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Abstract. Failure detection in telecommunication networksais
vital task. So far, several supervised and unsigeatvsolutions
have been provided for discovering failures in sungtworks.

Among them unsupervised approaches has attractesl attention

since no label data is required [1]. Often, netwdekices are not
able to provide information about the type of fegluln such cases,
unsupervised setting is more appropriate for diagnoAmong

unsupervised approaches, Principal Component AsalfRCA)

has been widely used for anomaly detection liteeafind can be
applied to matrix data (e.g. Users-Features). Heweone of the
important properties of network data is their terapsequential
nature. So considering the interaction of dimersiower a third
dimension, such as time, may provide us betteglsiinto the
nature of network failures. In this paper we deniats the power
of three-way analysis to detect events and anomafietime-

evolving network data.

1 INTRODUCTION

Event detection can be briefly described as thie edsliscovering
unusual behavior of a system during a specificauedf the time.
On the other hand, anomaly detection concentratébendetection
of abnormal points. So clearly it is different fraewent detection
since it just considers the points rather thancaugrof points. Our
work takes into account both issues using multi-data analysis.
Our methodology comprises the following steps: Ijokaly
detection: detection of individual abnormal usejsGenerating
user trajectories (i.e. behavior of users over }jin3 Clustering
users’ trajectories to discover abnormal trajeewriand 4)
Detection of events: group of users who show ababimehavior
during specific time periods. Although there isiehrbody of
research on the two mentioned issues, to the hestr&knowledge
we are the first ones applying multi-way analysishe anomaly
and event detection problem. In the remainder &f $lection we
explain some basic and related concepts and wafteswards, we
define the problem, and then discuss three-wayyaisamethods.
Hereafter, we introduce the dataset and experimé&imslly, we
discuss the results and point out possible futireztions.

11 ANOMALY DETECTION

Anomaly is as a pattern in the data that does onfotm to the
expected behavior [1]. Anomaly detection has a widege of
application in computer network intrusion detectiomedical
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informatics, and credit card fraud detection. Angigant amount
of research has been devoted to solve this prodtawever our
focus is on unsupervised methods. Anomaly detedgghniques
can be classified into five groups [1]: classifioatbased,
clustering-based, nearest neighbor based, statisticethods,
information theory-based methods and spectral ndsthBased on
this classification, our method is placed in theuyr of spectral
methods. These approaches first decompose thediiggrisional
data into a lower dimension space and then assaeérmal and
abnormal data points appear significantly differéotn together.
This some benefits: 1) they can be employed in bogupervised
and supervised settings 2) they can detect anmnatiehigh
dimensional data, and 3) unlike clustering techesquhey do not
require complicated manual parameter estimationfa§omost of
the work related to spectral anomaly detection Wwased on
Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD). Two of the most important apgtions of
PCA during recent years has been in the domain wésion
detection [2] [3] and traffic anomaly detection [8].

1.2 EVENT DETECTION

Due to huge amount of sequential data being gestiat sensors,
event detection has become an emerging issue witbral real-
world applications. Event is a significant occureror pattern that
is unusual comparing to the normal patterns oftibleavior of a
system [6]. This can be natural phenomena or masystem
interaction. Some examples of events can be amkatta the
network, bioterrorist activities, epidemic diseasemage in an
aircraft, pipe-breaks, forest fires, etc. A realstsyn behaves
normally most of the time, until an anomaly occtirat may cause
damages to the system. Since the effects of art @véhe system
are not known a priori, detecting and charactegizabnormal
events is challenging. This is the reason why mbshe time we
cannot evaluate different algorithms. One solutioight be
injection of artificial event into the normal datdowever,
construction of a realistic event pattern is nvidl [7].

1.3 HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) have been used at |dassthe
last three decades in signal processing, espedialiyjomain of
speech recognition. They have also been applieshdany other
domains as bioinformatics (e.g. biological sequeacalysis),
environmental studies (e.g. earthquake and winéctien), and
finance (financial time series). HMMs became popuiar its
simplicity and general mathematical tractability. [8



HMMs are widely used to describe complex probapbilit
distributions in time series and are well adaptedriodel time
dependencies in such series. HMMs assume that \athigers
distribution does not follow a normal distributiand are generated
by different processes. Each process is dependethiecstate of an
underlying and unobserved Markov process [7]. MarkRoocess
denotes that the value of a proces®ly depends on the previous
value of X. Using notations of [9] let:

T = Length of the Observation sequence

N = Number of states

Q ={d a1, ..., gn-1) } = distinct states of Markov process
A = State transition probabilities

B = set of N observation probability distributions

7 = Initial State Distribution

O =(Qy, 01,.., O(.1)) = observation sequence

A HMM Model is defined with the triple ok= (A, B, w). It
assumes that Observations are drawn using the \aiieer
probability distribution associated to the currestiate. The
transition probabilities between states are givematrix A.

The three main problems related with HMMs are tiwing.
The first problem consists in computing the prolighiP(O) that a
given observation sequence O is generated by a $iéM A. The
second problem consists in finding the most prabaelquence of
hidden states given an observation sequence Q. and the third
problem is related to parameter inference. It cgiash estimating
the parameters of the HMM that best fits a given observation
sequence O. The mainly used algorithms to solvsetipeoblems
are given in the last column of Table 1. More dstabout these
algorithms can be found in [10]. In this paper, eeal with the
third problem to estimate the HMM parameters thest lescribe
time series, as it will be explained in Section 2.

Tablel. Three HMM Problems

Problem Input | Output Solution

Problem 1 A, O P(O) Forward Backward algorithm

Problem 2 A O Best Q Viterbi algorithm

Problem 3 (0] A Baum-Welch algorithm
14 THREE-WAY DATA ANALYSIS

Traditional data analysis techniques such as PCAstaling,
regression, etc. are only able to model two dinwredi data and
they do not consider the interaction between mdran ttwo
dimensions. However, in several real-world phenamdinere is a
mutual relationship between more than two dimersi@ng. a 3D
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Figure 1. Tucker3 Decomposition

1.41  Tucker3 Model

The Tucker3 model decomposes a three-mode teisoto set of
component matriceA, B, C and a small core tensdj. The
following mathematical equation reveals the decosiim:

xijk i Z§=1 23:1 25=1 gpqr X Aip X qu X Cir (1)

Where P, Q and R are parameters of the Tucker3 mariel
represent the number of components retained infitsg the
second and the third mode of the tensor, respégtiveThis
decomposition is illustrated in Figure 1.

2 PROBLEM DEFINITION

One of significant issues in telecommunication ey, such as
IP/TV, is to detect the anomalies at both netwaret aser level. In
order to study this, target users are usually gmrdpwith a facility
in their modem which sends an automatic notificatinessage to
the central server when the connection of a cliehe network is
lost or reestablished. These modems are ubiquitans
geographically dispersed.

The modeling of such behavior is not straightfoveecause the
number of notification messages is not equal faheaser during
the time period under analysis. For instance, @ee may face 40
connection problems in an hour, hence generatingnéésages,
while others may face 5 or even no problems atlallstandard
event detection problems, for each time point thése a

measurement via one or multiple sensors. In thdegbrof our

application, such measurements do not take placegatar time
points, since user modems (or sensors) only sersdages to the
server when something unexpected occurs. Figutastrates two
sample users. Each circle represents the time sttnwhich a
notification relative to the given user is receivedhile AT

tensor (UsersFeatureg Time)) and thus, they should be analyzedrepresents the inter-arrival time between two coumtsee

through a three-way perspective. Three-way anabaisiders all
mutual dependencies between the different dimessiand
provides a compact representation of the origieasar in lower-
dimensional spaces. The most common three-way sinatyodels
are Tucker2, Tucker3, and PARAFAC [10] which areejealized
versions of two-mode principal component model arpre
specifically, SVD. Following, we briefly introductucker3 model
as the best-known method for analysis of three-gats.

messages. As it can be seen, 2 messages werda relaiser 1 in
that period, while 4 were related to user 2 dutimg same period.
Also, theAT between messages is larger for user 1 than &r2is
This means that user 2 sent messages more fregtieatl user 1.
As in many other event detection problems, we ceaklly use the
number of events per hour (measurement) at differesers
(sensors) to detect the events but this way we dvdode the
information content provided by thel’s.

As the number oAT is not the same for each user, this feature

cannot be directly integrated in our model. Hetigis, would cause
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Figure 2. Two sample users with different number of messages
different intervals

some vectors to have different lengths, which is supported by
the Tucker3 analysis. To solve this, every timéeserof AT

relative to a given user is modeled by a 2-stateMHébtained by
the Baum-Welch algorithms [11]. 6 parameters areaeted from
the HMM and are used to describe the time-serieaTof the

users. Using this approach we obtain the same nuaffeatures
for each user and, then, include this informationour feature
vectors.

4.1 Abnormal Users

We applied Tucker3 model to both datasets X102 %909 by
employing a MATLAB package calledhree-mode component
analysis (Tucker3) [10]. Before that, we performed ANOVA test
[10] to see the significance of three-way and twapinteraction

in the data. The results of this test are preseant@dble 3ANOVA
Max 2D represents the maximum value obtained via differen
combinations of two-way modeling (e.g. I-J, J-K)I-As it can be
seen, bigger numbers are obtained for three-diraeristeraction
(ANOVA 3D), which reveals that there is a mutual interaction
between the three dimensions in both datasetsémabe explained
better with three-way modeling like Tucker3, thaithwtwo-way
modeling like PCA.

Table3. ANOVA test and selected model parameters P-Q-R

Data ANOVA ANOVA Selected Model fit
max 2D 3D P-Q-R

X102 26.18% 38.90% 3-2-2 42.0(

X909 17.02% 78.04% 40-2-4 51.01

Table2. Datasets in tensor format

15 mode (1) 2" mode (J) 3 mode (K)
Data
Users Features Hours
X102 102 10 720
X909 909 10 720

3 DATASET

Dataset is extracted from the usage log of a Ewmop®/TV
service provider. The raw dataset includes the fination
messages of users in each line including their menae time. As
previously mentioned, it is not possible to use tiéta directly in
our modeling approach, so some pre-processing stepe
performed. In addition to the obtained HMM parameter each
hour and for each user, we included another feststeh as mean,
variance, entropy and number of messages per toour feature
vector. We generated two separated datasets, e@chpanning a
time period of one month, which is equivalent t® Tdurs. In one
set we selected 102 users and in another we sgl@@fusers. The
latter dataset is an extended version of the farriée then
transformed both datasets to the tensor formaesé&ldatasets are
shown in a format of Tucker3 input tensor (figuieil Table 2
where |, J, K represent users, features and houosles)
respectively.

4 EXPERIMENTS

This section is divided into three subsections,oetiog to the
steps mentioned in the Introduction section. Inssgbon 1, we
explain how we detect the abnormal users. In the sigbsection
we describe how we generate user trajectories Anthé last
subsection we explain how we cluster the trajeetorusing
hierarchical clustering and detect events using tuagctories.
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The next step is to estimate the best parametel®, R of
Equation 1. P-Q-R is similar to what we have in PCAPCA we
just determine the number of PCs for one dimensignhlere we
need to determine the number of principal companémt each
one of the three modes. P, Q and R can assume vhaesall
within the interval[1, max], wheremax denotes the maximum
number of entities in the corresponding mode. Ban®le, in
terms of X102 the P-Q-R can go from 1-1-1 to 102720. These
parameters are chosen based on a trade-off betwezdtel
parsimony, or complexity, and goodness of fit. Fpstance,
regarding the mentioned dataset, 1-1-1 gives aB8 fit (less
complete and less complex) and model 102-10-728sgi0% fit
(most complete and most complex). If we try paramge8-2-2 the
model has a 42% fit. So it can be more reasondi&e because
it finds a good compromise between complexity andrf [10] the
scree test method is proposed as a guideline to choose these
parameters. We used this test to determine thenbedé! for both
datasets. The selected model parameters and theesponding
fits are presented in Table 3. This means that,ef@mple, for
dataset X102 if we choose Tucker3 model with 3, 2l
components to summarize the users, features ants hobodes,
respectively, the model is able to explain 42%hef total variance
contained in raw data. After the estimation of nigukrameters,
we used the selected model to decompose the ranrdata lower
dimensional subspace, as illustrated in Figure d Bquation 1.
After the decomposition we obtained matrideB andcC, a small
core tensof and a tensor of residual errors.

In order to detect the abnormal users we simplyepted the users
on the component space yielded by maixThis projection is
presented in Figure 3, for dataset X102. The tkieensional
subspace is given by the three obtained compotgntse model

for the £' mode (users). As mentioned earlier, this number of
components is one of the parameters of the modehelyP = 3,
which corresponds to the first mode.
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Figure 4. Generation process of user trajectories

obtained by sequentially connecting these coordgmaEormally
we define user trajectories as:

Definition 1 (User Trajectory) : A sequence of time-stamped
points, Trj = po = py = .= p; = - = P, Wherep; (x,y,t)
C (i =0,1,...k), andt is a time point.

Figure 3. Projection of Users on Matris for dataset X102 Figure 5 shows two abnormal users appearing irtdhel0 users
ranked based on abnormality. These abnormal users ranked

In ord((jar to evgluatelltrlje reliab:litysof thg T‘Odej wseggthg/hs.arr?e based on decreasing values of distance to thercersteexplained
prolceé ure”an apﬂle 02 'Igc %r model to ata}s >; | ic in subsection 4.1, user 10 (right) is rankédahd user 95 (left) is
Includes all users of X102. Our idea was to see odelcan ranked 4. However, as it is clear from the figure, thedhlvior

identify abnormal users from both datasets. Fos phirpose, we over time is completely different. User 95 justwidwo abnormal

°°”_’p“Fed the Euclidg_an distanc(;e hbetween e‘:‘g‘ usethd behaviors that correspond to two time points, whier 10 shows
grOchtlct))n ipzce (see |glc1)re 3) dan 92)96 cohr resng U;ﬁ;‘flohol this abnormal behavior almost in all time pointhisTmeans that
), for both datasets X102 and X909. Then we na the  ser 10 is dealing with a stable problem while Ugronly has

dr:Stances for each d?tiset and cc;)mputed the Prggm@h;t.lon for problems in specific points in time. This type oferpretation was
t ehcommon u?errls ° tbese tW(\)N atzT)ser, ZCCO 'mf'; 6??;(56 not possible based only on the ranking list of abwa users,
to the center of the subspace. We obtained a aioslof 68.44%. - ,aineq in subsection 4.1, Using user trajectopesvides us

AItSOUQZ’ Ifc;r Xgoggy; just t]?oka guctj of 40 mjmlnoezntsﬁ) richer insights into different kind of problems asew can
and model fit was different for both datasets (4@¥ an experience. For instance, what made user 95 hatifidd as

51'01% for X909),  abnormal or normgl users in g(lozabnormal could be something that suddenly happédnethe
appr_oxmately _appeared as the same way in X909 GAA4% network and then was quickly solved, while for ud€, some
confidence. This denates that Tucker3 is a robuxdahto detect problems occurred but they weren’t solved untiléhed of the time

the abnormal users. period under analysis.

4.2 User Trajectories

Visualization methods like the one we presente#figure 3 are
not able to show the evolving behavior of usersrdivee. We
need another solution to enable us understandde¢havior of
users over time. One solution is to project thersisen a ]
decomposed feature space (mamBiof Figure 1) for each time
point. Since both of our selected parameters haeg@@l to 2 it
means that after projecting Users on feature spaceust have a N
coordinate of(x,y) for each timepoint and for each user. Th ‘
process of generating this coordinates is preseintdegure 4. - :

B.; andB., represent the two components that summarize th¢ Figyre 5. Two sample users trajectories in X909, Leffyranked
original entities of the features mode akdrepresent the three- abnormal user Right)"2ranked abnormal user

order tensor (see Figure 1). The rows of the froatrix are the

users, the columns correspond to the features fandhtrd mode

(z-axis) represents the hours. If we compute the mtoduct 4.3 Event Detection from user trajectories
between each tensor’'s rows with the columns of diponent
matrixB, vyielded by the Tucker3 model we obtain the
coordinatéx, y) for a given timepoint. If we repeat this procedure
for all time points (e.g. hours), we are able tmnegate the
coordinates of each user for the 720 hours. Thettejectories are

Even though user trajectories can be useful, whemtmber of
users is too large, the individual analysis of e&reljectory can
become a cumbersome task. If we notice that somepgof users
trajectories behave similarly, this can be undexdtas something
abnormal happens in their network level. Then spregention or
surveillance operations can be conducted more tuick
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Figure 6. CenterTrajectory of clusters, Left: 1 user, Center : 866
users and Right: 22 users.

To explore this goal, we employed Agglomerative rdliehical
Clustering toolbox from MATLAB to cluster user trajedes. We
defined Euclidean distance between each pointdjedtories as
our distance function and Ward's criterion as thkalge criterion.
We tested different values of cut-off from 0.6 t& 1o examine the
clustering structure. The most suited clusteringucsire was
obtained for a dendrogram distance of 1, which théstree to
level that, corresponds to three clusters. Theameetrajectory of
these clusters is shown in Figure 6. Cluster red haer (0.1%),
cluster blue comprises 866 users (97.4%) and clugteen
includes 22 users (2.5%). As it can be seen, poifsp pattern can
be recognized from the green and the red cluster.uBers in these
two clusters show an abnormal behavior almostlitirak points.
Such event can be due to a stable specific proldech as a
problem in the user device. Regarding the blue etust is
possible to detect three events. First significemént occurs
between hours 350 to 400. Second and third evdats accur
between 450 to 480 and 520 to 560, respectivelpwever, the
occurrence of the second and the third events dhoeilassessed
with hypothesis testing since they can be due toaesidental
change.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we present a study on using the d&nick
decomposition to discover abnormal users in an \IPfigtwork.
Our results indicate that Tucker3 is a robust me:tfuw detecting
abnormal users in situations where interactionsvéen the three
dimensions are present. From the tensor decongmgsive can
define user trajectories. The trajectories allowtabserve the
behavior of these users over time. We were abligdatify two
kinds of abnormal users: those who show frequentombal
behavior over the whole time period and those wigoagsociated
to one or few severe abnormal behaviors over time tperiod.
Without resorting to the analysis of user tempdrajectories it
would have been harder to uncover such facts. Eurtbre, from
the clusters of the users’ trajectories, we hawmtifled three
events that occurred during three time points & nibtwork. The
result of this work can be used in a real netwankveillance
system to identify failures in the quickest possililme. In this
work, we did not consider the spatial relation sérs. Taking into
account spatial relationships between network nadedd lead to
a better clustering of users. Since some userstrsigbw similar
behavior, with some delays, other distance meadaredustering
should be tested. Currently we are employing amotlistance
function using dynamic time warping, which assign® users
with same behavior but with a time shift in the sacfuster. The
solution we presented for detection of events waset on
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clustering of trajectories. We are going to appigisg window on

trajectories to find time periods that have the tmosmpact

trajectories, which would lead to the discoveryewénts in a more
accurate and reliable way
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