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Abstract.1 Failure detection in telecommunication networks is a 
vital task. So far, several supervised and unsupervised solutions 
have been provided for discovering failures in such networks. 
Among them unsupervised approaches has attracted more attention 
since no label data is required [1]. Often, network devices are not 
able to provide information about the type of failure. In such cases, 
unsupervised setting is more appropriate for diagnosis. Among 
unsupervised approaches, Principal Component Analysis (PCA) 
has been widely used for anomaly detection literature and can be 
applied to matrix data (e.g. Users-Features). However, one of the 
important properties of network data is their temporal sequential 
nature. So considering the interaction of dimensions over a third 
dimension, such as time, may provide us better insights into the 
nature of network failures. In this paper we demonstrate the power 
of three-way analysis to detect events and anomalies in time-
evolving network data. 

1 INTRODUCTION 

Event detection can be briefly described as the task of discovering 
unusual behavior of a system during a specific period of the time. 
On the other hand, anomaly detection concentrates on the detection 
of abnormal points. So clearly it is different from event detection 
since it just considers the points rather than a group of points. Our 
work takes into account both issues using multi-way data analysis. 
Our methodology comprises the following steps: 1) Anomaly 
detection: detection of individual abnormal users 2) Generating 
user trajectories (i.e. behavior of users over time), 3) Clustering 
users’ trajectories to discover abnormal trajectories and 4) 
Detection of events: group of users who show abnormal behavior 
during specific time periods. Although there is a rich body of 
research on the two mentioned issues, to the best of our knowledge 
we are the first ones applying multi-way analysis to the anomaly 
and event detection problem. In the remainder of this section we 
explain some basic and related concepts and works. Afterwards, we 
define the problem, and then discuss three-way analysis methods. 
Hereafter, we introduce the dataset and experiments. Finally, we 
discuss the results and point out possible future directions. 

1.1 ANOMALY DETECTION 

Anomaly is as a pattern in the data that does not conform to the 
expected behavior [1]. Anomaly detection has a wide range of 
application in computer network intrusion detection, medical 
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informatics, and credit card fraud detection. A significant amount 
of research has been devoted to solve this problem. However our 
focus is on unsupervised methods. Anomaly detection techniques 
can be classified into five groups [1]: classification-based, 
clustering-based, nearest neighbor based, statistical methods, 
information theory-based methods and spectral methods. Based on 
this classification, our method is placed in the group of spectral 
methods. These approaches first decompose the high-dimensional 
data into a lower dimension space and then assume that normal and 
abnormal data points appear significantly different from together. 
This some benefits: 1) they can be employed in both unsupervised 
and supervised settings 2) they can detect anomalies in high 
dimensional data, and 3) unlike clustering techniques, they do not 
require complicated manual parameter estimation. So far, most of 
the work related to spectral anomaly detection was based on 
Principal Component Analysis (PCA) and Singular Value 
Decomposition (SVD). Two of the most important applications of 
PCA during recent years has been in the domain of intrusion 
detection [2] [3] and traffic anomaly detection [4] [5].  

1.2 EVENT DETECTION  

Due to huge amount of sequential data being generated by sensors, 
event detection has become an emerging issue with several real-
world applications. Event is a significant occurrence or pattern that 
is unusual comparing to the normal patterns of the behavior of a 
system [6]. This can be natural phenomena or manual system 
interaction. Some examples of events can be an attack on the 
network, bioterrorist activities, epidemic disease, damage in an 
aircraft, pipe-breaks, forest fires, etc. A real system behaves 
normally most of the time, until an anomaly occurs that may cause 
damages to the system. Since the effects of an event in the system 
are not known a priori, detecting and characterizing abnormal 
events is challenging. This is the reason why most of the time we 
cannot evaluate different algorithms. One solution might be 
injection of artificial event into the normal data. However, 
construction of a realistic event pattern is not trivial [7].  

1.3 HIDDEN MARKOV MODELS  

Hidden Markov Models (HMMs) have been used at least for the 
last three decades in signal processing, especially in domain of 
speech recognition. They have also been applied in many other 
domains as bioinformatics (e.g. biological sequence analysis), 
environmental studies (e.g. earthquake and wind detection), and 
finance (financial time series). HMMs became popular for its 
simplicity and general mathematical tractability [8]. 
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HMMs are widely used to describe complex probability 
distributions in time series and are well adapted to model time 
dependencies in such series. HMMs assume that observations 
distribution does not follow a normal distribution and are generated 
by different processes. Each process is dependent on the state of an 
underlying and unobserved Markov process [7]. Markov process 
denotes that the value of a process Xt only depends on the previous 
value of X. Using notations of [9] let: 

 
T = Length of the Observation sequence 
N = Number of states 
Q = {q0, q1, …, q (N-1) } = distinct states of Markov process 
A = State transition probabilities 
B = set of N observation probability distributions 
π = Initial State Distribution 
O = (O0, O1,…, O (T-1)) = observation sequence 
 
A HMM Model is defined with the triple of λ= (A, B, π).  It 

assumes that Observations are drawn using the observation 
probability distribution associated to the current state. The 
transition probabilities between states are given in matrix A. 

 
The three main problems related with HMMs are the following. 

The first problem consists in computing the probability P(O) that a 
given observation sequence O is generated by a given HMM λ. The 
second problem consists in finding the most probable sequence of 
hidden states given an observation sequence O and λ and the third 
problem is related to parameter inference. It consists in estimating 
the parameters of the HMM λ that best fits a given observation 
sequence O. The mainly used algorithms to solve these problems 
are given in the last column of Table 1. More details about these 
algorithms can be found in [10]. In this paper, we deal with the 
third problem to estimate the HMM parameters that best describe 
time series, as it will be explained in Section 2. 

 
Table1. Three HMM Problems 

Problem  Input Output Solution 
Problem 1 λ, O P(O) Forward Backward algorithm 

Problem 2 λ, O Best Q Viterbi algorithm  

Problem 3 O λ Baum-Welch algorithm 

 

1.4 THREE-WAY DATA ANALYSIS 

Traditional data analysis techniques such as PCA, clustering, 
regression, etc. are only able to model two dimensional data and 
they do not consider the interaction between more than two 
dimensions. However, in several real-world phenomena, there is a 
mutual relationship between more than two dimensions (e.g. a 3D 
tensor (Users×Features×Time)) and thus, they should be analyzed 
through a three-way perspective. Three-way analysis considers all 
mutual dependencies between the different dimensions and 
provides a compact representation of the original tensor in lower-
dimensional spaces. The most common three-way analysis models 
are Tucker2, Tucker3, and PARAFAC [10] which are generalized 
versions of two-mode principal component model or, more 
specifically, SVD. Following, we briefly introduce Tucker3 model 
as the best-known method for analysis of three-way data. 

1.4.1 Tucker3 Model 

The Tucker3 model decomposes a three-mode tensor � into set of 
component matrices �, �, � and a small core tensor �. The 
following mathematical equation reveals the decomposition: 
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��
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 × �	� × �
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Where P, Q and R are parameters of the Tucker3 model and 
represent the number of components retained in the first, the 
second and the third mode of the tensor, respectively.  This 
decomposition is illustrated in Figure 1. 

2 PROBLEM DEFINITION  

One of significant issues in telecommunication systems, such as 
IP/TV, is to detect the anomalies at both network and user level. In 
order to study this, target users are usually equipped with a facility 
in their modem which sends an automatic notification message to 
the central server when the connection of a client in the network is 
lost or reestablished. These modems are ubiquitous and 
geographically dispersed. 
 
The modeling of such behavior is not straightforward because the 
number of notification messages is not equal for each user during 
the time period under analysis. For instance, one user may face 40 
connection problems in an hour, hence generating 40 messages, 
while others may face 5 or even no problems at all. In standard 
event detection problems, for each time point there is a 
measurement via one or multiple sensors. In the context of our 
application, such measurements do not take place at regular time 
points, since user modems (or sensors) only send messages to the 
server when something unexpected occurs. Figure 2 illustrates two 
sample users. Each circle represents the time stamp at which a 
notification relative to the given user is received, while ∆T 
represents the inter-arrival time between two consecutive 
messages. As it can be seen, 2 messages were related to user 1 in 
that period, while 4 were related to user 2 during the same period. 
Also, the ∆T between messages is larger for user 1 than for user 2. 
This means that user 2 sent messages more frequently than user 1.  
As in many other event detection problems, we could easily use the 
number of events per hour (measurement) at different users 
(sensors) to detect the events but this way we would lose the 
information content provided by the ∆T’s.  

As the number of ∆T is not the same for each user, this feature 
cannot be directly integrated in our model. Hence, this would cause 

Figure 1. Tucker3 Decomposition 
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some vectors to have different lengths, which is not supported by 
the Tucker3 analysis. To solve this, every time-series of ∆T 
relative to a given user is modeled by a 2-state HMM obtained by 
the Baum-Welch algorithms [11]. 6 parameters are extracted from 
the HMM and are used to describe the time-series of ∆T of the 
users. Using this approach we obtain the same number of features 
for each user and, then, include this information in our feature 
vectors. 

 
Table2. Datasets in tensor format 

Data  
1st mode (I)  

Users 
2nd mode (J)  

Features 
3rd mode (K) 

Hours 
X102 102 10 720 

X909 909 10 720 

3 DATASET 

Dataset is extracted from the usage log of a European IP/TV 
service provider. The raw dataset includes the notification 
messages of users in each line including their occurrence time. As 
previously mentioned, it is not possible to use this data directly in 
our modeling approach, so some pre-processing steps were 
performed. In addition to the obtained HMM parameters for each 
hour and for each user, we included another features, such as mean, 
variance, entropy and number of messages per hour, to our feature 
vector. We generated two separated datasets, each one spanning a 
time period of one month, which is equivalent to 720 hours. In one 
set we selected 102 users and in another we selected 909 users. The 
latter dataset is an extended version of the former. We then 
transformed both datasets to the tensor format.  These datasets are 
shown in a format of Tucker3 input tensor (figure 1) in Table 2 
where I, J, K represent users, features and hours modes, 
respectively. 

4 EXPERIMENTS 

This section is divided into three subsections, according to the 
steps mentioned in the Introduction section. In subsection 1, we 
explain how we detect the abnormal users. In the next subsection 
we describe how we generate user trajectories And in the last 
subsection we explain how we cluster the trajectories using 
hierarchical clustering and detect events using user trajectories.  

4.1 Abnormal Users 

We applied Tucker3 model to both datasets X102 and X909 by 
employing a MATLAB package called Three-mode component 
analysis (Tucker3) [10]. Before that, we performed ANOVA test 
[10] to see the significance of three-way and two-way interaction 
in the data. The results of this test are presented in Table 3. ANOVA 
Max 2D represents the maximum value obtained via different 
combinations of two-way modeling (e.g. I-J, J-K, I-K). As it can be 
seen, bigger numbers are obtained for three-dimension interaction 
(ANOVA 3D), which reveals that there is a mutual interaction 
between the three dimensions in both datasets that can be explained 
better with three-way modeling like Tucker3, than with two-way 
modeling like PCA.   

 
Table3. ANOVA test and selected model parameters P-Q-R 

Data 
ANOVA 
max 2D 

ANOVA 
3D 

Selected Model  
P-Q-R 

fit 

X102 26.18% 38.90% 3-2-2 42.00 

X909 17.02% 78.04% 40-2-4 51.01 

 
The next step is to estimate the best parameters P, Q, R of 

Equation 1. P-Q-R is similar to what we have in PCA. In PCA we 
just determine the number of PCs for one dimension but here we 
need to determine the number of principal components for each 
one of the three modes. P, Q and R can assume values that fall 
within the interval [1, ���], where ��� denotes the maximum 
number of entities in the corresponding mode. For example, in 
terms of  X102 the P-Q-R can go from 1-1-1 to 102-10-720.  These 
parameters are chosen based on a trade-off between model 
parsimony, or complexity, and goodness of fit. For instance, 
regarding the mentioned dataset, 1-1-1 gives about 28% fit (less 
complete and less complex) and model 102-10-720 gives 100% fit 
(most complete and most complex). If we try parameters 3-2-2 the 
model has a 42% fit. So it can be more reasonable choice because 
it finds a good compromise between complexity and fit. In [10] the 
scree test method is proposed as a guideline to choose these 
parameters. We used this test to determine the best model for both 
datasets. The selected model parameters and their corresponding 
fits are presented in Table 3. This means that, for example, for 
dataset X102 if we choose Tucker3 model with 3, 2 and 2 
components to summarize the users, features and hours modes, 
respectively, the model is able to explain 42% of the total variance 
contained in raw data. After the estimation of model parameters, 
we used the selected model to decompose the raw data into a lower 
dimensional subspace, as illustrated in Figure 1 and Equation 1.  
After the decomposition we obtained matrices �, � and �, a small 
core tensor � and a tensor of residual errors. 

 
In order to detect the abnormal users we simply projected the users 
on the component space yielded by matrix �. This projection is 
presented in Figure 3, for dataset X102. The three-dimensional 
subspace is given by the three obtained components by the model 
for the 1st mode (users). As mentioned earlier, this number of 
components is one of the parameters of the model, namely P = 3, 
which corresponds to the first mode. 

 

Figure 2. Two sample users with different number of messages and 
different intervals 
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In order to evaluate the reliability of the model we used the same 
procedure and applied a Tucker3 model to dataset X909, which 
includes all users of X102. Our idea was to see how this model can 
identify abnormal users from both datasets. For this purpose, we 
computed the Euclidean distance between each user in the 
projection space (see Figure 3) and the corresponding center (0, 0, 
0), for both datasets X102 and X909. Then we normalized the 
distances for each dataset and computed the Pearson correlation for 
the common users of these two datasets, according to their distance 
to the center of the subspace. We obtained a correlation of 68.44%. 
Although, for X909 we just took 3 out of 40 main components to 
and model fit was different for both datasets (42% for X102 and 
51.01% for X909),  abnormal or normal users in X102 
approximately appeared as the same way in X909 with 68.44% 
confidence. This denotes that Tucker3 is a robust model to detect 
the abnormal users. 

4.2 User Trajectories  

Visualization methods like the one we presented in Figure 3 are 
not able to show the evolving behavior of users over time.  We 
need another solution to enable us understanding the behavior of 
users over time. One solution is to project the users on a 
decomposed feature space (matrix � of Figure 1) for each time 
point. Since both of our selected parameters have Q equal to 2 it 
means that after projecting Users on feature space we must have a 
coordinate of (�, %) for each timepoint and for each user. The 
process of generating this coordinates is presented in Figure 4. 
':,� and ':,) represent the two components that summarize the 
original entities of the features mode and � represent the three-
order tensor (see Figure 1). The rows of the front matrix are the 
users, the columns correspond to the features and the third mode 
(*-axis) represents the hours. If we compute the dot product 
between each tensor’s rows with the columns of the component 
matrix �, yielded by the Tucker3 model we obtain the 
coordinate(�, %) for a given timepoint. If we repeat this procedure 
for all time points (e.g. hours), we are able to generate the 
coordinates of each user for the 720 hours. The user trajectories are 

obtained by sequentially connecting these coordinates. Formally 
we define user trajectories as:  

 
Definition 1 (User Trajectory) : A sequence of time-stamped 

points, +,- =  ./ →   .� →  … → .� → ⋯ → .
, where .� (�, %, 3) 
(4 = 0,1, … 5), and 3 is a time point.   

 
Figure 5 shows two abnormal users appearing in the top-10 users 
ranked based on abnormality. These abnormal users were ranked 
based on decreasing values of distance to the center, as explained 
in subsection 4.1, user 10 (right) is ranked 2nd and user 95 (left) is 
ranked 4th.  However, as it is clear from the figure, their behavior 
over time is completely different. User 95 just shows two abnormal 
behaviors that correspond to two time points, while user 10 shows 
this abnormal behavior almost in all time points. This means that 
user 10 is dealing with a stable problem while user 95 only has 
problems in specific points in time. This type of interpretation was 
not possible based only on the ranking list of abnormal users, 
obtained in subsection 4.1. Using user trajectories provides us 
richer insights into different kind of problems a user can 
experience.  For instance, what made user 95 be identified as 
abnormal could be something that suddenly happened in the 
network and then was quickly solved, while for user 10, some 
problems occurred but they weren’t solved until the end of the time 
period under analysis. 

4.3 Event Detection from user trajectories 

Even though user trajectories can be useful, when the number of 
users is too large, the individual analysis of each trajectory can 
become a cumbersome task. If we notice that some group of users 
trajectories behave similarly, this can be understood as something 
abnormal happens in their network level. Then some prevention or 
surveillance operations can be conducted more quickly.  

Figure 3. Projection of Users on Matrix � for dataset X102 

Figure 5. Two sample users trajectories in X909, Left) 4th ranked 
abnormal user Right) 2nd ranked abnormal user 

Figure 4. Generation process of user trajectories 
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To explore this goal, we employed Agglomerative Hierarchical 
Clustering toolbox from MATLAB to cluster user trajectories. We 
defined Euclidean distance between each point in trajectories as 
our distance function and Ward's criterion as the linkage criterion. 
We tested different values of cut-off from 0.6 to 1.2 to examine the 
clustering structure. The most suited clustering structure was 
obtained for a dendrogram distance of 1, which cuts the tree to 
level that, corresponds to three clusters. The average trajectory of 
these clusters is shown in Figure 6. Cluster red has1 user (0.1%), 
cluster blue comprises 866 users (97.4%) and cluster green 
includes 22 users (2.5%).  As it can be seen, no specific pattern can 
be recognized from the green and the red cluster. The users in these 
two clusters show an abnormal behavior almost in all time points. 
Such event can be due to a stable specific problem such as a 
problem in the user device. Regarding the blue cluster, it is 
possible to detect three events. First significant event occurs 
between hours 350 to 400. Second and third events also occur 
between 450 to 480 and 520 to 560, respectively.  However, the 
occurrence of the second and the third events should be assessed 
with hypothesis testing since they can be due to an accidental 
change. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we present a study on using the Tucker3 
decomposition to discover abnormal users in an IP/TV network. 
Our results indicate that Tucker3 is a robust method for detecting 
abnormal users in situations where interactions between the three 
dimensions are present.  From the tensor decomposition, we can 
define user trajectories. The trajectories allow us to observe the 
behavior of these users over time. We were able to identify two 
kinds of abnormal users: those who show frequent abnormal 
behavior over the whole time period and those who are associated 
to one or few severe abnormal behaviors over the time period. 
Without resorting to the analysis of user temporal trajectories it 
would have been harder to uncover such facts. Furthermore, from 
the clusters of the users’ trajectories, we have identified three 
events that occurred during three time points in the network. The 
result of this work can be used in a real network surveillance 
system to identify failures in the quickest possible time. In this 
work, we did not consider the spatial relation of users.  Taking into 
account spatial relationships between network nodes could lead to 
a better clustering of users. Since some users might show similar 
behavior, with some delays, other distance measures for clustering 
should be tested. Currently we are employing another distance 
function using dynamic time warping, which assigns two users 
with same behavior but with a time shift in the same cluster.  The 
solution we presented for detection of events was based on 

clustering of trajectories. We are going to apply sliding window on 
trajectories to find time periods that have the most compact 
trajectories, which would lead to the discovery of events in a more 
accurate and reliable way  
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Figure 6.  Center Trajectory of clusters, Left: 1 user, Center : 866 
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