:) < (X»2,Y2) & X; C X5 (& Ye C Y1).

Links between FCA and DL can be formalized via the notion @haetic context
K7 := (G, M, I) defined as [1]G := {(Z,d) | T is amodel of andd € AT}, M :=
{mi,...,m,}, andl := {((Z,d),m) | d € mT}, whereZ = (AZ,.T) denotes an
interpretation. The lattice can be constructed using thgildutive concept exploration
algorithm [9].

2 Abduction Operators from Mathematical Morphology on
Complete Lattices

Let (L, <) and(L’, =") be two complete lattices (which do not need to be equal). An
operatord : L — L’ is a dilation if it commutes with the supremum. An operator
e : L' — L is an erosion if it commutes with the infimum. Classical pmies of
mathematical morphology operators on complete latticasesgfound in [4, 8].

Here, with the aim of performing ABox abduction, we woulddito reason on sub-
sets ofGG in order to find their best explanations (). Hence we consider the complete
lattice (P(G), C) and operations fror®(G) into P(G), whereP(G) is the set of sub-
sets ofGG. Since the ordering o@ is equivalent to the one d#/, reasoning oid will di-
rectly lead to results oft/. In order to define explicit operations 81{G), we will make
use of particular erosions and dilations, called morphicklgnes [8], which involve
the notion of structuring element, i.e. a binary relatiobetween elements @¥. For
g € G, we denote by(g) the set of elements @ in relation withg. It can be typically
derived from a distancé: b(g) = {¢' € G | 3X € P(G),¢ € X,d({¢},X) < 1}.
The morphological erosion of is then expressed ag(X) = {g € G | b(g9) C X }.
Definingd from a distance is particularly interesting in the contebatoduction, where
the “most central” parts of models will have to be defined.diop is then expressed as
e"(X) = {g € G| d(g,X%) > n}, whereX“ denotes the complement &f in G.
HeredG is a discrete finite space, and therefore only integer valfiesare considered.
All classical properties of mathematical morphology haldhis framework.

Last Non-empty Erosion. As shown in [2] in the framework of propositional logic,
erosions can be used to find explanations. In this contexigia was to find theost
central partof a formula as the best explanation. This approach was stmhawve good
properties with respect to rationality postulates of altigaceasoning [7]. In this paper,
we propose similar ideas, but adapted to the context of qinatices, using erosions
as defined above. For agdy C G, we define its last erosion ag(X) = ¢"(X) <
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e"(X) # 0, andVm > n, e™(X) = (). This last non-empty erosion defines the subset
of models inG that are the furthest ones from the complemen¥ofaccording to the
distanced), i.e. the most central iX .

Definition 1 Let A be a set of ABox assertions. A preferred explanatiaf A is de-

fined from the last non-empty erosions ‘¢~ & 7vE C e4(AT). Inthis equation,
AT should be understood as the extent of the semantic concemtiated with the DL
conceptd. When a constraint (e.g. a set of hypotheses belonging teablegroud the-

ory) H has to be introduced, then this definition is modifieddas ¢ b=y v C
eo(HE N AT).

Starting from the subset to be explained, performing swiee®rosions amounts
to “go down” in the lattice as much as possible, in order to findon-empty set of
interpretations.

Last Consistent Erosion. Another idea to introduce the constratitis to erode it, as
soon as it remains consistent with This leads to a second explanatory relation.

Definition 2 A preferred explanation of A is defined from the last consistent erosion

asiAplen 4T C cee(HE, AT) N AT, where AT corresponds to the extent of
the semantic context ang.. is the last consistent erosion definedaas(H*, AZ) =
e"(H*) where n = max{k | *(H*) N AT # (}.

Here we consider erosion @&f (i.e. H#*) alone, which means that we are looking at the
subsets (submodels) of the modelsdoivhile being the most in the constraint.

Properties and interpretations. A first important property is that reasoning 6hac-
tually amounts to reason on the whole formal context. Heq@la@ations where defined
from ABox reasoning, leading to erosions of subseté/dimodels). Let( X, Y") be a
formal concept, withX C G andY C M. From the definitions of explanations 4f,
we can derive directly the corresponding concepts¥fousing the derivation opera-
tor, i.e.a(y) = {m € M | Vg € ~,(g9,m) € I}. Note that erodingk amounts to
dilate Y, which is in accordance with the correspondence betweeG#heis connec-
tion property between derivation operators and the adijomg@iroperties of dilation and
erosion. Let us now consider the rationality postulate®ahiced in [7] for explanation
relations. It has been proved that most of them hold for engilans derived from last
non-empty erosion and from last consistent erosion [2] séhresults extend to the DL
context as follows:

- Both ‘"¢ and > are independent of the syntax (since they are computed on
models).
Definitions are consistent in the sense tkag: — A iff 3y, A > ~.
A reflexivity property holds for both definitions: il > ~, theny > ~.
Disjunctions of explanations: it > v and A > ¢, thenA > (v LI §), for both defi-
nitions. This means that if there are several possible egpilans, their disjunction
is an explanation as well, which is an expected result.
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- Disjunction on the left: itC>““~y andD>‘“v, then(C U D)y (since the erosion
is always performed o). However this property does not hold for‘*¢ since
erosion does not commute with the supremum.

- For the same reasons, we have the following propertyifdf : if C' > v and
D >*¢ g, then(C' U D) ‘¢ v or (C'U D) ‘¢ §, but it does not hold for>*"¢ .

- For conjunctions, we have a monotony property fof : if C' >~ andyZ C D*
(i.e. D = v), then(C 11 D) >*¢~. For ‘"¢, only a weaker form holds: if’ >"¢ v
andD >"¢~, then(C 1 D) ‘"¢ ~. Note that this weaker form is also very natural
and interesting.

Since both>‘"¢ and > operators perform erosion in the interpretation.4ét
any solution belongs then to this set atds a model of the obtained solution. Hence
we have the following theorems:

- Soundness: By | A >~ thenk = .
- Completenes =y =3JA|KEA: A> 1.

3 Conclusion

With the aim of image interpretation, we have proposed atikiinference services
in DL based on mathematical morphology over concept lattiadose construction is
based on exploiting the advances of using FCA in DL. The pittgseand interpreta-
tions of the introduced explanatory operators were andlyaed the rational postulates
of abductive reasoning were stated and extended to ourxtoRtgure work will con-
cern the complexity analysis of these operators and assdadgorithms, and a deeper
investigation of their applications to image interpreiati
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